1
|
Liu Z, Liu Y, Jiang Q, Xu H, Liu L. Molecular Engineering L-Aspartate-Alpha-Decarboxylase to Enhance Catalytic Stability and Performance. ChemistryOpen 2025; 14:e202400236. [PMID: 39460447 PMCID: PMC11808261 DOI: 10.1002/open.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/01/2024] [Indexed: 10/28/2024] Open
Abstract
L-aspartate-alpha-decarboxylase (ADC) catalyzes the decarboxylation of L-aspartate to produce β-alanine, which is the decisive step in the biosynthesis of β-alanine. However, the low catalytic stability and efficiency of ADC limit its industrial applications. In this study, a variant of ADC from Bacillus subtilis were used as a starting point for engineering. After constructing a random mutagenesis library by error-prone PCR, followed by high-throughput screening,four substitutions (S7 N, K63 N, A99T, and K113R) were identified. By screening saturation mutagenesis libraries on these positions and computational analysis, two recombined variants N3(S7 N/K63 N/I88 M/A99E/K113R/I126*) and Y1(S7Y/K63 N/I88 M/A99E/K113R/I126*) with improved performance were obtained. Compared to the wild type, the catalytic efficiency and catalytic stability of the best two variants were enhanced up to 95 %(variant N3) and up to 89 %(variant Y1), respectively. In addition, Y1 exhibited 3.37 times improved half-life and 2-fold improved total turnover number. Hydrophilicity analysis and molecular dynamics (MD) simulation revealed that the increased hydrophilicity and steric hindrance of key amino acid residues would affect the catalytic activity and stability. The improved catalytic performance of the variants could be attributed to their enhanced binding capacity to the substrate within the active pocket and the alleviation of mechanism-based inactivation.
Collapse
Affiliation(s)
- Zihan Liu
- Beijing Bioprocess Key LaboratoryBeijing University of Chemical TechnologyBeijing100029PR China
| | - Yiheng Liu
- Beijing Bioprocess Key LaboratoryBeijing University of Chemical TechnologyBeijing100029PR China
| | - Qixuan Jiang
- Beijing Bioprocess Key LaboratoryBeijing University of Chemical TechnologyBeijing100029PR China
| | - Haijun Xu
- Beijing Bioprocess Key LaboratoryBeijing University of Chemical TechnologyBeijing100029PR China
| | - Luo Liu
- Beijing Bioprocess Key LaboratoryBeijing University of Chemical TechnologyBeijing100029PR China
| |
Collapse
|
2
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Cui W, Liu H, Ye Y, Han L, Zhou Z. Discovery and Engineering of a Novel Bacterial L-Aspartate α-Decarboxylase for Efficient Bioconversion. Foods 2023; 12:4423. [PMID: 38137227 PMCID: PMC10743139 DOI: 10.3390/foods12244423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
L-aspartate α-decarboxylase (ADC) is a pyruvoyl-dependent decarboxylase that catalyzes the conversion of L-aspartate to β-alanine in the pantothenate pathway. The enzyme has been extensively used in the biosynthesis of β-alanine and D-pantothenic acid. However, the broad application of ADCs is hindered by low specific activity. To address this issue, we explored 412 sequences and discovered a novel ADC from Corynebacterium jeikeium (CjADC). CjADC exhibited specific activity of 10.7 U/mg and Km of 3.6 mM, which were better than the commonly used ADC from Bacillus subtilis. CjADC was then engineered leveraging structure-guided evolution and generated a mutant, C26V/I88M/Y90F/R3V. The specific activity of the mutant is 28.8 U/mg, which is the highest among the unknown ADCs. Furthermore, the mutant displayed lower Km than the wild-type enzyme. Moreover, we revealed that the introduced mutations increased the structural stability of the mutant by promoting the frequency of hydrogen-bond formation and creating a more hydrophobic region around the active center, thereby facilitating the binding of L-aspartate to the active center and stabilizing the substrate orientation. Finally, the whole-cell bioconversion showed that C26V/I88M/Y90F/R3V completely transformed 1-molar L-aspartate in 12 h and produced 88.6 g/L β-alanine. Our study not only identified a high-performance ADC but also established a research framework for rapidly screening novel enzymes using a protein database.
