1
|
Penner TV, Lorente Cobo N, Patel DT, Patel DH, Savchenko A, Brassinga AKC, Prehna G. Structural characterization of the Sel1-like repeat protein LceB from Legionella pneumophila. Protein Sci 2024; 33:e4889. [PMID: 38160319 PMCID: PMC10868440 DOI: 10.1002/pro.4889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Legionella are freshwater Gram-negative bacteria that in their normal environment infect protozoa. However, this adaptation also allows Legionella to infect human alveolar macrophages and cause pneumonia. Central to Legionella pathogenesis are more than 330 secreted effectors, of which there are nine core effectors that are conserved in all pathogenic species. Despite their importance, the biochemical function of several core effectors remains unclear. To address this, we have taken a structural approach to characterize the core effector of unknown function LceB, or Lpg1356, from Legionella pneumophila. Here, we solve an X-ray crystal structure of LceB using an AlphaFold model for molecular replacement. The experimental structure shows that LceB adopts a Sel1-like repeat (SLR) fold as predicted. However, the crystal structure captured multiple conformations of LceB, all of which differed from the AlphaFold model. A comparison of the predicted model and the experimental models suggests that LceB is highly flexible in solution. Additionally, the molecular analysis of LceB using its close structural homologs reveals sequence and structural motifs of known biochemical function. Specifically, LceB harbors a repeated KAAEQG motif that both stabilizes the SLR fold and is known to participate in protein-protein interactions with eukaryotic host proteins. We also observe that LceB forms several higher-order oligomers in solution. Overall, our results have revealed that LceB has conformational flexibility, self-associates, and contains a molecular surface for binding a target host-cell protein. Additionally, our data provides structural insights into the SLR family of proteins that remain poorly studied.
Collapse
Affiliation(s)
- Tiffany V Penner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Mitochondrial COA7 is a heme-binding protein with disulfide reductase activity, which acts in the early stages of complex IV assembly. Proc Natl Acad Sci U S A 2022; 119:2110357119. [PMID: 35210360 PMCID: PMC8892353 DOI: 10.1073/pnas.2110357119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Assembly factors play key roles in the biogenesis of mitochondrial protein complexes, regulating their stabilities, activities, and incorporation of essential cofactors. Cytochrome c oxidase assembly factor 7 (COA7) is a metazoan-specific assembly factor, the absence or mutation of which in humans accompanies complex IV assembly defects and neurological conditions. Here, we report the crystal structure of COA7 to 2.4 Å resolution, revealing a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats. COA7 binds heme with micromolar affinity, even though the protein structure does not resemble previously characterized heme-binding proteins. The heme-bound COA7 can redox cycle between oxidation states Fe(II) and Fe(III) and shows disulfide reductase activity toward copper binding assembly factors. We propose that COA7 functions to facilitate the biogenesis of the binuclear copper site (CuA) of complex IV. Cytochrome c oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules. The crystal structure of COA7, determined to 2.4 Å resolution, reveals a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats, tethered by disulfide bonds. COA7 interacts transiently with the copper metallochaperones SCO1 and SCO2 and catalyzes the reduction of disulfide bonds within these proteins, which are crucial for copper relay to COX2. COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. We therefore propose that COA7 is a heme-binding disulfide reductase for regenerating the copper relay system that underpins complex IV assembly.
Collapse
|
3
|
Vazquez-Lopez J, Navarro-Garcia F. In silico Analyses of Core Proteins and Putative Effector and Immunity Proteins for T6SS in Enterohemorrhagic E. coli. Front Cell Infect Microbiol 2020; 10:195. [PMID: 32432054 PMCID: PMC7216683 DOI: 10.3389/fcimb.2020.00195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) has become an important pathogen that can cause diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. Recent reports show that the type VI secretion system (T6SS) from EHEC is required to produce infection in a murine model and its expression has been related to a higher prevalence of HUS. In this work, we use bioinformatics analyses to identify the core genes of the T6SS and compared the differences between these components among the two published genomes for EHEC O157:H7 strain EDL933. Prototype strain EDL933 was further compared with other O157:H7 genomes. Unlike other typical T6SS effectors found in E. coli, we identified that there are several rhs family genes in EHEC, which could serve as T6SS effectors. In-silico and PCR analyses of the differences between rhs genes in the two existing genomes, allowed us to determine that the most recently published genome is more reliable to study the rhs genes. Analyzing the putative tridimensional structure of Rhs proteins, as well as the motifs found in their C-terminal end, allowed us to predict their possible functions. A phylogenetic analysis showed that the orphan rhs genes are more closely related between them than the rhs genes belonging to vgrG islands and that they are divided into three clades. Analyses of the downstream region of the rhs genes for identifying hypothetical immunity proteins showed that every gene has an associated small ORF (129-609 nucleotides). These genes could serve as immunity proteins as they had several interaction motifs as well as structural homology with other known immunity proteins. Our findings highlight the relevance of the T6SS in EHEC as well as the possible function of the Rhs effectors of EHEC O157:H7 during pathogenesis and bacterial competition, and the identification of novel effectors for the T6SS using a structural approach.
