1
|
Roberts MG, Dent MR, Ramos S, Thielges MC, Burstyn JN. Probing conformational dynamics of DNA binding by CO-sensing transcription factor, CooA. J Inorg Biochem 2024; 259:112656. [PMID: 38986290 DOI: 10.1016/j.jinorgbio.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The transcription factor CooA is a CRP/FNR (cAMP receptor protein/ fumarate and nitrate reductase) superfamily protein that uses heme to sense carbon monoxide (CO). Allosteric activation of CooA in response to CO binding is currently described as a series of discrete structural changes, without much consideration for the potential role of protein dynamics in the process of DNA binding. This work uses site-directed spin-label electron paramagnetic resonance spectroscopy (SDSL-EPR) to probe slow timescale (μs-ms) conformational dynamics of CooA with a redox-stable nitroxide spin label, and IR spectroscopy to probe the environment at the CO-bound heme. A series of cysteine substitution variants were created to selectively label CooA in key functional regions, the heme-binding domain, the 4/5-loop, the hinge region, and the DNA binding domain. The EPR spectra of labeled CooA variants are compared across three functional states: Fe(III) "locked off", Fe(II)-CO "on", and Fe(II)-CO bound to DNA. We observe changes in the multicomponent EPR spectra at each location; most notably in the hinge region and DNA binding domain, broadening the description of the CooA allosteric mechanism to include the role of protein dynamics in DNA binding. DNA-dependent changes in IR vibrational frequency and band broadening further suggest that there is conformational heterogeneity in the active WT protein and that DNA binding alters the environment of the heme-bound CO.
Collapse
Affiliation(s)
- Madeleine G Roberts
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Matthew R Dent
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Sashary Ramos
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
2
|
Dent MR, Weaver BR, Roberts MG, Burstyn JN. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol 2023; 205:e0033222. [PMID: 37154694 PMCID: PMC10210986 DOI: 10.1128/jb.00332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Carbon monoxide (CO) serves as a source of energy and carbon for a diverse set of microbes found in anaerobic and aerobic environments. The enzymes that bacteria and archaea use to oxidize CO depend upon complex metallocofactors that require accessory proteins for assembly and proper function. This complexity comes at a high energetic cost and necessitates strict regulation of CO metabolic pathways in facultative CO metabolizers to ensure that gene expression occurs only when CO concentrations and redox conditions are appropriate. In this review, we examine two known heme-dependent transcription factors, CooA and RcoM, that regulate inducible CO metabolism pathways in anaerobic and aerobic microorganisms. We provide an analysis of the known physiological and genomic contexts of these sensors and employ this analysis to contextualize known biochemical properties. In addition, we describe a growing list of putative transcription factors associated with CO metabolism that potentially use cofactors other than heme to sense CO.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian R. Weaver
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Madeleine G. Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Hines JP, Dent MR, Stevens DJ, Burstyn JN. Site-directed spin label electron paramagnetic resonance spectroscopy as a probe of conformational dynamics in the Fe(III) "locked-off" state of the CO-sensing transcription factor CooA. Protein Sci 2018; 27:1670-1679. [PMID: 30168206 PMCID: PMC6194275 DOI: 10.1002/pro.3449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 01/30/2023]
Abstract
The transcriptional activator CooA belongs to the CRP/FNR (cAMP receptor protein/fumarate and nitrate reductase) superfamily of transcriptional regulators and uses heme to sense carbon monoxide (CO). Effector-driven allosteric activation is well understood in CRP, a CooA homologue. A structural allosteric activation model for CooA exists which parallels that of CRP; however, the role of protein dynamics, which is crucial in CRP, is not well understood in CooA. We employed site-directed spin labeling electron paramagnetic resonance spectroscopy to probe CooA motions on the μs-ms timescale. We created a series of Cys substitution variants, each with a cysteine residue introduced into a key functional region of the protein: K26C, E60C, F132C, D134C, and S175C. The heme environment and DNA binding affinity of each variant were comparable to those of wild-type CooA, with the exception of F132C, which displayed reduced DNA binding affinity. This observation confirms a previously hypothesized role for Phe132 in transmitting the allosteric CO binding signal. Osmolyte perturbation studies of Fe(III) "locked-off" CooA variants labeled with either MTSL or MAL-6 nitroxide spin labels revealed that multicomponent EPR spectra report on conformational flexibility on the μs-ms timescale. Multiple dynamic populations exist at every site examined in the structurally uncharacterized Fe(III) "locked-off" CooA. This observation suggests that, in direct contrast to effector-free CRP, Fe(III) "locked-off" CooA undergoes conformational exchange on the μs-ms timescale. Importantly, we establish MAL-6 as a spin label with a redox-stable linkage that may be utilized to compare conformational dynamics between functional states of CooA.
