1
|
Siang S, Patel U, Chaves-Mejía M, Purslow JA, Potoyan D, Roche J. Fine-Tuning of ATF4 DNA Binding Activity by a Secondary Basic Motif Unique to the ATF-X Subfamily of bZip Transcription Factors. Biochemistry 2025; 64:1257-1265. [PMID: 39993237 PMCID: PMC11924230 DOI: 10.1021/acs.biochem.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
The fine-tuning of transcription factor DNA-binding activity is often governed by transient intramolecular interactions between the transactivation domain and the DNA-binding domain. An example of such interaction is found in the transcription factor ATF4, a central regulator of the Integrated Stress Response. In ATF4, dynamic coupling between the transactivation domain and the basic-leucine zipper (bZip) domain modulates the phosphorylation levels of the disordered transactivation domain by casein kinase 2. However, the structural and molecular basis of these interdomain interactions remains poorly understood. This study focuses on a secondary basic motif at the C-terminus of ATF4, which is shared exclusively with its closest paralogue, ATF5. Through a combination of solution NMR spectroscopy, fluorescence polarization assays, and long-timescale molecular simulations, we demonstrate that this secondary basic motif is the primary driver of interdomain coupling between the transactivation and bZip domains of ATF4. Moreover, this motif enhances ATF4's DNA-binding specificity via interaction with the transactivation domain while also potentially facilitating rapid DNA scanning. Our findings reveal the pivotal role of a conserved motif in establishing disorder-mediated interactions that critically modulate ATF4's DNA-binding activity.
Collapse
Affiliation(s)
- Steven Siang
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Urval Patel
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Manuela Chaves-Mejía
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jeffrey A. Purslow
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Davit Potoyan
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Julien Roche
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Dyson HJ, Wright PE. How does p53 work? Regulation by the intrinsically disordered domains. Trends Biochem Sci 2025; 50:9-17. [PMID: 39578215 PMCID: PMC11698644 DOI: 10.1016/j.tibs.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Defects in the tumor suppressor protein p53 are found in the majority of cancers. The p53 protein (393 amino acids long) contains the folded DNA-binding domain (DBD) and tetramerization domain (TET), with the remainder of the sequence being intrinsically disordered. Since cancer-causing mutations occur primarily in the DBD, this has been the focus of most of the research on p53. However, recent reports show that the disordered N-terminal activation domain (NTAD) and C-terminal regulatory domain (CTD) function synergistically with the DBD to regulate p53 activity. We propose a mechanistic model in which intermolecular and intramolecular interactions of the disordered regions, modulated by post-translational modifications, perform a central role in the regulation and activation of p53 in response to cellular stress.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Phenotypical mapping of TP53 unique missense mutations spectrum in human cancers. J Biomol Struct Dyn 2024:1-14. [PMID: 39639563 DOI: 10.1080/07391102.2024.2435060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
The p53 tumor suppressor is one of the most mutated genes responsible for tumorigenesis in most human cancers. Out of 29,891 genomic mutations reported in the TP53 Database (https://tp53.isb-cgc.org/), 1,297 are identified as unique missense somatic mutations excluding frameshift, intronic, deletion, nonsense, silent, splice, and other unknown mutations. We have comprehensively analyzed all these 1,297 unique missense mutations and created a phenotypical map based on the distribution of mutations in each domain, the functional state of the protein, and their occurrence in different types of tissues and organs. Our mutation map shows that almost 118 unique missense mutations are reported in the transactivation and proline-rich domains, 1,065 in the central DNA-binding domains, and 113 in the oligomerization and regulatory domains. Based on the phenotype, these mutations are subdivided into 46 super trans, 491 functional, 315 partially functional, and 415 non-functional mutations. The prevalence of these mutations was checked in 71 different types of tissues and found that the mutant R248Q is reported in 51 types of tissues followed by R175H and R273H in 46 types. We correlated the potential impact of mutation in target gene transcription and regulation with nucleosomal DNA and RNA-Pol II complexes. We have discussed the impact of mutation at post-translational modification sites in the structure and function of p53 highlighting the potential therapeutic drug targets with tremendous clinical applications.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Tomas F, Roux P, Gire V. Interaction of p53 with the Δ133p53α and Δ160p53α isoforms regulates p53 conformation and transcriptional activity. Cell Death Dis 2024; 15:845. [PMID: 39562560 PMCID: PMC11576908 DOI: 10.1038/s41419-024-07213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