Collapse
Affiliation(s)
- Jaime Vazquez-Lopez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
4
|
Wen H, Geng Z, Gao Z, She Z, Dong Y. Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism. Acta Crystallogr F Struct Biol Commun 2020; 76:222-227. [PMID: 32356524 PMCID: PMC7193511 DOI: 10.1107/s2053230x2000566x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022] Open
Abstract
The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins.
Collapse
Affiliation(s)
- Haiying Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Zhi Geng
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zengqiang Gao
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhun She
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yuhui Dong
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, People’s Republic of China
| |
Collapse
|
5
|
Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P. TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 2020; 117:5049-5058. [PMID: 32051250 PMCID: PMC7060719 DOI: 10.1073/pnas.1919196117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Department of Biology, Northwest University, 710069 Xi'an, China
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Snigdha Chatterjee
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Elena A Shemyakina
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Howard M Goodman
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
| | - Patricia Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
| |
Collapse
|
6
|
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez-Vizarra E, Rehling P, Dadlez M, Zeviani M, Chacinska A. Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med 2019; 11:e9561. [PMID: 30885959 PMCID: PMC6505684 DOI: 10.15252/emmm.201809561] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.
Collapse
Affiliation(s)
- Karthik Mohanraj
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michal Wasilewski
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dominik Cysewski
- Mass Spectrometry Lab, Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Jaroslaw Poznanski
- Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Paulina Sakowska
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Zaneta Bugajska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Markus Deckers
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
| | | | - Peter Rehling
- Department of Cellular Biochemistry, University of Göttingen, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michal Dadlez
- Mass Spectrometry Lab, Department of Biophysics, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Mitochondrial Biogenesis, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
7
|
Voth KA, Chung IYW, van Straaten K, Li L, Boniecki MT, Cygler M. The structure of Legionella effector protein LpnE provides insights into its interaction with Oculocerebrorenal syndrome of Lowe (OCRL) protein. FEBS J 2018; 286:710-725. [PMID: 30479037 DOI: 10.1111/febs.14710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022]
Abstract
Legionella pneumophila is a freshwater bacterium that replicates in predatory amoeba and alveolar macrophage. The ability of L. pneumophila to thrive in eukaryotic host cells is conferred by the Legionella containing vacuole (LCV). Formation and intracellular trafficking of the LCV are governed by an arsenal of effector proteins, many of which are secreted by the Icm/Dot Type 4 Secretion System. One such effector, known as LpnE (L. pneumophila Entry), has been implicated in facilitating bacterial entry into host cells, LCV trafficking, and substrate translocation. LpnE belongs to a subfamily of tetratricopeptide repeat proteins known as Sel1-like repeats (SLRs). All eight of the predicted SLRs in LpnE are required to promote host cell invasion. Herein, we report that LpnE(1-375) localizes to cis-Golgi in HEK293 cells via its signal peptide (aa 1-22). We further verify the interaction of LpnE(73-375) and LpnE(22-375) with Oculocerebrorenal syndrome of Lowe protein (OCRL) residues 10-208, restricting the known interacting residues for both proteins. To further characterize the SLR region of LpnE, we solved the crystal structure of LpnE(73-375) to 1.75Å resolution. This construct comprises all SLRs, which are arranged in a superhelical fold. The α-helices forming the inner concave surface of the LpnE superhelix suggest a potential protein-protein interaction interface. DATABASE: Coordinates and structure factors were deposited in the Protein Data Bank with the accession number 6DEH.
Collapse
Affiliation(s)
- Kevin A Voth
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Ivy Yeuk Wah Chung
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Karin van Straaten
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Lei Li
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Michal T Boniecki
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Structural basis for membrane tethering by a bacterial dynamin-like pair. Nat Commun 2018; 9:3345. [PMID: 30131557 PMCID: PMC6104087 DOI: 10.1038/s41467-018-05523-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/11/2018] [Indexed: 01/11/2023] Open
Abstract
Dynamin-like proteins (DLPs) are large GTPases that restructure membrane. DLPs such as the mitofusins form heterotypic oligomers between isoform pairs that bridge and fuse opposing membranes. In bacteria, heterotypic oligomerisation may also be important for membrane remodelling as most DLP genes are paired within operons. How DLPs tether opposing membranes is unknown. Here we show the crystal structure of a DLP heterotypic pair from the pathogen Campylobacter jejuni. A 2:2 stoichiometric tetramer is observed where heterodimers, conjoined by a random coil linker, assemble back-to-back to form a tripartite DLP chain with extreme flexibility. In vitro, tetramerisation triggers GTPase activity and induces lipid binding. Liposomes are readily tethered and form tubes at high tetramer concentration. Our results provide a direct mechanism for the long-range binding and bridging of opposing membranes by a bacterial DLP pair. They also provide broad mechanistic and structural insights that are relevant to other heterotypic DLP complexes. Dynamin-like proteins (DLPs) such as the mitofusins form homotypic and heterotypic oligomers that bridge and fuse opposing membranes. Here, Liu, Noel and Low present the crystal structure of a bacterial DLP heterotypic pair, providing insights into the mechanism behind long-range binding of opposing membranes.