Collapse
Affiliation(s)
- Judy P. Hines
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| | - Matthew R. Dent
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| | - Daniel J. Stevens
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| | - Judith N. Burstyn
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| |
Collapse
|
4
|
Otomo A, Ishikawa H, Mizuno M, Kimura T, Kubo M, Shiro Y, Aono S, Mizutani Y. A Study of the Dynamics of the Heme Pocket and C-helix in CooA upon CO Dissociation Using Time-Resolved Visible and UV Resonance Raman Spectroscopy. J Phys Chem B 2016; 120:7836-43. [PMID: 27457181 DOI: 10.1021/acs.jpcb.6b05634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CooA is a CO-sensing transcriptional activator from the photosynthetic bacterium Rhodospirillum rubrum that binds CO at the heme iron. The heme iron in ferrous CooA has two axial ligands: His77 and Pro2. CO displaces Pro2 and induces a conformational change in CooA. The dissociation of CO and/or ligation of the Pro2 residue are believed to trigger structural changes in the protein. Visible time-resolved resonance Raman spectra obtained in this study indicated that the ν(Fe-His) mode, arising from the proximal His77-iron stretch, does not shift until 50 μs after the photodissociation of CO. Ligation of the Pro2 residue to the heme iron was observed around 50 μs after the photodissociation of CO, suggesting that the ν(Fe-His) band exhibits no shift until the ligation of Pro2. UV resonance Raman spectra suggested structural changes in the vicinity of Trp110 in the C-helix upon CO binding, but no or very small spectral changes in the time-resolved UV resonance Raman spectra were observed from 100 ns to 100 μs after the photodissociation of CO. These results strongly suggest that the conformational change of CooA is induced by the ligation of Pro2 to the heme iron.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tetsunari Kimura
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8786, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
6
|
Asymmetric perturbations of signalling oligomers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:153-69. [PMID: 24650570 DOI: 10.1016/j.pbiomolbio.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on rapid and reversible noncovalent interactions for symmetric oligomers of signalling proteins. Symmetry mismatch, transient symmetry breaking and asymmetric perturbations via chemical (ligand binding) and physical (electric or mechanic) effects can initiate the signalling events. Advanced biophysical methods can reveal not only structural symmetries of stable membrane-bound signalling proteins but also asymmetric functional transition states. Relevant techniques amenable to distinguish between symmetric and asymmetric architectures are discussed including those with the capability of capturing low-populated transient conformational states. Typical examples of signalling proteins are overviewed for symmetry breaking in dimers (GPCRs, growth factor receptors, transcription factors); trimers (acid-sensing ion channels); tetramers (voltage-gated cation channels, ionotropic glutamate receptor, CNG and CHN channels); pentameric ligand-gated and mechanosensitive channels; higher order oligomers (gap junction channel, chaperonins, proteasome, virus capsid); as well as primary and secondary transporters. In conclusion, asymmetric perturbations seem to play important functional roles in a broad range of communicating networks.
Collapse
|
7
|
Perry JJP, Tainer JA. Developing advanced X-ray scattering methods combined with crystallography and computation. Methods 2013; 59:363-71. [PMID: 23376408 PMCID: PMC3684416 DOI: 10.1016/j.ymeth.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/09/2023] Open
Abstract
The extensive use of small angle X-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered as being part of one's repertoire of biophysical analyses, when conducting characterizations of protein and other macromolecular interactions.