Collapse
Affiliation(s)
| | | | | | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; (W.C.); (H.L.); (Y.Y.); (Z.Z.)
| | | |
Collapse
|
4
|
Cronan JE. How an overlooked gene in coenzyme a synthesis solved an enzyme mechanism predicament. Mol Microbiol 2023; 119:687-694. [PMID: 37140060 PMCID: PMC10330860 DOI: 10.1111/mmi.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Coenzyme A (CoA) is an essential cofactor throughout biology. The first committed step in the CoA synthetic pathway is synthesis of β-alanine from aspartate. In Escherichia coli and Salmonella enterica panD encodes the responsible enzyme, aspartate-1-decarboxylase, as a proenzyme. To become active, the E. coli and S. enterica PanD proenzymes must undergo an autocatalytic cleavage to form the pyruvyl cofactor that catalyzes decarboxylation. A problem was that the autocatalytic cleavage was too slow to support growth. A long-neglected gene (now called panZ) was belatedly found to encode the protein that increases autocatalytic cleavage of the PanD proenzyme to a physiologically relevant rate. PanZ must bind CoA or acetyl-CoA to interact with the PanD proenzyme and accelerate cleavage. The CoA/acetyl-CoA dependence has led to proposals that the PanD-PanZ CoA/acetyl-CoA interaction regulates CoA synthesis. Unfortunately, regulation of β-alanine synthesis is very weak or absent. However, the PanD-PanZ interaction provides an explanation for the toxicity of the CoA anti-metabolite, N5-pentyl pantothenamide.
Collapse
Affiliation(s)
- John E. Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana 61801, USA
| |
Collapse
|
5
|
Bowling PE, Broderick DR, Herbert JM. Fragment-Based Calculations of Enzymatic Thermochemistry Require Dielectric Boundary Conditions. J Phys Chem Lett 2023; 14:3826-3834. [PMID: 37061921 DOI: 10.1021/acs.jpclett.3c00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electronic structure calculations on enzymes require hundreds of atoms to obtain converged results, but fragment-based approximations offer a cost-effective solution. We present calculations on enzyme models containing 500-600 atoms using the many-body expansion, comparing to benchmarks in which the entire enzyme-substrate complex is described at the same level of density functional theory. When the amino acid fragments contain ionic side chains, the many-body expansion oscillates under vacuum boundary conditions but rapid convergence is restored using low-dielectric boundary conditions. This implies that full-system calculations in the gas phase are inappropriate benchmarks for assessing errors in fragment-based approximations. A three-body protocol retains sub-kilocalorie per mole fidelity with respect to a supersystem calculation, as does a two-body calculation combined with a full-system correction at a low-cost level of theory. These protocols pave the way for application of high-level quantum chemistry to large systems via rigorous, ab initio treatment of many-body polarization.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dustin R Broderick
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Research progress of L-aspartate-α-decarboxylase and its isoenzyme in the β-alanine synthesis. World J Microbiol Biotechnol 2022; 39:42. [PMID: 36513951 DOI: 10.1007/s11274-022-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Driven by the massive demand in recent years, the production of β-alanine has significantly progressed in chemical and biological ways. Although the chemical method is relatively mature compared to biological synthesis, its high cost of waste disposal and environmental pollution does not meet the environmental protection standard. Hence, the biological method has become more prevalent as a potential alternative to the chemical synthesis of β-alanine in recent years. As a result, the aspartate pathway from L-aspartate to β-alanine (the most significant rate-limiting step in the β-alanine synthesis) catalyzed by L-aspartate-α-decarboxylase (ADC) has become a research hotspot in recent years. Therefore, it is vital to comprehensively understand the different enzymes that possess a similar catalytic ability to ADC. This review will investigate the exploratory process of unique synthesis features and catalytic properties of ADC/ADC-like enzymes in particular creatures with similar catalytic capacity or high sequence homology. At the same time, we will discuss the different β-alanine production methods which can apply to future industrialization.
Collapse
|
7
|
Saw W, Leow CY, Harikishore A, Shin J, Cole MS, Aragaw WW, Ragunathan P, Hegde P, Aldrich CC, Dick T, Grüber G. Structural and Mechanistic Insights into Mycobacterium abscessus Aspartate Decarboxylase PanD and a Pyrazinoic Acid-Derived Inhibitor. ACS Infect Dis 2022; 8:1324-1335. [PMID: 35731701 PMCID: PMC10517418 DOI: 10.1021/acsinfecdis.2c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) aspartate decarboxylase PanD is required for biosynthesis of the essential cofactor coenzyme A and targeted by the first line drug pyrazinamide (PZA). PZA is a prodrug that is converted by a bacterial amidase into its bioactive form pyrazinoic acid (POA). Employing structure-function analyses we previously identified POA-based inhibitors of Mtb PanD showing much improved inhibitory activity against the enzyme. Here, we performed the first structure-function studies on PanD encoded by the nontuberculous mycobacterial lung pathogen Mycobacterium abscessus (Mab), shedding light on the differences and similarities of Mab and Mtb PanD. Solution X-ray scattering data provided the solution structure of the entire tetrameric Mab PanD, which in comparison to the structure of the derived C-terminal truncated Mab PanD1-114 mutant revealed the orientation of the four flexible C-termini relative to the catalytic core. Enzymatic studies of Mab PanD1-114 explored the essentiality of the C-terminus for catalysis. A library of recombinant Mab PanD mutants based on structural information and PZA/POA resistant PanD mutations in Mtb illuminated critical residues involved in the substrate tunnel and enzymatic activity. Using our library of POA analogues, we identified (3-(1-naphthamido)pyrazine-2-carboxylic acid) (analogue 2) as the first potent inhibitor of Mab PanD. The inhibitor shows mainly electrostatic- and hydrogen bonding interaction with the target enzyme as explored by isothermal titration calorimetry and confirmed by docking studies. The observed unfavorable entropy indicates that significant conformational changes are involved in the binding process of analogue 2 to Mab PanD. In contrast to PZA and POA, which are whole-cell inactive, analogue 2 exerts appreciable antibacterial activity against the three subspecies of Mab.