The TP53 gene encodes p53, a transcription factor involved in tumor suppression. However, TP53 also encodes other protein isoforms, some of which can disrupt the tumor suppressor functions of p53 even in the absence of TP53 mutations. In particular, elevated levels of the Δ133TP53 mRNA are detected in many cancer types and can be associated with poorer disease-free survival. We investigated the mechanisms of action of the two proteins translated from the Δ133TP53 mRNA: the Δ133p53α and Δ160p53α isoforms, both of which retain the oligomerization domain of p53. We discovered that the Δ133p53α and Δ160p53α isoforms adopt an altered conformation compared to full-length p53, exposing the PAb240 epitope (RHSVVV), which is inaccessible to the PAb240 antibody in the functional conformation of p53 (reactive to PAb1620). The Δ133p53α and/or Δ160p53α isoforms form hetero-oligomers with p53, regulating the stability, the conformation and the transcriptional activity of the p53 hetero-oligomers. Under basal conditions, Δ133p53α and Δ160p53α, in complex with p53, prevent proteasome-dependent degradation leading to the accumulation of PAb240 reactive Δ133p53α/Δ160p53α/p53 hetero-oligomers without increasing p53 transcriptional activity. Conversely, depletion of endogenous Δ133p53α isoforms in human fibroblasts is sufficient to restore p53 transcriptional activity, towards p53-target genes involved in cell cycle arrest. In the DNA damage response (DDR), PAb240 reactive Δ133p53α/Δ160p53α/p53 hetero-oligomers are highly phosphorylated at Ser15 compared to PAb1620-reactive p53 complexes devoid of Δ133p53α and Δ160p53α. This suggests that PAb240-reactive p53 hetero-oligomers integrate DNA damage signals. Δ133p53α accumulation is a late event in the DDR that depends on p53, but not on its transcriptional activation. The formation of Δ133p53α and p53 complexes increases at later DDR stages. We propose that Δ133p53α isoforms regulate p53 conformation as part of the normal p53 biology, modulating p53 activity and thereby adapting the cellular response to the cell signals.
Collapse
Affiliation(s)
- Fanny Tomas
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Roux
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Véronique Gire
- CRBM, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Bakker M, Svensson O, So̷rensen HV, Skepö M. Exploring the Functional Landscape of the p53 Regulatory Domain: The Stabilizing Role of Post-Translational Modifications. J Chem Theory Comput 2024; 20:5842-5853. [PMID: 38973087 PMCID: PMC11270737 DOI: 10.1021/acs.jctc.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
This study focuses on the intrinsically disordered regulatory domain of p53 and the impact of post-translational modifications. Through fully atomistic explicit water molecular dynamics simulations, we show the wealth of information and detailed understanding that can be obtained by varying the number of phosphorylated amino acids and implementing a restriction in the conformational entropy of the N-termini of that intrinsically disordered region. The take-home message for the reader is to achieve a detailed understanding of the impact of phosphorylation with respect to (1) the conformational dynamics and flexibility, (2) structural effects, (3) protein interactivity, and (4) energy landscapes and conformational ensembles. Although our model system is the regulatory domain p53 of the tumor suppressor protein p53, this study contributes to understanding the general effects of intrinsically disordered phosphorylated proteins and the impact of phosphorylated groups, more specifically, how minor changes in the primary sequence can affect the properties mentioned above.
Collapse
Affiliation(s)
- Michael
J. Bakker
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Oskar Svensson
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Henrik V. So̷rensen
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- MAX
IV Laboratory, Fotongatan
2, 224 84 Lund, Sweden
| | - Marie Skepö
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant Systems as Modulators of Ferroptosis: Focus on Transcription Factors. Antioxidants (Basel) 2024; 13:298. [PMID: 38539832 PMCID: PMC10967371 DOI: 10.3390/antiox13030298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS. Here, we discuss the interaction between the metabolic pathways of ferroptosis and antioxidant systems, with a particular focus on transcription factors implicated in the regulation of ferroptosis, either as triggers of lipid peroxidation or as ferroptosis antioxidant defense pathways.