Collapse
Affiliation(s)
- J. Jefferson P. Perry
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA USA
- School of Biotechnology, Amrita University at Amritapuri, Kollam, Kerala, India
| | - John A. Tainer
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
8
|
Ishida T, Aono S. A model theoretical study on ligand exchange reactions of CooA. Phys Chem Chem Phys 2013; 15:6139-48. [DOI: 10.1039/c3cp43253j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:789-99. [PMID: 22639100 PMCID: PMC3462898 DOI: 10.1007/s00249-012-0820-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 04/22/2012] [Accepted: 05/05/2012] [Indexed: 01/25/2023]
Abstract
The dynamics of macromolecular conformations are critical to the action of cellular networks. Solution X-ray scattering studies, in combination with macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR), strive to determine complete and accurate states of macromolecules, providing novel insights describing allosteric mechanisms, supramolecular complexes, and dynamic molecular machines. This review addresses theoretical and practical concepts, concerns, and considerations for using these techniques in conjunction with computational methods to productively combine solution-scattering data with high-resolution structures. I discuss the principal means of direct identification of macromolecular flexibility from SAXS data followed by critical concerns about the methods used to calculate theoretical SAXS profiles from high-resolution structures. The SAXS profile is a direct interrogation of the thermodynamic ensemble and techniques such as, for example, minimal ensemble search (MES), enhance interpretation of SAXS experiments by describing the SAXS profiles as population-weighted thermodynamic ensembles. I discuss recent developments in computational techniques used for conformational sampling, and how these techniques provide a basis for assessing the level of the flexibility within a sample. Although these approaches sacrifice atomic detail, the knowledge gained from ensemble analysis is often appropriate for developing hypotheses and guiding biochemical experiments. Examples of the use of SAXS and combined approaches with X-ray crystallography, NMR, and computational methods to characterize dynamic assemblies are presented.
Collapse
|
10
|
Benabbas A, Karunakaran V, Youn H, Poulos TL, Champion PM. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA. J Biol Chem 2012; 287:21729-40. [PMID: 22544803 DOI: 10.1074/jbc.m112.345090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role.
Collapse
Affiliation(s)
- Abdelkrim Benabbas
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
11
|
Karunakaran V, Benabbas A, Youn H, Champion PM. Vibrational coherence spectroscopy of the heme domain in the CO-sensing transcriptional activator CooA. J Am Chem Soc 2011; 133:18816-27. [PMID: 21961804 DOI: 10.1021/ja206152m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Femtosecond vibrational coherence spectroscopy was used to investigate the low-frequency vibrational dynamics of the heme in the carbon monoxide oxidation activator protein (CooA) from the thermophilic anaerobic bacterium Carboxydothermus hydrogenoformans (Ch-CooA). Low frequency vibrational modes are important because they are excited by the ambient thermal bath (k(B)T = 200 cm(-1)) and participate in thermally activated barrier crossing events. However, such modes are nearly impossible to detect in the aqueous phase using traditional spectroscopic methods. Here, we present the low frequency coherence spectra of the ferric, ferrous, and CO-bound forms of Ch-CooA in order to compare the protein-induced heme distortions in its active and inactive states. Distortions take place predominantly along the coordinates of low-frequency modes because of their weak force constants, and such distortions are reflected in the intensity of the vibrational coherence signals. A strong mode near ~90 cm(-1) in the ferrous form of Ch-CooA is suggested to contain a large component of heme ruffling, consistent with the imidazole-bound ferrous heme crystal structure, which shows a significant protein-induced heme distortion along this coordinate. A mode observed at ~228 cm(-1) in the six-coordinate ferrous state is proposed to be the ν(Fe-His) stretching vibration. The observation of the Fe-His mode indicates that photolysis of the N-terminal α-amino axial ligand takes place. This is followed by a rapid (~8.5 ps) transient absorption recovery, analogous to methionine rebinding in photolyzed ferrous cytochrome c. We have also studied CO photolysis in CooA, which revealed very strong photoproduct state coherent oscillations. The observation of heme-CO photoproduct oscillations is unusual because most other heme systems have CO rebinding kinetics that are too slow to make the measurement possible. The low frequency coherence spectrum of the CO-bound form of Ch-CooA shows a strong vibration at ~230 cm(-1) that is broadened and up-shifted compared to the ν(Fe-His) of Rr-CooA (216 cm(-1)). We propose that the stronger Fe-His bond is related to the enhanced thermal stability of Ch-CooA and that there is a smaller (time dependent) tilt of the histidine ring with respect to the heme plane in Ch-CooA. The appearance of strong modes at ~48 cm(-1) in both the ferrous and CO-bound forms of Ch-CooA is consistent with coupling of the heme doming distortion to the photolysis reaction in both samples. Upon CO binding and protein activation, a heme mode near 112 ± 5 cm(-1) disappears, probably indicating a decreased heme saddling distortion. This reflects changes in the heme environment and geometry that must be associated with the conformational transition activating the DNA-binding domain. Protein-specific DNA binding to the CO-bound form of Ch-CooA was also investigated, and although the CO rebinding kinetics are significantly perturbed, there are negligible changes in the low-frequency vibrational spectrum of the heme.