Collapse
Affiliation(s)
- Wuan–Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Chen Yen Leow
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Malcolm S. Cole
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, USA
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Pooja Hegde
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | - Courtney C. Aldrich
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Boulevard, Nutley, New Jersey 07110, USA
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road NW Medical-Dental Building, Washington, DC 20007, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
8
|
Determination of three sites involved in the divergence of L-aspartate-α-decarboxylase self-cleavage in bacteria. Enzyme Microb Technol 2022; 158:110048. [DOI: 10.1016/j.enzmictec.2022.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
|
9
|
β-Alanine production by L-aspartate-α-decarboxylase from Corynebacterium glutamicum and variants with reduced substrate inhibition. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Enhancement of β-Alanine Biosynthesis in Escherichia coli Based on Multivariate Modular Metabolic Engineering. BIOLOGY 2021; 10:biology10101017. [PMID: 34681116 PMCID: PMC8533518 DOI: 10.3390/biology10101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
β-alanine is widely used as an intermediate in industrial production. However, the low production of microbial cell factories limits its further application. Here, to improve the biosynthesis production of β-alanine in Escherichia coli, multivariate modular metabolic engineering was recruited to manipulate the β-alanine biosynthesis pathway through keeping the balance of metabolic flux among the whole metabolic network. The β-alanine biosynthesis pathway was separated into three modules: the β-alanine biosynthesis module, TCA module, and glycolysis module. Global regulation was performed throughout the entire β-alanine biosynthesis pathway rationally and systematically by optimizing metabolic flux, overcoming metabolic bottlenecks and weakening branch pathways. As a result, metabolic flux was channeled in the direction of β-alanine biosynthesis without huge metabolic burden, and 37.9 g/L β-alanine was generated by engineered Escherichia coli strain B0016-07 in fed-batch fermentation. This study was meaningful to the synthetic biology of β-alanine industrial production.
Collapse
|
11
|
Ragunathan P, Cole M, Latka C, Aragaw WW, Hegde P, Shin J, Subramanian Manimekalai MS, Rishikesan S, Aldrich CC, Dick T, Grüber G. Mycobacterium tuberculosis PanD Structure-Function Analysis and Identification of a Potent Pyrazinoic Acid-Derived Enzyme Inhibitor. ACS Chem Biol 2021; 16:1030-1039. [PMID: 33984234 DOI: 10.1021/acschembio.1c00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A common strategy employed in antibacterial drug discovery is the targeting of biosynthetic processes that are essential and specific for the pathogen. Specificity in particular avoids undesirable interactions with potential enzymatic counterparts in the human host, and it ensures on-target toxicity. Synthesis of pantothenate (Vitamine B5), which is a precursor of the acyl carrier coenzyme A, is an example of such a pathway. In Mycobacterium tuberculosis (Mtb), which is the causative agent of tuberculosis (TB), pantothenate is formed by pantothenate synthase, utilizing D-pantoate and β-Ala as substrates. β-Ala is mainly formed by the decarboxylation of l-aspartate, generated by the decarboxylase PanD, which is a homo-oliogomer in solution. Pyrazinoic acid (POA), which is the bioactive form of the TB prodrug pyrazinamide, binds and inhibits PanD activity weakly. Here, we generated a library of recombinant Mtb PanD mutants based on structural information and PZA/POA resistance mutants. Alterations in oligomer formation, enzyme activity, and/or POA binding were observed in respective mutants, providing insights into essential amino acids for Mtb PanD's proper structural assembly, decarboxylation activity and drug interaction. This information provided the platform for the design of novel POA analogues with modifications at position 3 of the pyrazine ring. Analogue 2, which incorporates a bulky naphthamido group at this position, displayed a 1000-fold increase in enzyme inhibition, compared to POA, along with moderately improved antimycobacterial activity. The data demonstrate that an improved understanding of mechanistic and enzymatic features of key metabolic enzymes can stimulate design of more-potent PanD inhibitors.