Collapse
Affiliation(s)
- Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| |
Collapse
|
7
|
Sakaguchi S, Nakagawa N, Wahba HM, Wada J, Kamada R, Omichinski JG, Sakaguchi K. Highly Similar Tetramerization Domains from the p53 Protein of Different Mammalian Species Possess Varying Biophysical, Functional and Structural Properties. Int J Mol Sci 2023; 24:16620. [PMID: 38068946 PMCID: PMC10706167 DOI: 10.3390/ijms242316620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The p53 protein is a transcriptional regulatory factor and many of its functions require that it forms a tetrameric structure. Although the tetramerization domain of mammalian p53 proteins (p53TD) share significant sequence similarities, it was recently shown that the tree shrew p53TD is considerably more thermostable than the human p53TD. To determine whether other mammalian species display differences in this domain, we used biophysical, functional, and structural studies to compare the properties of the p53TDs from six mammalian model organisms (human, tree shrew, guinea pig, Chinese hamster, sheep, and opossum). The results indicate that the p53TD from the opossum and tree shrew are significantly more stable than the human p53TD, and there is a correlation between the thermostability of the p53TDs and their ability to activate transcription. Structural analysis of the tree shrew and opossum p53TDs indicated that amino acid substitutions within two distinct regions of their p53TDs can dramatically alter hydrophobic packing of the tetramer, and in particular substitutions at positions corresponding to F341 and Q354 of the human p53TD. Together, the results suggest that subtle changes in the sequence of the p53TD can dramatically alter the stability, and potentially lead to important changes in the functional activity, of the p53 protein.
Collapse
Affiliation(s)
- Shuya Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Natsumi Nakagawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Haytham M. Wahba
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada;
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 2722165, Egypt
| | - Junya Wada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Rui Kamada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - James G. Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada;
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| |
Collapse
|
8
|
Höpfner D, Cichy A, Pogenberg V, Krisp C, Mezouar S, Bach NC, Grotheer J, Zarza SM, Martinez E, Bonazzi M, Feige MJ, Sieber SA, Schlüter H, Itzen A. The DNA-binding induced (de)AMPylation activity of a Coxiella burnetii Fic enzyme targets Histone H3. Commun Biol 2023; 6:1124. [PMID: 37932372 PMCID: PMC10628234 DOI: 10.1038/s42003-023-05494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular bacterial pathogen Coxiella burnetii evades the host response by secreting effector proteins that aid in establishing a replication-friendly niche. Bacterial filamentation induced by cyclic AMP (Fic) enzymes can act as effectors by covalently modifying target proteins with the posttranslational AMPylation by transferring adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to a hydroxyl-containing side chain. Here we identify the gene product of C. burnetii CBU_0822, termed C. burnetii Fic 2 (CbFic2), to AMPylate host cell histone H3 at serine 10 and serine 28. We show that CbFic2 acts as a bifunctional enzyme, both capable of AMPylation as well as deAMPylation, and is regulated by the binding of DNA via a C-terminal helix-turn-helix domain. We propose that CbFic2 performs AMPylation in its monomeric state, switching to a deAMPylating dimer upon DNA binding. This study unveils reversible histone modification by a specific enzyme of a pathogenic bacterium.