Collapse
|
9
|
Yang XY, Li ZQ, She Z, Geng Z, Xu JH, Gao ZQ, Dong YH. Structural analysis of Pseudomonas aeruginosa H3-T6SS immunity proteins. FEBS Lett 2016; 590:2787-96. [PMID: 27397502 DOI: 10.1002/1873-3468.12291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023]
Abstract
The Pseudomonas aeruginosa PldB protein is a transkingdom effector secreted by the Type VI Secretion System (T6SS). PA5088, PA5087, and PA5086 are three immunity proteins that can suppress the virulence of PldB. We report the crystal structures of PA5088 and PA5087 at 2.0 and 2.1 Å resolution, respectively. PA5088 and PA5087 both consist of several Sel1-like Repeats (SLRs) and form super-ring folds. Our structural analysis of these proteins revealed key differences among PA5088, PA5087, and their homologs. Our docking experiments have shed light on the putative interaction mechanism of their function as phospholipase D inhibitors.
Collapse
Affiliation(s)
- Xiao-Yun Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zong-Qiang Li
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Zhun She
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhi Geng
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Xu
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Qiang Gao
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Hui Dong
- Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Jeong H, Sim HJ, Song EK, Lee H, Ha SC, Jun Y, Park TJ, Lee C. Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway. Sci Rep 2016; 6:20261. [PMID: 27064360 PMCID: PMC4746701 DOI: 10.1038/srep20261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/31/2015] [Indexed: 11/09/2022] Open
Abstract
Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1Lcent). Strikingly, SEL1Lcent forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1Lcent domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery.
Collapse
Affiliation(s)
- Hanbin Jeong
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyo Jung Sim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Eun Kyung Song
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hakbong Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Tae Joo Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front Microbiol 2015; 6:1065. [PMID: 26500620 PMCID: PMC4597128 DOI: 10.3389/fmicb.2015.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobactercysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Karolina Drabik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Aneta M Dobosz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jean-Francois Collet
- de Duve Institute, Université catholique de Louvain (UCL)/Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
12
|
Wiech EM, Cheng HP, Singh SM. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis. Protein Sci 2015; 24:319-27. [PMID: 25492513 PMCID: PMC4353358 DOI: 10.1002/pro.2616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.
Collapse
Affiliation(s)
- Eliza M Wiech
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Department of Biology, Brooklyn College, The City University of New YorkBrooklyn, New York, 11210
| | - Hai-Ping Cheng
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Biological Sciences Department, Lehman College, The City University of New YorkBronx, New York, 10468
| | - Shaneen M Singh
- Department of Biology, The Graduate Center of the City University of New YorkNew York, New York, 10016
- Department of Biology, Brooklyn College, The City University of New YorkBrooklyn, New York, 11210
| |
Collapse
|
13
|
Lester J, Kichler S, Oickle B, Fairweather S, Oberc A, Chahal J, Ratnayake D, Creuzenet C. Characterization ofHelicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production ofHelicobactercystein-rich protein HcpE. Mol Microbiol 2015; 96:110-33. [DOI: 10.1111/mmi.12923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Jeffrey Lester
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Sari Kichler
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Brandon Oickle
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | | | - Alexander Oberc
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Jaspreet Chahal
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Dinath Ratnayake
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Carole Creuzenet
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| |
Collapse
|
14
|
Jeong H, Lee H, Lee C. Crystallization and preliminary X-ray diffraction analysis of the Sel1-like repeats of SEL1L. Acta Crystallogr F Struct Biol Commun 2014; 70:1624-7. [PMID: 25484212 PMCID: PMC4259226 DOI: 10.1107/s2053230x14023115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/20/2014] [Indexed: 01/03/2023] Open
Abstract
Terminally misfolded or unassembled proteins are selectively recognized and cleared by the ER-associated degradation (ERAD) pathway. Suppressor/enhancer of lin-12-like (SEL1L), a component of the dislocation machinery containing the E3 ubiquitin ligase Hrd1, plays an important role in selecting and transporting ERAD substrates for degradation in the endoplasmic reticulum. In this study, the purification, crystallization and preliminary X-ray diffraction analysis of recombinant mouse SEL1L (residues 348-533) are reported. The crystals were obtained by the hanging-drop vapour-diffusion method at pH 8.5 and 277 K using 30% 2-propanol as a precipitant. Optimized crystals diffracted to 3.3 Å resolution at a synchrotron-radiation source. Preliminary X-ray diffraction analysis revealed that the crystals belonged to space group P21 and contained four molecules per asymmetric unit, with a solvent content of 44%.