Collapse
Affiliation(s)
- Venugopal Karunakaran
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
12
|
Akiyama S. Quality control of protein standards for molecular mass determinations by small-angle X-ray scattering. J Appl Crystallogr 2010. [DOI: 10.1107/s002188981000138x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small-angle X-ray scattering (SAXS) is a powerful technique with which to evaluate the size and shape of biological macromolecules in solution. Forward scattering intensity normalized relative to the particle concentration,I(0)/c, is useful as a good measure of molecular mass. A general method for deducing the molecular mass from SAXS data is to determine the ratio ofI(0)/cof a target protein to that of a standard protein with known molecular mass. The accuracy of this interprotein calibration is affected considerably by the monodispersity of the prepared standard, as well as by the precision in estimating its concentration. In the present study, chromatographic fractionation followed by hydrodynamic characterization is proposed as an effective procedure by which to prepare a series of monodispersed protein standards. The estimation of molecular mass within an average deviation of 8% is demonstrated using monodispersed bovine serum albumin as a standard. The present results demonstrate the importance of protein standard quality control in order to take full advantage of interprotein calibration.
Collapse
|
13
|
Pelikan M, Hura GL, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 2009; 28:174-89. [PMID: 19592714 DOI: 10.4149/gpb_2009_02_174] [Citation(s) in RCA: 358] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Flexibility between domains of proteins is often critical for function. These motions and proteins with large scale flexibility in general are often not readily amenable to conventional structural analysis such as X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR) or electron microscopy. A common evolution of a crystallography project, once a high resolution structure has been determined, is to postulate possible sights of flexibility. Here we describe an analysis tool using relatively inexpensive small angle X-ray scattering (SAXS) measurements to identify flexibility and validate a constructed minimal ensemble of models, which represent highly populated conformations in solution. The resolution of these results is sufficient to address the questions being asked: what kinds of conformations do the domains sample in solution? In our rigid body modeling strategy BILBOMD, molecular dynamics (MD) simulations are used to explore conformational space. A common strategy is to perform the MD simulation on the domains connections at very high temperature, where the additional kinetic energy prevents the molecule from becoming trapped in a local minimum. The MD simulations provide an ensemble of molecular models from which a SAXS curve is calculated and compared to the experimental curve. A genetic algorithm is used to identify the minimal ensemble (minimal ensemble search, MES) required to best fit the experimental data. We demonstrate the use of MES in several model and in four experimental examples.
Collapse
Affiliation(s)
- Martin Pelikan
- Department of Mathematics and Computer Science, University of Missouri in St. Louis, St. Louis, Missouri 63121, USA
| | | | | |
Collapse
|
14
|
VanOudenhove J, Anderson E, Kreuger S, Cole JL. Analysis of PKR structure by small-angle scattering. J Mol Biol 2009; 387:910-20. [PMID: 19232355 PMCID: PMC2663012 DOI: 10.1016/j.jmb.2009.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 11/20/2022]
Abstract
Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 A. The p(r) distance distribution function exhibits a peak near 30 A, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
| | - Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
| | - Susan Kreuger
- NIST Center for Neutron Research National Institutes of Standards and Technology Gaithersburg, MD 21702-1201, USA
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
- Deparment of Chemistry University of Connecticut Storrs, Connecticut 06269, USA
| |
Collapse
|
15
|
X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 2008; 40:191-285. [PMID: 18078545 DOI: 10.1017/s0033583507004635] [Citation(s) in RCA: 875] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Crystallography supplies unparalleled detail on structural information critical for mechanistic analyses; however, it is restricted to describing low energy conformations of macromolecules within crystal lattices. Small angle X-ray scattering (SAXS) offers complementary information about macromolecular folding, unfolding, aggregation, extended conformations, flexibly linked domains, shape, conformation, and assembly state in solution, albeit at the lower resolution range of about 50 A to 10 A resolution, but without the size limitations inherent in NMR and electron microscopy studies. Together these techniques can allow multi-scale modeling to create complete and accurate images of macromolecules for modeling allosteric mechanisms, supramolecular complexes, and dynamic molecular machines acting in diverse processes ranging from eukaryotic DNA replication, recombination and repair to microbial membrane secretion and assembly systems. This review addresses both theoretical and practical concepts, concerns and considerations for using these techniques in conjunction with computational methods to productively combine solution scattering data with high-resolution structures. Detailed aspects of SAXS experimental results are considered with a focus on data interpretation tools suitable to model protein and nucleic acid macromolecular structures, including membrane protein, RNA, DNA, and protein-nucleic acid complexes. The methods discussed provide the basis to examine molecular interactions in solution and to study macromolecular flexibility and conformational changes that have become increasingly relevant for accurate understanding, simulation, and prediction of mechanisms in structural cell biology and nanotechnology.