Collapse
Affiliation(s)
- Dorothea Höpfner
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Adam Cichy
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Group of Proteinchemistry, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Vivian Pogenberg
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Soraya Mezouar
- Aix-Marseille University, Institut de Recherche pour la Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Boulevard Jean Moulin, 13005, Marseille, France
| | - Nina C Bach
- Technical University of Munich (TUM), TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Jan Grotheer
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Sandra Madariaga Zarza
- Aix-Marseille University, Institut de Recherche pour la Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Martinez
- Cellular and Molecular Biology of Bacterial Infections, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, UMR 9004 - Centre national de la recherche scientifique (CNRS), 1919 Route de Mende, 34293, Montpellier, France
| | - Matteo Bonazzi
- Cellular and Molecular Biology of Bacterial Infections, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, UMR 9004 - Centre national de la recherche scientifique (CNRS), 1919 Route de Mende, 34293, Montpellier, France
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Stephan A Sieber
- Technical University of Munich (TUM), TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Aymelt Itzen
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
9
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|
10
|
Krois AS, Park S, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry 2022; 61:2709-2719. [PMID: 36380579 PMCID: PMC9788666 DOI: 10.1021/acs.biochem.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The C-terminal region of the tumor suppressor protein p53 contains three domains, nuclear localization signal (NLS), tetramerization domain (TET), and C-terminal regulatory domain (CTD), which are essential for p53 function. Characterization of the structure and interactions of these domains within full-length p53 has been limited by the overall size and flexibility of the p53 tetramer. Using trans-intein splicing, we have generated full-length p53 constructs in which the C-terminal region is isotopically labeled with 15N for NMR analysis, allowing us to obtain atomic-level information on the C-terminal domains in the context of the full-length protein. Resonances of NLS and CTD residues have narrow linewidths, showing that these regions are largely solvent-exposed and dynamically disordered, whereas resonances from the folded TET are broadened beyond detection. Two regions of the CTD, spanning residues 369-374 and 381-388 and with high lysine content, make dynamic and sequence-independent interactions with DNA in regions that flank the p53 recognition element. The population of DNA-bound states increases as the length of the flanking regions is extended up to approximately 20 base pairs on either side of the recognition element. Acetylation of K372, K373, and K382, using a construct of the transcriptional coactivator CBP containing the TAZ2 and acetyltransferase domains, inhibits interaction of the CTD with DNA. This work provides high-resolution insights into the behavior of the intrinsically disordered C-terminal regions of p53 within the full-length tetramer and the molecular basis by which the CTD mediates DNA binding and specificity.
Collapse
Affiliation(s)
- Alexander S Krois
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Sangho Park
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| |
Collapse
|
11
|
Nishimura M, Takizawa Y, Nozawa K, Kurumizaka H. Structural basis for p53 binding to its nucleosomal target DNA sequence. PNAS NEXUS 2022; 1:pgac177. [PMID: 36714865 PMCID: PMC9802185 DOI: 10.1093/pnasnexus/pgac177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
The tumor suppressor p53 functions as a pioneer transcription factor that binds a nucleosomal target DNA sequence. However, the mechanism by which p53 binds to its target DNA in the nucleosome remains elusive. Here we report the cryo-electron microscopy structures of the p53 DNA-binding domain and the full-length p53 protein complexed with a nucleosome containing the 20 base-pair target DNA sequence of p53 (p53BS). In the p53-nucleosome structures, the p53 DNA-binding domain forms a tetramer and specifically binds to the p53BS DNA, located near the entry/exit region of the nucleosome. The nucleosomal position of the p53BS DNA is within the genomic p21 promoter region. The p53 binding peels the DNA from the histone surface, and drastically changes the DNA path around the p53BS on the nucleosome. The C-terminal domain of p53 also binds to the DNA around the center and linker DNA regions of the nucleosome, as revealed by hydroxyl radical footprinting. These results provide important structural information for understanding the mechanism by which p53 binds the nucleosome and changes the chromatin structure for gene activation.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
12
|
Fierti AO, Yakass MB, Okertchiri EA, Adadey SM, Quaye O. The Role of Epstein-Barr Virus in Modulating Key Tumor Suppressor Genes in Associated Malignancies: Epigenetics, Transcriptional, and Post-Translational Modifications. Biomolecules 2022; 12:biom12010127. [PMID: 35053275 PMCID: PMC8773690 DOI: 10.3390/biom12010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.