Collapse
Affiliation(s)
- Hanbin Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Hakbong Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Changwook Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| |
Collapse
|
15
|
Zanotti G, Cendron L. Structural and functional aspects of the Helicobacter pylori secretome. World J Gastroenterol 2014; 20:1402-1423. [PMID: 24587618 PMCID: PMC3925851 DOI: 10.3748/wjg.v20.i6.1402] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Proteins secreted by Helicobacter pylori (H. pylori), an important human pathogen responsible for severe gastric diseases, are reviewed from the point of view of their biochemical characterization, both functional and structural. Despite the vast amount of experimental data available on the proteins secreted by this bacterium, the precise size of the secretome remains unknown. In this review, we consider as secreted both proteins that contain a secretion signal for the periplasm and proteins that have been detected in the external medium in in vitro experiments. In this way, H. pylori’s secretome appears to be composed of slightly more than 160 proteins, but this number must be considered very cautiously, not only because the definition of secretome itself is ambiguous but also because the included proteins were observed as secreted in in vitro experiments that were not representative of the environmental situation in vivo. The proteins that appear to be secreted can be grouped into different classes: enzymes (48 proteins), outer membrane proteins (43), components of flagella (11), members of the cytotoxic-associated genes pathogenicity island or other toxins (8 and 5, respectively), binding and transport proteins (9), and others (11). A final group, which includes 28 members, is represented by hypothetical uncharacterized proteins. Despite the large amount of data accumulated on the H. pylori secretome, a considerable amount of work remains to reach a full comprehension of the system at the molecular level.
Collapse
|
16
|
Jeong JH, Kim YS, Rojvirija C, Cha HJ, Kim YG, Ha SC. Structure of the hypothetical protein Ton1535 from Thermococcus onnurineus NA1 reveals unique structural properties by a left-handed helical turn in normal α-solenoid protein. Proteins 2013; 82:1072-8. [PMID: 24265202 DOI: 10.1002/prot.24444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 09/26/2013] [Indexed: 11/08/2022]
Abstract
The crystal structure of Ton1535, a hypothetical protein from Thermococcus onnurineus NA1, was determined at 2.3 Å resolution. With two antiparallel α-helices in a helix-turn-helix motif as a repeating unit, Ton1535 consists of right-handed coiled N- and C-terminal regions that are stacked together using helix bundles containing a left-handed helical turn. One left-handed helical turn in the right-handed coiled structure produces two unique structural properties. One is the presence of separated concave grooves rather than one continuous concave groove, and the other is the contribution of α-helices on the convex surfaces of the N-terminal region to the extended surface of the concave groove of the C-terminal region and vice versa.
Collapse
Affiliation(s)
- Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Urosev D, Ferrer-Navarro M, Pastorello I, Cartocci E, Costenaro L, Zhulenkovs D, Maréchal JD, Leonchiks A, Reverter D, Serino L, Soriani M, Daura X. Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold. BMC STRUCTURAL BIOLOGY 2013; 13:19. [PMID: 24099525 PMCID: PMC3851747 DOI: 10.1186/1472-6807-13-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/03/2013] [Indexed: 01/06/2023]
Abstract
Background Increasing rates of antimicrobial resistance among uropathogens led, among other efforts, to the application of subtractive reverse vaccinology for the identification of antigens present in extraintestinal pathogenic E. coli (ExPEC) strains but absent or variable in non-pathogenic strains, in a quest for a broadly protective Escherichia coli vaccine. The protein coded by locus c5321 from CFT073 E. coli was identified as one of nine potential vaccine candidates against ExPEC and was able to confer protection with an efficacy of 33% in a mouse model of sepsis. c5321 (known also as EsiB) lacks functional annotation and structurally belongs to the Sel1-like repeat (SLR) family. Herein, as part of the general characterization of this potential antigen, we have focused on its structural properties. Results We report the 1.74 Å-resolution crystal structure of c5321 from CFT073 E. coli determined by Se-Met SAD phasing. The structure is composed of 11 SLR units in a topological organisation that highly resembles that found in HcpC from Helicobacter pylori, with the main difference residing in how the super-helical fold is stabilised. The stabilising effect of disulfide bridges in HcpC is replaced in c5321 by a strengthening of the inter-repeat hydrophobic core. A metal-ion binding site, uncharacteristic of SLR proteins, is detected between SLR units 3 and 4 in the region of the inter-repeat hydrophobic core. Crystal contacts are observed between the C-terminal tail of one molecule and the C-terminal amphipathic groove of a neighbouring one, resembling interactions between ligand and proteins containing tetratricopeptide-like repeats. Conclusions The structure of antigen c5321 presents a mode of stabilization of the SLR fold different from that observed in close homologs of known structure. The location of the metal-ion binding site and the observed crystal contacts suggest a potential role in regulation of conformational flexibility and interaction with yet unidentified target proteins, respectively. These findings open new perspectives in both antigen design and for the identification of a functional role for this protective antigen.