Collapse
|
16
|
Abstract
Diatomic gas molecules such as O2, CO and NO act as signaling molecules in many biological systems, where metal-containing gas sensor proteins sense their effector gas molecules by using prosthetic groups such as heme, iron-sulfur clusters and non-heme iron as the active center for gas sensing. When the gas sensor proteins sense their effector gas molecules, intramolecular and intermolecular signal transductions take place to regulate many physiological functions including gene expression, aerotaxis, and change in metabolic pathways, etc. The metal-containing prosthetic groups in these sensor proteins play a crucial role for selective sensing of their effectors. In this perspective, I will discuss the structure and function of some O2-, CO- and NO-sensor proteins, especially focussing on the structural, biochemical and biophysical properties of the active centers of these sensor proteins.
Collapse
Affiliation(s)
- Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Japan.
| |
Collapse
|
17
|
Akiyama S, Nohara A, Ito K, Maéda Y. Assembly and Disassembly Dynamics of the Cyanobacterial Periodosome. Mol Cell 2008; 29:703-16. [DOI: 10.1016/j.molcel.2008.01.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/29/2007] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
|
18
|
Ibrahim M, Kuchinskas M, Youn H, Kerby RL, Roberts GP, Poulos TL, Spiro TG. Mechanism of the CO-sensing heme protein CooA: new insights from the truncated heme domain and UVRR spectroscopy. J Inorg Biochem 2007; 101:1776-85. [PMID: 17720248 PMCID: PMC2096632 DOI: 10.1016/j.jinorgbio.2007.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 11/27/2022]
Abstract
The bacterial CO-sensing heme protein CooA activates expression of genes whose products perform CO-metabolism by binding its target DNA in response to CO binding. The required conformational change has been proposed to result from CO-induced displacement of the heme and of the adjacent C-helix, which connects the sensory and DNA-binding domains. Support for this proposal comes from UV Resonance Raman (UVRR) spectroscopy, which reveals a more hydrophobic environment for the C-helix residue Trp110 when CO binds. In addition, we find a tyrosine UVRR response, which is attributable to weakening of a Tyr55-Glu83 H-bond that anchors the proximal side of the heme. Both Trp and Tyr responses are augmented in the heme domain when the DNA-binding domain has been removed, apparently reflecting loss of the inter-domain restraint. This augmentation is abolished by a Glu83Gln substitution, which weakens the anchoring H-bond. The CO recombination rate following photolysis of the CO adduct is similar for truncated and full-length protein, though truncation does increase the rate of CO association in the absence of photolysis; together these data indicate that truncation causes a faster dissociation of the endogenous Pro2 ligand. These findings are discussed in the light of structural evidence that the N-terminal tail, once released from the heme, selects the proper orientation of the DNA-binding domain, via docking interactions.
Collapse
Affiliation(s)
- Mohammed Ibrahim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Michael Kuchinskas
- Department of Molecular Biology & Biochemistry, University of California - Irvine, Irvine, California 92697-3900
| | - Hwan Youn
- Department of Bacterology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Robert L. Kerby
- Department of Bacterology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Gary P. Roberts
- Department of Bacterology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Thomas L. Poulos
- Department of Molecular Biology & Biochemistry, University of California - Irvine, Irvine, California 92697-3900
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
19
|
Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E. Crystal Structure and Function of the Zinc Uptake Regulator FurB from Mycobacterium tuberculosis. J Biol Chem 2007; 282:9914-9922. [PMID: 17213192 DOI: 10.1074/jbc.m609974200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the ferric/zinc uptake regulator (Fur/Zur) family are the central metal-dependent regulator proteins in many Gram-negative and -positive bacteria. They are responsible for the control of a wide variety of basic physiological processes and the expression of important virulence factors in human pathogens. Therefore, Fur has gathered significant interest as a potential target for novel antibiotics. Here we report the crystal structure of FurB from Mycobacterium tuberculosis at a resolution of 2.7A, and we present biochemical and spectroscopic data that allow us to propose the functional role of this protein. Although the overall fold of FurB with an N-terminal DNA binding domain and a C-terminal dimerization domain is conserved among the Zur/Fur family, large differences in the spatial arrangement of the two domains with respect to each other can be observed. The biochemical and spectroscopic analysis presented here reveals that M. tuberculosis FurB is Zn(II)-dependent and is likely to control genes involved in the bacterial zinc uptake. The combination of the structural, spectroscopic, and biochemical results enables us to determine the structural basis for functional differences in this important family of bacterial regulators.