Collapse
|
13
|
Kamagata K, Iwaki N, Hazra MK, Kanbayashi S, Banerjee T, Chiba R, Sakomoto S, Gaudon V, Castaing B, Takahashi H, Kimura M, Oikawa H, Takahashi S, Levy Y. Molecular principles of recruitment and dynamics of guest proteins in liquid droplets. Sci Rep 2021; 11:19323. [PMID: 34588591 PMCID: PMC8481498 DOI: 10.1038/s41598-021-98955-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
Despite the continuous discovery of host and guest proteins in membraneless organelles, complex host–guest interactions hinder the understanding of the molecular grammar governing liquid–liquid phase separation. In this study, we characterized the localization and dynamic properties of guest proteins in liquid droplets using single-molecule fluorescence microscopy. Eighteen guest proteins of different sizes, structures, and oligomeric states were examined in host p53 liquid droplets. Recruitment did not significantly depend on the structural properties of the guest proteins, but was moderately correlated with their length, total charge, and number of R and Y residues. In contrast, the diffusion of disordered guest proteins was comparable to that of host p53, whereas that of folded proteins varied widely. Molecular dynamics simulations suggest that folded proteins diffuse within the voids of the liquid droplet while interacting weakly with neighboring host proteins, whereas disordered proteins adapt their structures to form tight interactions with the host proteins. Our study provides insights into the key molecular principles of the localization and dynamics of guest proteins in liquid droplets.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan. .,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
| | - Nanako Iwaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Milan Kumar Hazra
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Trishit Banerjee
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Rika Chiba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Seiji Sakomoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072, Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072, Orléans, France
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Michiko Kimura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
14
|
Luwang JW, Nair AR, Natesh R. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability. Biochimie 2021; 189:99-107. [PMID: 34197865 DOI: 10.1016/j.biochi.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
The p53 protein has been known to exist structurally in three different forms inside the cells. Earlier studies have reported the predominance of the lower oligomeric forms of p53 over its tetrameric form inside the cells, although only the tetrameric p53 contributes to its transcriptional activity. However, it remains unclear the functional relevance of the existence of other p53 oligomers inside the cells. In this study, we characterize the stability and conformational state of tetrameric, dimeric and monomeric p53 that spans both DNA Binding Domain (DBD) and Tetramerization Domain (TD) of human p53 (94-360 amino acid residues). Intriguingly, our studies reveal an unexpected drastic reduction in tetrameric p53 thermal stability in comparison to its dimeric and monomeric form with a higher propensity to aggregate at physiological temperature. Our EMSA study suggests that tetrameric p53, not their lower oligomeric counterpart, exhibit rapid loss of binding to their consensus DNA elements at the physiological temperature. This detrimental effect of destabilization is imparted due to the tetramerization of p53 that drives the DBDs to misfold at a faster pace when compared to its lower oligomeric form. This crosstalk between DBDs is achieved when it exists as a tetramer but not as dimer or monomer. Our findings throw light on the plausible reason for the predominant existence of p53 in dimer and monomer forms inside the cells with a lesser population of tetramer form. Therefore, the transient disruption of tetramerization between TDs could be a potential cue for the stabilization of p53 inside the cells.
Collapse
Affiliation(s)
- Johnson Wahengbam Luwang
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Aadithye R Nair
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India.
| |
Collapse
|
15
|
Timofeev O, Stiewe T. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Cancers (Basel) 2021; 13:2422. [PMID: 34067731 PMCID: PMC8155944 DOI: 10.3390/cancers13102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
16
|
Graha Subekti DR, Kamagata K. The disordered DNA-binding domain of p53 is indispensable for forming an encounter complex to and jumping along DNA. Biochem Biophys Res Commun 2020; 534:21-26. [PMID: 33310183 DOI: 10.1016/j.bbrc.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023]
Abstract
The tumor suppressor p53 utilizes a facilitated diffusion mechanism to search for and bind to target DNA sequences. Sub-millisecond single-molecule fluorescence tracking demonstrated that p53 forms a short-lived encounter complex to DNA then converts to the long-lived complex that can move and jump along DNA during the target search. To reveal the role of each DNA-binding domain of p53 in these processes, we investigated two p53 mutants lacking either of two DNA-binding domains; structured core and disordered C-terminal domains, using sub-millisecond single-molecule fluorescence microscopy. We found that the C-terminal domain is required for the encounter complex formation and conversion to the long-lived complex. The long-lived complex is stabilized by the core domain as well as the C-terminal domain. Furthermore, only the C-terminal domain participates in the jump of p53 along DNA at a high salt concentration. We propose that the flexible C-terminal domain of p53 is twined around DNA, which can form the encounter complex, convert to the long-lived complex, and enable p53 to land on DNA after the jump.