Collapse
Affiliation(s)
- Dunja Urosev
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sirianni A, Kaakoush NO, Raftery MJ, Mitchell HM. The pathogenic potential of Helicobacter pullorum: possible role for the type VI secretion system. Helicobacter 2013; 18:102-11. [PMID: 23067230 DOI: 10.1111/hel.12009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pullorum is a putative enterohepatic pathogen that has been associated with hepatobiliary and gastrointestinal diseases in chickens and in humans. The pathogenic potential of H. pullorum NCTC 12826 was investigated. METHODS Adherence and gentamicin protection assays and scanning electron microscopy were performed to quantitate and visualise H. pullorum adherence and invasion. Proteomics coupled with mass spectrometry was employed to characterise the secretome of H. pullorum. RESULTS Helicobacter pullorum was able to adhere to the Caco-2 intestinal epithelial cell line with a mean attachment value of 1.98 ± 0.16% and invade Caco-2 cells with a mean invasion value of 0.25 ± 0.02%. The in vitro adherence and invasion assays were confirmed with scanning electron microscopy, which showed that H. pullorum can adhere to host cells through flagellum-microvillus interaction and invade causing a membrane-ruffling effect. One hundred and thirty-seven proteins were identified, of which 33 were bioinformatically predicted to be secreted. Further functional classifications revealed six putative virulence and colonisation factors, which included cell-binding factor 2, flagellin, secreted protein Hcp, valine-glycine repeat protein G, a type VI secretion protein, and a protease. Protein threading of H. pullorum Hcp and subsequent 3D-Blast searches revealed structural similarities between Hcp and endocytic vesicle coat proteins, suggesting the type VI secretion system of H. pullorum may interact with endocytic vesicles. CONCLUSIONS This study has shown that H. pullorum has the ability to adhere to and invade human cells and secrete factors that may contribute to the pathogenic potential of H. pullorum.
Collapse
Affiliation(s)
- Andrea Sirianni
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | |
Collapse
|
19
|
Putty K, Marcus SA, Mittl PRE, Bogadi LE, Hunter AM, Arur S, Berg DE, Sethu P, Kalia A. Robustness of Helicobacter pylori infection conferred by context-variable redundancy among cysteine-rich paralogs. PLoS One 2013; 8:e59560. [PMID: 23555707 PMCID: PMC3608669 DOI: 10.1371/journal.pone.0059560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/15/2013] [Indexed: 01/01/2023] Open
Abstract
Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells.
Collapse
Affiliation(s)
- Kalyani Putty
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Sarah A. Marcus
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lindsey E. Bogadi
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Allison M. Hunter
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Swathi Arur
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Palaniappan Sethu
- Department of Biomedical Engineering, University of Louisville, Louisville, Kentucky, United States of America
| | - Awdhesh Kalia
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- Molecular Genetic Technology Program, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
20
|
Lindert S, Stewart PL, Meiler J. Computational determination of the orientation of a heat repeat-like domain of DNA-PKcs. Comput Biol Chem 2012; 42:1-4. [PMID: 23246775 DOI: 10.1016/j.compbiolchem.2012.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022]
Abstract
DNA dependent protein kinase catalytic subunit (DNA-PKcs) is an important regulatory protein in non-homologous end joining a process used to repair DNA double strand breaks. Medium resolution structures both from cryoEM and X-ray crystallography show the general topology of the protein and positions of helices in parts of DNA-PKcs. EM-Fold, an algorithm developed for building protein models into medium resolution density maps has been used to generate models for the heat repeat-like "Ring structure" of the molecule. We were able to computationally corroborate placement of the N-terminus of the domain that supports a previously published hypothesis. Targeted experiments are suggested to test the model.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA
| | | | | |
Collapse
|
21
|
Structure, dynamics and domain organization of the repeat protein Cin1 from the apple scab fungus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1118-28. [PMID: 22771296 DOI: 10.1016/j.bbapap.2012.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/16/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
Abstract
Venturia inaequalis is a hemi-biotrophic fungus that causes scab disease of apple. A recently-identified gene from this fungus, cin1 (cellophane-induced 1), is up-regulated over 1000-fold in planta and considerably on cellophane membranes, and encodes a cysteine-rich secreted protein of 523 residues with eight imperfect tandem repeats of ~60 amino acids. The Cin1 sequence has no homology to known proteins and appears to be genus-specific; however, Cin1 repeats and other repeat domains may be structurally similar. An NMR-derived structure of the first two repeat domains of Cin1 (Cin1-D1D2) and a low-resolution model of the full-length protein (Cin1-FL) using SAXS data were determined. The structure of Cin1-D1D2 reveals that each domain comprises a core helix-loop-helix (HLH) motif as part of a three-helix bundle, and is stabilized by two intra-domain disulfide bonds. Cin1-D1D2 adopts a unique protein fold as DALI and PDBeFOLD analysis identified no structural homology. A (15)N backbone NMR dynamic analysis of Cin1-D1D2 showed that a short stretch of the inter-domain linker has large amplitude motions that give rise to reciprocal domain-domain mobility. This observation was supported by SAXS data modeling, where the scattering length density envelope remains thick at the domain-domain boundary, indicative of inter-domain dynamics. Cin1-FL SAXS data models a loosely-packed arrangement of domains, rather than the canonical parallel packing of adjacent HLH repeats observed in α-solenoid repeat proteins. Together, these data suggest that the repeat domains of Cin1 display a "beads-on-a-string" organization with inherent inter-domain flexibility that is likely to facilitate interactions with target ligands.