Collapse
Affiliation(s)
- Debora Lucarelli
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Santina Russo
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Elspeth Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anna Milano
- Department of Genetics and Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Wolfram Meyer-Klaucke
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany.
| | - Ehmke Pohl
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland.
| |
Collapse
|
20
|
Komori H, Inagaki S, Yoshioka S, Aono S, Higuchi Y. Crystal Structure of CO-sensing Transcription Activator CooA Bound to Exogenous Ligand Imidazole. J Mol Biol 2007; 367:864-71. [PMID: 17292914 DOI: 10.1016/j.jmb.2007.01.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
CooA is a CO-dependent transcriptional activator and transmits a CO-sensing signal to a DNA promoter that controls the expression of the genes responsible for CO metabolism. CooA contains a b-type heme as the active site for sensing CO. CO binding to the heme induces a conformational change that switches CooA from an inactive to an active DNA-binding form. Here, we report the crystal structure of an imidazole-bound form of CooA from Carboxydothermus hydrogenoformans (Ch-CooA). In the resting form, Ch-CooA has a six-coordinate ferrous heme with two endogenous axial ligands, the alpha-amino group of the N-terminal amino acid and a histidine residue. The N-terminal amino group of CooA that is coordinated to the heme iron is replaced by CO. This substitution presumably triggers a structural change leading to the active form. The crystal structure of Ch-CooA reveals that imidazole binds to the heme, which replaces the N terminus, as does CO. The dissociated N terminus is positioned approximately 16 A from the heme iron in the imidazole-bound form. In addition, the heme plane is rotated by 30 degrees about the normal of the porphyrin ring compared to that found in the inactive form of Rhodospirillum rubrum CooA. Even though the ligand exchange, imidazole-bound Ch-CooA remains in the inactive form for DNA binding. These results indicate that the release of the N terminus resulting from imidazole binding is not sufficient to activate CooA. The structure provides new insights into the structural changes required to achieve activation.
Collapse
Affiliation(s)
- Hirofumi Komori
- Department of Life Science, Graduate School of Life Science, University of Hyogo and Himeji Institute of Technology, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | |
Collapse
|
21
|
de Groot MT, Evers TH, Merkx M, Koper MTM. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:729-36. [PMID: 17209627 DOI: 10.1021/la062308v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have successfully immobilized Allochromatium vinosum cytochrome c' on carboxylic acid-terminated thiol monolayers on gold and have investigated its electron-transfer and ligand binding properties. Immobilization could only be achieved for pH's ranging from 3.5 to 5.5, reflecting the fact that the protein is only sufficiently positively charged below pH 5.5 (pI = 4.9). Upon immobilization, the protein retains a near-native conformation, as is suggested by the observed potential of 85 mV vs SHE for the heme FeIII/FeII transition, which is close to the value of 60 mV reported in solution. The electron-transfer rate to the immobilized protein depends on the length of the thiol spacer, displaying distance-dependent electron tunneling for long thiols and distance-independent protein reorganization for short thiols. The unique CO-induced dimer-to-monomer transition observed for cytochrome c' in solution also seems to occur for immobilized cytochrome c'. Upon saturation with CO, a new anodic peak corresponding to the oxidation of an FeII-CO adduct is observed. CO binding is accompanied by a significant decrease in protein coverage, which could be due to weaker electrostatic interactions between the self-assembled monolayer and cytochrome c' in its monomeric form as compared to those in its dimeric form. The observed CO binding rate of 24 M-1 s-1 is slightly slower than the binding rate in solution (48 M-1 s-1), which could be due to electrostatic protein-electrode interactions or could be the result of protein crowding on the surface. This study shows that the use of carboxyl acid-terminated thiol monolayers as a protein friendly method to immobilize redox proteins on gold electrodes is not restricted to cytochrome c, but can also be used for other proteins such as cytochrome c'.