Collapse
Affiliation(s)
- Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
17
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
18
|
Abstract
Most cytosolic eukaryotic proteins contain a mixture of ordered and disordered regions. Disordered regions facilitate cell signaling by concentrating sites for posttranslational modifications and protein-protein interactions into arrays of short linear motifs that can be reorganized by RNA splicing. The evolution of disordered regions looks different from their ordered counterparts. In some cases, selection is focused on maintaining protein binding interfaces and PTM sites, but sequence heterogeneity is common. In other cases, simple properties like charge, length, or end-to-end distance are maintained. Many disordered protein binding sites contain some transient secondary structure that may resemble the structure of the bound state. α-Helical secondary structure is common and a wide range of fractional helicity is observed in different disordered regions. Here we provide a simple protocol to identify transient helical segments and design mutants that can change their structure and function.
Collapse
|
19
|
Oduah EI, Grossman SR. Harnessing the vulnerabilities of p53 mutants in lung cancer - Focusing on the proteasome: a new trick for an old foe? Cancer Biol Ther 2020; 21:293-302. [PMID: 32041464 PMCID: PMC7515531 DOI: 10.1080/15384047.2019.1702403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 12/25/2022] Open
Abstract
Gain-of-function (GOF) p53 mutations occur commonly in human cancer and lead to both loss of p53 tumor suppressor function and acquisition of aggressive cancer phenotypes. The oncogenicity of GOF mutant p53 is highly related to its abnormal protein stability relative to wild type p53, and overall stoichiometric excess. We provide an overview of the mechanisms of dysfunction and abnormal stability of GOF p53 specifically in lung cancer, the leading cause of cancer-related mortality, where, depending on histologic subtype, 33-90% of tumors exhibit GOF p53 mutations. As a distinguishing feature and oncogenic mechanism in lung and many other cancers, GOF p53 represents an appealing and cancer-specific therapeutic target. We review preclinical evidence demonstrating paradoxical depletion of GOF p53 by proteasome inhibitors, as well as preclinical and clinical studies of proteasome inhibition in lung cancer. Finally, we provide a rationale for a reexamination of proteasome inhibition in lung cancer, focusing on tumors expressing GOF p53 alleles.
Collapse
Affiliation(s)
- Eziafa I. Oduah
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven R. Grossman
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
García‐Cano J, Sánchez‐Tena S, Sala‐Gaston J, Figueras A, Viñals F, Bartrons R, Ventura F, Rosa JL. Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2. Mol Oncol 2020; 14:69-86. [PMID: 31665549 PMCID: PMC6944118 DOI: 10.1002/1878-0261.12592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
The p53 tumor suppressor protein is a transcription factor that plays a prominent role in protecting cells from malignant transformation. Protein levels of p53 and its transcriptional activity are tightly regulated by the ubiquitin E3 ligase MDM2, the gene expression of which is transcriptionally regulated by p53 in a negative feedback loop. The p53 protein is transcriptionally active as a tetramer, and this oligomerization state is modulated by a complex formed by NEURL4 and the ubiquitin E3 ligase HERC2. Here, we report that MDM2 forms a complex with oligomeric p53, HERC2, and NEURL4. HERC2 knockdown results in a decline in MDM2 protein levels without affecting its protein stability, as it reduces its mRNA expression by inhibition of its promoter activation. DNA damage induced by bleomycin dissociates MDM2 from the p53/HERC2/NEURL4 complex and increases the phosphorylation and acetylation of oligomeric p53 bound to HERC2 and NEURL4. Moreover, the MDM2 promoter, which contains p53-response elements, competes with HERC2 for binding of oligomeric, phosphorylated and acetylated p53. We integrate these findings in a model showing the pivotal role of HERC2 in p53-MDM2 loop regulation. Altogether, these new insights in p53 pathway regulation are of great interest in cancer and may provide new therapeutic targets.