Collapse
Affiliation(s)
- Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Malcolm Cole
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Chitra Latka
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Pooja Hegde
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | - Sankaranarayanan Rishikesan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Courtney C. Aldrich
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Boulevard, Nutley, New Jersey 07110, United States
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road NW Medical-Dental Building, Washington, District of Columbia 20007, United States
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
12
|
Watanabe Y, Watanabe Y, Watanabe S. Structural Basis for Phosphatidylethanolamine Biosynthesis by Bacterial Phosphatidylserine Decarboxylase. Structure 2020; 28:799-809.e5. [PMID: 32402247 DOI: 10.1016/j.str.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
In both prokaryotes and eukaryotes, phosphatidylethanolamine (PE), one of the most abundant membrane phospholipids, plays important roles in various membrane functions and is synthesized through the decarboxylation of phosphatidylserine (PS) by PS decarboxylases (PSDs). However, the catalysis and substrate recognition mechanisms of PSDs remain unclear. In this study, we focused on the PSD from Escherichia coli (EcPsd) and determined the crystal structures of EcPsd in the apo form and PE-bound form at resolutions of 2.6 and 3.6 Å, respectively. EcPsd forms a homodimer, and each protomer has a positively charged substrate binding pocket at the active site. Structure-based mutational analyses revealed that conserved residues in the pocket are involved in PS decarboxylation. EcPsd has an N-terminal hydrophobic helical region that is important for membrane binding, thereby achieving efficient PS recognition. These results provide a structural basis for understanding the mechanism of PE biosynthesis by PSDs.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
13
|
The molecular basis of pyrazinamide activity on Mycobacterium tuberculosis PanD. Nat Commun 2020; 11:339. [PMID: 31953389 PMCID: PMC6969166 DOI: 10.1038/s41467-019-14238-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Pyrazinamide has been a mainstay in the multidrug regimens used to treat tuberculosis. It is active against the persistent, non-replicating mycobacteria responsible for the protracted therapy required to cure tuberculosis. Pyrazinamide is a pro-drug that is converted into pyrazinoic acid (POA) by pyrazinamidase, however, the exact target of the drug has been difficult to determine. Here we show the enzyme PanD binds POA in its active site in a manner consistent with competitive inhibition. The active site is not directly accessible to the inhibitor, suggesting the protein must undergo a conformational change to bind the inhibitor. This is consistent with the slow binding kinetics we determined for POA. Drug-resistant mutations cluster near loops that lay on top of the active site. These resistant mutants show reduced affinity and residence time of POA consistent with a model where resistance occurs by destabilizing the closed conformation of the active site. The important tuberculosis drug pyrazinamide (PZA) is converted to its active form pyrazinoic acid (POA) in Mycobacterium tuberculosis (Mtb). Here the authors identify the pantothenate biosynthesis pathway enzyme aspartate decarboxylase (PanD) as the target of PZA and determine the POA bound Mtb PanD crystal structure.
Collapse
|
14
|
Liu Z, Zheng W, Ye W, Wang C, Gao Y, Cui W, Zhou Z. Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine. Appl Microbiol Biotechnol 2019; 103:9443-9453. [PMID: 31696283 DOI: 10.1007/s00253-019-10139-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/05/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
β-alanine is a precursor for the production of pharmaceuticals and food additives that is produced by chemical methods in industry. As concerns about the environment and energy are increasing, biocatalysis using L-aspartate-α-decarboxylase (ADC) to convert L-aspartate to β-alanine has great potential. Many studies have focused on the catalytic activity of ADC, but these researches were limited to the prokaryotic enzymes. In this study, the gene encoding cysteine sulfinic acid decarboxylase from Tribolium castaneum (TcCSADC) was synthesized and overexpressed in Escherichia coli, and the enzyme was purified and characterized for the first time. It could use L-aspartate as its substrate, and the specific activity was 4.83 μmol/min/mg, which was much higher than that of ADCs from prokaryotes. A homology modeling assay indicated that TcCSADC had a dimer structure. Based on the evolutionary information from thermophilic bacteria, twenty-three variants were constructed to attempt to improve its abilities that transform L-aspartate to β-alanine. One mutant, G369A, was screened that had improved thermal stability. An analysis of the suitability of the catalytic process showed that the up to 162 g/L β-alanine could be produced using cells expressing the recombinant G369A variant, which is the highest yield to date. The CSADC from T. castaneum has important value for studies of the mechanism of ADCs and CSADCs from eukaryotes, and the engineered strain containing the G369A variant has great potential for the industrial production of β-alanine.