Collapse
Affiliation(s)
- Matheus T de Groot
- Laboratory of Inorganic Chemistry and Catalysis, Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Moore LJ, Mettert EL, Kiley PJ. Regulation of FNR Dimerization by Subunit Charge Repulsion. J Biol Chem 2006; 281:33268-75. [PMID: 16959764 DOI: 10.1074/jbc.m608331200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization of the global anaerobic transcription factor FNR is essential for FNR activity. Under aerobic conditions FNR is an inactive monomeric species because it lacks the oxygen labile [4Fe-4S] cluster required for dimerization. In this study, we investigated the protein side chains that inhibit FNR dimerization under aerobic conditions. Substitution of Asp(154) within the predicted dimerization helix with residues containing neutral or positively charged side chains increased FNR activity under aerobic conditions, whereas replacement of Asp(154) with Glu inhibited FNR activity similar to WT-FNR. Similar results were obtained when making analogous substitutions of Glu(150). In vitro analysis of representative FNR mutant proteins indicated that their increased activity under aerobic conditions resulted from an [4Fe-4S] independent mechanism of dimerization. In addition, simultaneous substitution of residues 150 and 154 with Lys restored inhibition of FNR activity under aerobic growth conditions. Collectively, these data indicate that charge repulsion by side chains at positions 150 and 154 is necessary to inhibit dimerization under aerobic conditions. They also suggest that a [4Fe-4S]-dependent conformational change overcomes charge repulsion between subunits under anaerobic conditions. Comparison of the trypsin sensitivity of [4Fe-4S]-FNR and apoFNR indicated that there are no major differences in protease sensitivity between these forms, whereas circular dichroism suggested that small changes in secondary structure occur between the cluster-containing FNR and apoFNR. Thus, the [4Fe-4S]-dependent conformational change necessary to overcome inter-subunit charge repulsion and create a subunit interface more favorable for dimerization must be small.
Collapse
Affiliation(s)
- Laura J Moore
- Department of Chemistry, Monmouth College, Monmouth, Illinois 61462, USA.
| | | | | |
Collapse
|
23
|
Ibrahim M, Kerby RL, Puranik M, Wasbotten IH, Youn H, Roberts GP, Spiro TG. Heme displacement mechanism of CooA activation: mutational and Raman spectroscopic evidence. J Biol Chem 2006; 281:29165-73. [PMID: 16873369 PMCID: PMC2756451 DOI: 10.1074/jbc.m605568200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-containing protein CooA of Rhodospirillum rubrum regulates the expression of genes involved in CO oxidation. CooA binds its target DNA sequence in response to CO binding to its heme. Activity measurements and resonance Raman (RR) spectra are reported for CooA variants that bind DNA even in the absence of CO, those in which the wild-type residues at the 121-126 positions, TSCMRT, are replaced by the residues AYLLRL or RYLLRL, and also for variants that bind DNA poorly in the presence of CO, such as L120S and L120F. The Fe-C and C-O stretching resonance Raman (RR) frequencies of all CooAs examined deviate from the expected back-bonding correlation in a manner indicating weakening of the Fe-His-77 proximal ligand bond, and the extent of weakening correlates positively with DNA binding activity. The (A/R) YLLRL variants have detectable populations of a 5-coordinate heme resulting from partial dissociation of the endogenous distal ligand, Pro-2. Selective excitation of this population reveals downshifted Fe-His-77-stretching RR bands, confirming the proximal bond weakening. These results support our previous hypothesis that the conformational change required for DNA binding is initiated by displacement of the heme into an adjacent hydrophobic cavity once CO displaces the Pro-2 ligand. Examination of the crystal structure reveals a physical basis for these results, and a mechanism is proposed to link heme displacement to conformational change.