Collapse
|
22
|
Madhurantakam C, Varadamsetty G, Grütter MG, Plückthun A, Mittl PRE. Structure-based optimization of designed Armadillo-repeat proteins. Protein Sci 2012; 21:1015-28. [PMID: 22544642 DOI: 10.1002/pro.2085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 11/11/2022]
Abstract
The armadillo domain is a right-handed super-helix of repeating units composed of three α-helices each. Armadillo repeat proteins (ArmRPs) are frequently involved in protein-protein interactions, and because of their modular recognition of extended peptide regions they can serve as templates for the design of artificial peptide binding scaffolds. On the basis of sequential and structural analyses, different consensus-designed ArmRPs were synthesized and show high thermodynamic stabilities, compared to naturally occurring ArmRPs. We determined the crystal structures of four full-consensus ArmRPs with three or four identical internal repeats and two different designs for the N- and C-caps. The crystal structures were refined at resolutions ranging from 1.80 to 2.50 Å for the above mentioned designs. A redesign of our initial caps was required to obtain well diffracting crystals. However, the structures with the redesigned caps caused domain swapping events between the N-caps. To prevent this domain swap, 9 and 6 point mutations were introduced in the N- and C-caps, respectively. Structural and biophysical analysis showed that this subsequent redesign of the N-cap prevented domain swapping and improved the thermodynamic stability of the proteins. We systematically investigated the best cap combinations. We conclude that designed ArmRPs with optimized caps are intrinsically stable and well-expressed monomeric proteins and that the high-resolution structures provide excellent structural templates for the continuation of the design of sequence-specific modular peptide recognition units based on armadillo repeats.
Collapse
Affiliation(s)
- Chaithanya Madhurantakam
- Biochemisches Institut, Universität Zürich, Winterthurer Strasse 190, Zürich CH-8057, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Cattaneo M, Dominici R, Cardano M, Diaferia G, Rovida E, Biunno I. Molecular chaperones as therapeutic targets to counteract proteostasis defects. J Cell Physiol 2012; 227:1226-34. [PMID: 21618531 DOI: 10.1002/jcp.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The health of cells is preserved by the levels and correct folding states of the proteome, which is generated and maintained by the proteostasis network, an integrated biological system consisting of several cytoprotective and degradative pathways. Indeed, the health conditions of the proteostasis network is a fundamental prerequisite to life as the inability to cope with the mismanagement of protein folding arising from genetic, epigenetic, and micro-environment stress appears to trigger a whole spectrum of unrelated diseases. Here we describe the potential functional role of the proteostasis network in tumor biology and in conformational diseases debating on how the signaling branches of this biological system may be manipulated to develop more efficacious and selective therapeutic strategies. We discuss the dual strategy of these processes in modulating the folding activity of molecular chaperones in order to counteract the antithetic proteostasis deficiencies occurring in cancer and loss/gain of function diseases. Finally, we provide perspectives on how to improve the outcome of these disorders by taking advantage of proteostasis modeling.
Collapse
|
24
|
Roschitzki B, Schauer S, Mittl PRE. Recognition of host proteins by Helicobacter cysteine-rich protein C. Curr Microbiol 2011; 63:239-49. [PMID: 21735226 DOI: 10.1007/s00284-011-9969-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
Tetratricopeptide- and sel1-like repeat (SLR) proteins modulate various cellular activities, ranging from transcription regulation to cell-fate control. Helicobacter cysteine-rich proteins (Hcp) consist of several SLRs that are cross-linked by disulfide bridges and have been implicated in host/pathogen interactions. Using pull-down proteomics, several human proteins including Nek9, Hsp90, and Hsc71 have been identified as putative human interaction partners for HcpC. The interaction between the NimA-like protein kinase Nek9 and HcpC has been validated by ELISA and surface plasmon resonance. Recombinant Nek9 is recognized by HcpC with a dissociation constant in the lower micromolar range. This interaction is formed either directly between Nek9 and HcpC or via the formation of a complex with Hsc71. The HcpC homologue HcpA possesses no affinity for Nek9, suggesting that the reported interaction is rather specific for HcpC. These results are consistent with previous observations where Nek9 was targeted upon bacterial or viral invasion. However, further experiments will be required to show that the reported interactions also occur in vivo.