Collapse
Affiliation(s)
- Zhongmei Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Wenhui Zheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Wenqi Ye
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Chao Wang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yu Gao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
15
|
Mo Q, Mao A, Li Y, Shi G. Substrate inactivation of bacterial L-aspartate α-decarboxylase from Corynebacterium jeikeium K411 and improvement of molecular stability by saturation mutagenesis. World J Microbiol Biotechnol 2019; 35:62. [PMID: 30923994 DOI: 10.1007/s11274-019-2629-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/08/2019] [Indexed: 12/28/2022]
Abstract
Bacterial L-aspartate α-decarboxylase (PanD) is a potential biocatalyst for the green production of β-alanine, an important block chemical for manufacturing nitrogen-containing chemicals in bio-refinery field. It was reported that the poor catalytic stability caused by substrate inactivation limited the large-scale application. Here, we investigated the characters of inactivation by L-aspartate of PanD from Corynebacterium jeikeium (PDCjei), and found that L-aspartate induced a time-, and concentration-dependent inactivation of PDCjei with the values of KI and kinact being 288.4 mM and 0.235/min, respectively. To improve the catalytic stability of PDCjei, conserved amino acid residues essential to catalytic stability were analyzed by comparing the discrepancy in the observed inactivation rate of various sources. By an efficient colorimetric high-throughput screening method, four mutants with 3.18-24.69% higher activity were obtained from mutant libraries. Among them, the best mutation (R3K) also performed 66.38% higher catalytic stability than the wild type, showing great potential for industrial bio-production of β-alanine.
Collapse
Affiliation(s)
- Qin Mo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - An Mao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Youran Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guiyang Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
16
|
Zhang T, Zhang R, Xu M, Zhang X, Yang T, Liu F, Yang S, Rao Z. Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis l-aspartate α-decarboxylase for an efficient β-alanine production. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Pei W, Zhang J, Deng S, Tigu F, Li Y, Li Q, Cai Z, Li Y. Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Appl Microbiol Biotechnol 2017; 101:6015-6021. [PMID: 28589224 DOI: 10.1007/s00253-017-8337-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Abstract
β-Alanine is an important precursor for the production of food additives, pharmaceuticals, and nitrogen-containing chemicals. Compared with the conventional chemical routes for β-alanine production, the biocatalytic routes using L-aspartate-α-decarboxylase (ADC) are more attractive when energy and environment are concerned. However, ADC's poorly understood properties and its inherent mechanism-based inactivation significantly limited the application of this enzyme. In this study, three genes encoding the ADC enzymes from Escherichia coli, Corynebacterium glutamicum, and Bacillus subtilis were overexpressed in E. coli. Their properties including specific activity, thermostability, and mechanism-based inactivation were characterized. The ADC enzyme from B. subtilis, which had higher specific activity and thermostability than the others, was selected for further study. In order to improve its activity and relieve its mechanism-based inactivation by molecular engineering so as to improve its catalytic stability, a high-throughput fluorometric assay of β-alanine was developed. From a library of 4000 mutated enzymes, two variants with 18-22% higher specific activity and 29-64% higher catalytic stability were obtained. The best variant showed 50% higher β-alanine production than the wild type after 8 h of conversion of L-aspartate, showing great potential for industrial biocatalytic production of β-alanine.
Collapse
Affiliation(s)
- Wanli Pei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, No.1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Junli Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Siying Deng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Fitsum Tigu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, No.1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, No.1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
18
|
Pandey B, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Kaur J, Grover A. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene 2016; 581:31-42. [PMID: 26784657 DOI: 10.1016/j.gene.2016.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 01/27/2023]
Abstract
The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA.
Collapse
Affiliation(s)
- Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk 304022, Rajasthan, India
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk 304022, Rajasthan, India
| | - Aditi Singh
- Department of Biotechnology, TERI University, Vasant Kunj, New Delhi 110070, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
19
|
Beck ZQ, Burr DA, Sherman DH. Characterization of the beta-methylaspartate-alpha-decarboxylase (CrpG) from the cryptophycin biosynthetic pathway. Chembiochem 2016; 8:1373-5. [PMID: 17600793 DOI: 10.1002/cbic.200700162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zachary Q Beck
- Life Sciences Institute, Department of Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
20
|
Abstract
Pantothenate is vitamin B5 and is the key precursor for the biosynthesis of coenzyme A (CoA), a universal and essential cofactor involved in a myriad of metabolic reactions, including the synthesis of phospholipids, the synthesis and degradation of fatty acids, and the operation of the tricarboxylic acid cycle. CoA is also the only source of the phosphopantetheine prosthetic group for enzymes that shuttle intermediates between the active sites of enzymes involved in fatty acid, nonribosomal peptide, and polyketide synthesis. Pantothenate can be synthesized de novo and/or transported into the cell through a pantothenatepermease. Pantothenate uptake is essential for those organisms that lack the genes to synthesize this vitamin. The intracellular levels of CoA are controlled by the balance between synthesis and degradation. In particular, CoA is assembled in five enzymatic steps, starting from the phosphorylation of pantothenate to phosphopantothenatecatalyzed by pantothenate kinase, the product of the coaA gene. In some bacteria, the production of phosphopantothenate by pantothenate kinase is the rate limiting and most regulated step in the biosynthetic pathway. CoA synthesis additionally networks with other vitamin-associated pathways, such as thiamine and folic acid.