Collapse
Affiliation(s)
- Mohammed Ibrahim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Mrinalini Puranik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Ingar H. Wasbotten
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Hwan Youn
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Gary P. Roberts
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
24
|
Yamada S, Akiyama S, Sugimoto H, Kumita H, Ito K, Fujisawa T, Nakamura H, Shiro Y. The Signaling Pathway in Histidine Kinase and the Response Regulator Complex Revealed by X-ray Crystallography and Solution Scattering. J Mol Biol 2006; 362:123-39. [PMID: 16890956 DOI: 10.1016/j.jmb.2006.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/05/2006] [Accepted: 07/06/2006] [Indexed: 11/16/2022]
Abstract
The structure of a histidine kinase (ThkA) complexed with a response regulator (TrrA) in the two-component regulatory system from hyperthermophile Thermotoga maritima was determined by a combination of X-ray crystallography at a resolution of 4.2 A and small-angle X-ray scattering (SAXS). The boundary of the three component domains (PAS-sensor, dimerization and catalytic domains) of ThkA and the bound TrrA molecule were unambiguously assigned in the electron density map at 4.2 A resolution. ThkA forms a dimer with crystallographic 2-fold symmetry and two monomeric TrrAs bind to the ThkA dimer. SAXS experiments also confirmed this association state in solution and specific binding between ThkA and TrrA (Kd=8.2x10(-11) M(-2)). The association interface between ThkA and TrrA contains the phosphotransfer His residue in the ThkA, indicative of an efficient receipt of the phosphoryl group. One Per-Arnt-Sim (PAS) domain does not interact with the other PAS domain, but with the catalytic domain of the same polypeptide chain and with one TrrA molecule. Observed inter-domain and inter-molecular interactions reveal a definite pathway of signal transduction in the kinase/regulator complex. In addition, we propose a responsible role of TrrA for the feedback regulation of sensing and/or kinase activities of ThkA.
Collapse
Affiliation(s)
- Seiji Yamada
- Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kubo M, Inagaki S, Yoshioka S, Uchida T, Mizutani Y, Aono S, Kitagawa T. Evidence for displacements of the C-helix by CO ligation and DNA binding to CooA revealed by UV resonance Raman spectroscopy. J Biol Chem 2006; 281:11271-8. [PMID: 16439368 DOI: 10.1074/jbc.m513261200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UV and visible resonance Raman spectra are reported for CooA from Rhodospirillum rubrum, which is a transcriptional regulator activated by growth in a CO atmosphere. CO binding to heme in its sensor domain causes rearrangement of its DNA-binding domain, allowing binding of DNA with a specific sequence. The sensor and DNA-binding domains are linked by a hinge region that follows a long C-helix. UV resonance Raman bands arising from Trp-110 in the C-helix revealed local movement around Trp-110 upon CO binding. The indole side chain of Trp-110, which is exposed to solvent in the CO-free ferrous state, becomes buried in the CO-bound state with a slight change in its orientation but maintains a hydrogen bond with a water molecule at the indole nitrogen. This is the first experimental data supporting a previously proposed model involving displacement of the C-helix and heme sliding. The UV resonance Raman spectra for the CooA-DNA complex indicated that binding of DNA to CooA induces a further displacement of the C-helix in the same direction during transition to the complete active conformation. The Fe-CO and C-O stretching bands showed frequency shifts upon DNA binding, but the Fe-His stretching band did not. Moreover, CO-geminate recombination was more efficient in the DNA-bound state. These results suggest that the C-helix displacement in the DNA-bound form causes the CO binding pocket to narrow and become more negative.
Collapse
Affiliation(s)
- Minoru Kubo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Evers TH, Merkx M. Successful recombinant production of Allochromatium vinosum cytochrome c' requires coexpression of cmm genes in heme-rich Escherichia coli JCB712. Biochem Biophys Res Commun 2005; 327:668-74. [PMID: 15649399 DOI: 10.1016/j.bbrc.2004.12.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Indexed: 11/17/2022]
Abstract
Cytochrome c' from the purple photosynthetic bacterium Allochromatium vinosum (CCP) displays a unique, reversible dimer-to-monomer transition upon binding of NO, CO, and CN(-). This small, four helix bundle protein represents an attractive model for the study of other heme protein biosensors, provided a recombinant expression system is available. Here we report the development of an efficient expression system for CCP that makes use of a maltose binding protein fusion strategy to enhance periplasmic expression and allow easy purification by affinity chromatography. Coexpression of cytochrome c maturase genes and the use of a heme-rich Escherichia coli strain were found to be necessary to obtain reasonable yields of cytochrome c'. Characterization using circular dichroism, UV-vis spectroscopy, and size-exclusion chromatography confirms the native-like properties of the recombinant protein, including its ligand-induced monomerization.
Collapse
Affiliation(s)
- Toon H Evers
- Laboratory of Macromolecular and Organic Chemistry, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | |
Collapse
|