Collapse
Affiliation(s)
- Bernd Roschitzki
- Functional Genomics Center Zurich, UZH / ETH Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
25
|
Keiski CL, Harwich M, Jain S, Neculai AM, Yip P, Robinson H, Whitney JC, Riley L, Burrows LL, Ohman DE, Howell PL. AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 2010; 18:265-73. [PMID: 20159471 DOI: 10.1016/j.str.2009.11.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/19/2009] [Accepted: 11/24/2009] [Indexed: 11/28/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes chronic biofilm infections in cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by overproduction of the exopolysaccharide alginate. Here we show that AlgK, a protein essential for production of high molecular weight alginate, is an outer membrane lipoprotein that contributes to the correct localization of the porin AlgE. Our 2.5 A structure shows AlgK is composed of 9.5 tetratricopeptide-like repeats, and three putative sites of protein-protein interaction have been identified. Bioinformatics analysis suggests that BcsA, PgaA, and PelB, involved in the production and export of cellulose, poly-beta-1,6-N-Acetyl-D-glucosamine, and Pel exopolysaccharide, respectively, share the same topology as AlgK/E. Together, our data suggest that AlgK plays a role in the assembly of the alginate biosynthetic complex and represents the periplasmic component of a new type of outer membrane secretin that differs from canonical bacterial capsular polysaccharide secretion systems.
Collapse
Affiliation(s)
- Carrie-Lynn Keiski
- Molecular Structure and Function, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The secreted Helicobacter cysteine-rich protein A causes adherence of human monocytes and differentiation into a macrophage-like phenotype. FEBS Lett 2009; 583:1637-43. [PMID: 19393649 DOI: 10.1016/j.febslet.2009.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/07/2009] [Accepted: 04/16/2009] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori genomes typically contain 8 or 9 genes that code for secreted and highly disulfide-bridged proteins designated Helicobacter cysteine-rich proteins (Hcp). Here we show that HcpA (hp0211) but not HcpC (hp1098) triggers the differentiation of human myeloid Thp1 monocytes into macrophages. Small amounts of HcpA cause the transition of round-shaped monocytes into cells with star-like morphologies, adherence to the culture dish surface, phagocytosis of opsonized fluorescent microspheres, and expression of the surface marker protein CD11b, all of which are indicative of a macrophage-like phenotype. We conclude that HcpA acts as a bacterial immune modulator similar to a eukaryotic cytokine.
Collapse
|
27
|
Delahay RM, Balkwill GD, Bunting KA, Edwards W, Atherton JC, Searle MS. The highly repetitive region of the Helicobacter pylori CagY protein comprises tandem arrays of an alpha-helical repeat module. J Mol Biol 2008; 377:956-71. [PMID: 18295231 PMCID: PMC2581425 DOI: 10.1016/j.jmb.2008.01.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 12/02/2022]
Abstract
The cag-pathogenicity-island-encoded type IV secretion system of Helicobacter pylori functions to translocate the effector protein CagA directly through the plasma membrane of gastric epithelial cells. Similar to other secretion systems, the Cag type IV secretion system elaborates a surface filament structure, which is unusually sheathed by the large cag-pathogenicity-island-encoded protein CagY. CagY is distinguished by unusual amino acid composition and extensive repetitive sequence organised into two defined repeat regions. The second and major repeat region (CagY(rpt2)) has a regular disposition of six repetitive motifs, which are subject to deletion and duplication, facilitating the generation of CagY size and phenotypic variants. In this study, we show CagY(rpt2) to comprise two highly thermostable and acid-stable alpha-helical structural motifs, the most abundant of which (motif A) occurs in tandem arrays of one to six repeats terminally flanked by single copies of the second repeat (motif B). Isolated motifs demonstrate hetero- and homomeric interactions, suggesting a propensity for uniform assembly of discrete structural subunit motifs within the larger CagY(rpt2) structure. Consistent with this, CagY proteins comprising substantially different repeat 2 motif organisations demonstrate equivalent CagA translocation competence, illustrating a remarkable structural and functional tolerance for precise deletion and duplication of motif subunits. We provide the first insight into the structural basis for CagY(rpt2) assembly that accommodates both the variable motif sequence composition and the extensive contraction/expansion of repeat modules within the CagY(rpt2) region.
Collapse
Affiliation(s)
- Robin M Delahay
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Ogura M, Perez JC, Mittl PRE, Lee HK, Dailide G, Tan S, Ito Y, Secka O, Dailidiene D, Putty K, Berg DE, Kalia A. Helicobacter pylori evolution: lineage- specific adaptations in homologs of eukaryotic Sel1-like genes. PLoS Comput Biol 2007; 3:e151. [PMID: 17696605 PMCID: PMC1941758 DOI: 10.1371/journal.pcbi.0030151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 06/18/2007] [Indexed: 12/16/2022] Open
Abstract
Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such "Sel1-like repeat" (SLR) genes ("slr genes"). Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = omega > 1) were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117) from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (omegaJ > 25), whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations.