Collapse
|
21
|
Webb ME, Yorke BA, Kershaw T, Lovelock S, Lobley CMC, Kilkenny ML, Smith AG, Blundell TL, Pearson AR, Abell C. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1166-72. [PMID: 24699660 PMCID: PMC3975893 DOI: 10.1107/s1399004713034275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.
Collapse
Affiliation(s)
- Michael E. Webb
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
- School of Chemistry, University of Leeds, Leeds LS2 9JT, England
| | - Briony A. Yorke
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
- School of Chemistry, University of Leeds, Leeds LS2 9JT, England
| | - Tom Kershaw
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, England
| | - Sarah Lovelock
- School of Chemistry, University of Leeds, Leeds LS2 9JT, England
| | - Carina M. C. Lobley
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, England
| | - Mairi L. Kilkenny
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, England
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, England
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, England
| | - Arwen R. Pearson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
| |
Collapse
|
22
|
Significance of Arg3, Arg54, and Tyr58 of L-aspartate α-decarboxylase from Corynebacterium glutamicum in the process of self-cleavage. Biotechnol Lett 2013; 36:121-6. [PMID: 24104602 DOI: 10.1007/s10529-013-1337-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE OF WORK We have elucidated the significance of three key amino acid residues of L-aspartate α-decarboxylase that act remotely from its cleavage site for its functional self-cleavage as well as for its catalytic activity. These results provide useful fundamental information for engineering L-aspartate α-decarboxylase. L-Aspartate α-decarboxylase (ADC) from Corynebacterium glutamicum, and encoded by panD, was cloned and expressed in Escherichia coli and then purified. Three amino acid residues were found to be related to ADC self-cleavage. Mutating R3 to either A, Q, N, L, D, or E produced only the unprocessed pro-enzyme. Although mutating R54 and Y58 into A or K and A or T, respectively, partly influenced ADC self-cleavage, the specific activity of each of the four ßmutants decreased to 3.5, 4, 2.4, and 2.6 U mg(-1), respectively, compared with a specific activity of 690 U mg(-1) for the wild-type enzyme. Thus, R3 triggers ADC self-cleavage and completes the modification of the active site with assistance by R54 and Y58. These results will help to engineer ADC for improved industrial applications.
Collapse
|
23
|
Arumugam G, Nair AG, Hariharaputran S, Ramanathan S. Rebelling for a reason: protein structural "outliers". PLoS One 2013; 8:e74416. [PMID: 24073209 PMCID: PMC3779223 DOI: 10.1371/journal.pone.0074416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/31/2013] [Indexed: 11/29/2022] Open
Abstract
Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant. This paper analyses the impact of structural divergence on function for multi-member superfamilies, selected from the PASS2 superfamily alignment database. Functional annotations within superfamilies, with structural outliers or 'rebels', are discussed in the context of structural variations. Overall, these data reinforce the idea that functional similarities cannot be extrapolated from mere structural conservation. The implication for fold-function prediction is that the functional annotations can only be inherited with very careful consideration, especially at low sequence identities.
Collapse
Affiliation(s)
- Gandhimathi Arumugam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| | - Anu G. Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| | - Sridhar Hariharaputran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| | - Sowdhamini Ramanathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| |
Collapse
|
24
|
Sharma R, Florea M, Nau WM, Swaminathan K. Validation of drug-like inhibitors against Mycobacterium tuberculosis L-aspartate α-decarboxylase using nuclear magnetic resonance (1H NMR). PLoS One 2012; 7:e45947. [PMID: 23029336 PMCID: PMC3461031 DOI: 10.1371/journal.pone.0045947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
The catalytic activity of L-aspartate α-decarboxylase (ADC) is essential for the growth of several micro-organisms, including Mycobacterium tuberculosis (Mtb), and has triggered efforts for the development of pharmaceutically active compounds against tuberculosis. The present study is a continuation of our recent chemoinformatics-based design approach for identifying potential drug-like inhibitors against MtbADC. We report an NMR-based protocol that allows label-free and direct monitoring of enzymatic conversion, which we have combined with a systematic testing of reported and newly identified potential inhibitors against MtbADC. Quantification of enzymatic conversion in the absence and presence of inhibitors allowed for a relative measure of the inhibitory effect (k(rel)). Among the newly identified compounds, D-tartrate, L-tartrate, and 2,4-dihydroxypyrimidine-5-carboxylate were found to inhibit the enzyme with k(rel) values of 0.36, 0.38, and 0.54, respectively. In addition to the identification of potential building blocks for the development of therapeutic agents, the current study highlights the importance of electrostatic interactions governing enzyme-inhibitor binding.
Collapse
Affiliation(s)
- Reetu Sharma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mara Florea
- School of Engineering and Science, Jacobs University, Bremen, Germany
| | - Werner M. Nau
- School of Engineering and Science, Jacobs University, Bremen, Germany
- * E-mail: (WMN); (KS)
| | - Kunchithapadam Swaminathan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (WMN); (KS)
| |
Collapse
|
25
|
Webb ME, Lobley CMC, Soliman F, Kilkenny ML, Smith AG, Blundell TL, Abell C. Structure of Escherichia coli aspartate α-decarboxylase Asn72Ala: probing the role of Asn72 in pyruvoyl cofactor formation. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:414-7. [PMID: 22505409 PMCID: PMC3325809 DOI: 10.1107/s1744309112009487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 03/04/2012] [Indexed: 11/11/2022]
Abstract
The crystal structure of the Asn72Ala site-directed mutant of Escherichia coli aspartate α-decarboxylase (ADC) has been determined at 1.7 Å resolution. The refined structure is consistent with the presence of a hydrolysis product serine in the active site in place of the pyruvoyl group required for catalysis, which suggests that the role of Asn72 is to protect the ester formed during ADC activation from hydrolysis. In previously determined structures of activated ADC, including the wild type and other site-directed mutants, the C-terminal region of the protein is disordered, but in the Asn72Ala mutant these residues are ordered owing to an interaction with the active site of the neighbouring symmetry-related multimer.
Collapse
Affiliation(s)
- Michael E Webb
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sharma R, Kothapalli R, Van Dongen AMJ, Swaminathan K. Chemoinformatic identification of novel inhibitors against Mycobacterium tuberculosis L-aspartate α-decarboxylase. PLoS One 2012; 7:e33521. [PMID: 22470451 PMCID: PMC3314653 DOI: 10.1371/journal.pone.0033521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 02/15/2012] [Indexed: 11/19/2022] Open
Abstract
L-aspartate α-decarboxylase (ADC) belongs to a class of pyruvoyl dependent enzymes and catalyzes the conversion of aspartate to β-alanine in the pantothenate pathway, which is critical for the growth of several micro-organisms, including Mycobacterium tuberculosis (Mtb). Its presence only in micro-organisms, fungi and plants and its absence in animals, particularly human, make it a promising drug target. We have followed a chemoinformatics-based approach to identify potential drug-like inhibitors against Mycobacterium tuberculosis L-aspartate α-decarboxylase (MtbADC). The structure-based high throughput virtual screening (HTVS) mode of the Glide program was used to screen 333,761 molecules of the Maybridge, National Cancer Institute (NCI) and Food and Drug Administration (FDA) approved drugs databases. Ligands were rejected if they cross-reacted with S-adenosylmethionine (SAM) decarboxylase, a human pyruvoyl dependent enzyme. The lead molecules were further analyzed for physicochemical and pharmacokinetic parameters, based on Lipinski's rule of five, and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties. This analysis resulted in eight small potential drug-like inhibitors that are in agreement with the binding poses of the crystallographic ADC:fumarate and ADC:isoasparagine complex structures and whose backbone scaffolds seem to be suitable for further experimental studies in therapeutic development against tuberculosis.