Collapse
Affiliation(s)
- Masako Ogura
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bai Y, Auperin TC, Chou CY, Chang GG, Manley JL, Tong L. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell 2007; 25:863-75. [PMID: 17386263 DOI: 10.1016/j.molcel.2007.01.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 12/20/2006] [Accepted: 01/22/2007] [Indexed: 01/25/2023]
Abstract
Cleavage stimulation factor (CstF) is a heterotrimeric protein complex essential for polyadenylation of mRNA precursors. The 77 kDa subunit, CstF-77, is known to mediate interactions with the other two subunits of CstF as well as with other components of the polyadenylation machinery. We report here the crystal structure of the HAT (half a TPR) domain of murine CstF-77, as well as its C-terminal subdomain. Structural and biochemical studies show that the HAT domain consists of two subdomains, HAT-N and HAT-C domains, with drastically different orientations of their helical motifs. The structures reveal a highly elongated dimer, spanning 165 A, with the dimerization mediated by the HAT-C domain. Light-scattering studies, yeast two-hybrid assays, and analytical ultracentrifugation measurements confirm this self-association. The mode of dimerization and the relative arrangement of the HAT-N and HAT-C domains are unique to CstF-77. Our data support a role for CstF dimerization in pre-mRNA 3' end processing.
Collapse
Affiliation(s)
- Yun Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
30
|
Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, Barberis M, Pupa SM, Scarpa A, Ménard S. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol 2006; 208:23-38. [PMID: 16331677 DOI: 10.1002/jcp.20574] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since the cloning in 1997 of SEL1L, the human ortholog of the sel-1 gene of C. elegans, most studies have focused on its role in cancer progression and have provided significant evidences to link its increased expression to a decrease in tumor aggressiveness. SEL1L resides on a "Genome Desert area" on chromosome 14q24.3-31 and is highly conserved in evolution. The function of the SEL1L encoded protein is still very elusive although, several evidences from lower organisms indicate that it plays a major role in protein degradation using the ubiquitin-proteosome system. SEL1L has a very complex structure made up of modules: genomically it consists of 21 exons featuring several alternative transcripts encoding for putative protein isoforms. This structural complexity ensures protein flexibility and specificity, indeed the protein was found in different sub-cellular compartments and may turn on a particular transcript in response to specific stimuli. The overall architecture of SEL1L guarantees an exquisite regulation in the expression of the gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Chromosome Deletion
- Chromosomes, Human, Pair 14
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Disease Progression
- Exons/genetics
- Fetus/chemistry
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Molecular Sequence Data
- Neoplasm Metastasis
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplasms/physiopathology
- Polymorphism, Genetic/genetics
- Protein Isoforms/analysis
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Proteins/analysis
- Proteins/chemistry
- Proteins/genetics
- Proteins/physiology
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Ida Biunno
- Istituto di Tecnologie Biomediche, CNR, Segrate-Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mittl PRE, Schneider-Brachert W. Sel1-like repeat proteins in signal transduction. Cell Signal 2006; 19:20-31. [PMID: 16870393 DOI: 10.1016/j.cellsig.2006.05.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 05/23/2006] [Indexed: 02/06/2023]
Abstract
Solenoid proteins, which are distinguished from general globular proteins by their modular architectures, are frequently involved in signal transduction pathways. Proteins from the tetratricopeptide repeat (TPR) and Sel1-like repeat (SLR) families share similar alpha-helical conformations but different consensus sequence lengths and superhelical topologies. Both families are characterized by low sequence similarity levels, rendering the identification of functional homologous difficult. Therefore current knowledge of the molecular and cellular functions of the SLR proteins Sel1, Hrd3, Chs4, Nif1, PodJ, ExoR, AlgK, HcpA, Hsp12, EnhC, LpnE, MotX, and MerG has been reviewed. Although SLR proteins possess different cellular functions they all seem to serve as adaptor proteins for the assembly of macromolecular complexes. Sel1, Hrd3, Hsp12 and LpnE are activated under cellular stress. The eukaryotic Sel1 and Hrd3 proteins are involved in the ER-associated protein degradation, whereas the bacterial LpnE, EnhC, HcpA, ExoR, and AlgK proteins mediate the interactions between bacterial and eukaryotic host cells. LpnE and EnhC are responsible for the entry of L. pneumophila into epithelial cells and macrophages. ExoR from the symbiotic microorganism S. melioti and AlgK from the pathogen P. aeruginosa regulate exopolysaccaride synthesis. Nif1 and Chs4 from yeast are responsible for the regulation of mitosis and septum formation during cell division, respectively, and PodJ guides the cellular differentiation during the cell cycle of the bacterium C. crescentus. Taken together the SLR motif establishes a link between signal transduction pathways from eukaryotes and bacteria. The SLR motif is so far absent from archaea. Therefore the SLR could have developed in the last common ancestor between eukaryotes and bacteria.
Collapse
Affiliation(s)
- Peer R E Mittl
- Biochemisches Institut, Universität Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|