Collapse
Affiliation(s)
- Reetu Sharma
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Roopa Kothapalli
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | | | | |
Collapse
|
27
|
Liao RZ, Yu JG, Himo F. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation. J Chem Theory Comput 2011; 7:1494-501. [PMID: 26610140 DOI: 10.1021/ct200031t] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.,College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jian-Guo Yu
- College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
28
|
de Villiers J, Koekemoer L, Strauss E. 3-Fluoroaspartate and pyruvoyl-dependant aspartate decarboxylase: exploiting the unique characteristics of fluorine to probe reactivity and binding. Chemistry 2011; 16:10030-41. [PMID: 20645337 DOI: 10.1002/chem.201000622] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fluorine-containing amino acids have been used with great success as mechanism-based inhibitors of pyridoxal phosphate (PLP)-dependent enzymes, and the influence of fluorine on the conformation of molecules has also been extensively studied and practically exploited. In this study, we sought to use these unique characteristics to probe the reactivity and binding of aspartate decarboxylase (ADC) enzymes, which are members of the small class of pyruvoyl-dependant decarboxylases. Since ADC activity has been shown to be essential to the virulence of Mycobacterium tuberculosis, information gained in this manner could be used for the development of inhibitors that selectively target pyruvoyl-dependent enzymes such as ADC, without affecting PLP-dependent enzymes in the host. For this purpose, we synthesized the L-erythro and L-threo isomers of 3-fluoroaspartate and tested their ability to act as substrates and/or inhibitors of the M. tuberculosis and Escherichia coli ADC enzymes. Trapping and MS-based binding analysis was additionally used to confirm that both isomers enter the enzymes' active sites. Our studies show that both isomers undergo single turnover decarboxylation and fluorine elimination reactions to give enamine products that can be trapped within the active site. Interestingly, the enamine/ADC complex that forms from the L-erythro (but not the L-threo) isomer is sufficiently stable that it can be observed even without any trapping. This finding suggests that the two 3-fluoroaspartates maintain different conformations within the ADC active site, which leads to the enamine products with configurations of different stabilities. Taken together, our results provide new insights for the development of cofactor-specific inhibitors, and confirm the utility of fluorine as a unique tool for probing reactivity and binding profiles within enzymes.
Collapse
Affiliation(s)
- Jandré de Villiers
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | |
Collapse
|
29
|
Abstract
Pantothenic acid, a precursor of coenzyme A (CoA), is essential for the growth of pathogenic microorganisms. Since the structure of pantothenic acid was determined, many analogues of this essential metabolite have been prepared. Several have been demonstrated to exert an antimicrobial effect against a range of microorganisms by inhibiting the utilization of pantothenic acid, validating pantothenic acid utilization as a potential novel antimicrobial drug target. This review commences with an overview of the mechanisms by which various microorganisms acquire the pantothenic acid they require for growth, and the universal CoA biosynthesis pathway by which pantothenic acid is converted into CoA. A detailed survey of studies that have investigated the inhibitory activity of analogues of pantothenic acid and other precursors of CoA follows. The potential of inhibitors of both pantothenic acid utilization and biosynthesis as novel antibacterial, antifungal and antimalarial agents is discussed, focusing on inhibitors and substrates of pantothenate kinase, the enzyme catalysing the rate-limiting step of CoA biosynthesis in many organisms. The best strategies are considered for identifying inhibitors of pantothenic acid utilization and biosynthesis that are potent and selective inhibitors of microbial growth and that may be suitable for use as chemotherapeutic agents in humans.
Collapse
Affiliation(s)
- Christina Spry
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
30
|
Scott DE, Ciulli A, Abell C. Coenzyme biosynthesis: enzyme mechanism, structure and inhibition. Nat Prod Rep 2007; 24:1009-26. [PMID: 17898895 DOI: 10.1039/b703108b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights five key reactions in vitamin biosynthesis and in particular focuses on their mechanisms and inhibition and insights from structural studies. Each of the enzymes has the potential to be a target for novel antimicrobial agents.
Collapse
Affiliation(s)
- Duncan E Scott
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
31
|
Gopalan G, Chopra S, Ranganathan A, Swaminathan K. Crystal structure of uncleaved L-aspartate-alpha-decarboxylase from Mycobacterium tuberculosis. Proteins 2007; 65:796-802. [PMID: 17001646 DOI: 10.1002/prot.21126] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
L-aspartate-alpha-decarboxylase (ADC) is a critical regulatory enzyme in the pantothenate biosynthetic pathway and belongs to a small class of self-cleaving and pyruvoyl-dependent amino acid decarboxylases. The expression level of ADC in Mycobacterium tuberculosis (Mtb) was confirmed by cDNA analysis, immunoblotting with an anti-ADC polyclonal antibody using whole cell lysate and immunoelectron microscopy. The recombinant ADC proenzyme from Mycobacterium tuberculosis (MtbADC) was overexpressed in E. coli and the protein structure was determined at 2.99 A resolution. The proteins fold into the double-psi beta-barrel structure. The subunits of the two tetramers (there are eight ADC molecules in the asymmetric unit) form pseudo fourfold rotational symmetry, similar to the E. coli ADC proenzyme structure. As pantothenate is synthesized in microorganisms, plants, and fungi but not in animals, structure elucidation of Mtb ADC is of substantial interest for structure-based drug development.
Collapse
Affiliation(s)
- Gayathri Gopalan
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | |
Collapse
|