Collapse
Affiliation(s)
- Jesús García‐Cano
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Susana Sánchez‐Tena
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Joan Sala‐Gaston
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Agnès Figueras
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Francesc Viñals
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Ramon Bartrons
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Francesc Ventura
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Jose Luis Rosa
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| |
Collapse
|
21
|
Garg A, Hazra JP, Sannigrahi MK, Rakshit S, Sinha S. Variable Mutations at the p53-R273 Oncogenic Hotspot Position Leads to Altered Properties. Biophys J 2019; 118:720-728. [PMID: 31952808 DOI: 10.1016/j.bpj.2019.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in p53 protein, especially in the DNA-binding domain, is one of the major hallmarks of cancer. The R273 position is a DNA-contact position and has several oncogenic variants. Surprisingly, cancer patients carrying different mutant variants of R273 in p53 have different survival rates, indicating that the DNA-contact inhibition may not be the sole reason for reduced survival with R273 variants. Here, we probed the properties of three major oncogenic variants of the wild-type (WT) p53: [R273H]p53, [R273C]p53, and [R273L]p53. Using a series of biophysical, biochemical, and theoretical simulation studies, we observe that these oncogenic variants of the p53 not only suffer a loss in DNA binding, but they also show distinct structural stability, aggregation, and toxicity profiles. The WTp53 and the [R273H]p53 show the least destabilization and aggregation propensity. [R273C]p53 aggregation is disulfide mediated, leading to cross-β, thioflavin-T-positive aggregates, whereas hydrophobic interactions dominate self-assembly in [R273L]p53, leading to a mixture of amyloid and amorphous aggregates. Molecular dynamics simulations indicate different contact maps and secondary structures for the different variants along the course of the simulations. Our study indicates that each of the R273 variants has its own distinct property of stability and self-assembly, the molecular basis of which may lead to different types of cancer pathogenesis in vivo. These studies will aid the design of therapeutic strategies for cancer using residue-specific or process-specific protein aggregation as a target.
Collapse
Affiliation(s)
- Ankush Garg
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Malay Kumar Sannigrahi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
| | - Sharmistha Sinha
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India.
| |
Collapse
|
22
|
Bartas M, Brázda V, Červeň J, Pečinka P. Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa. Int J Mol Sci 2019; 21:ijms21010006. [PMID: 31861340 PMCID: PMC6981761 DOI: 10.3390/ijms21010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
The p53 family of transcription factors plays key roles in development, genome stability, senescence and tumor development, and p53 is the most important tumor suppressor protein in humans. Although intensively investigated for many years, its initial evolutionary history is not yet fully elucidated. Using bioinformatic and structure prediction methods on current databases containing newly-sequenced genomes and transcriptomes, we present a detailed characterization of p53 family homologs in remote members of the Holozoa group, in the unicellular clades Filasterea, Ichthyosporea and Corallochytrea. Moreover, we show that these newly characterized homologous sequences contain domains that can form structures with high similarity to the human p53 family DNA-binding domain, and some also show similarities to the oligomerization and SAM domains. The presence of these remote homologs demonstrates an ancient origin of the p53 protein family.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.)
- Correspondence: ; Tel.: +420-553-46-2318
| |
Collapse
|
23
|
Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019; 20:ijms20153681. [PMID: 31357595 PMCID: PMC6696488 DOI: 10.3390/ijms20153681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The p53 canonical consensus sequence is a 10-bp repeat of PuPuPuC(A/T)(A/T)GPyPyPy, separated by a spacer with up to 13 bases. C(A/T)(A/T)G is the core sequence and purine (Pu) and pyrimidine (Py) bases comprise the flanking sequence. However, in the p53 noncanonical sequences, there are many variations, such as length of consensus sequence, variance of core sequence or flanking sequence, and variance in number of bases making up the spacer or AT gap composition. In comparison to p53, the p53 family members p63 and p73 have been found to have more tolerance to bind and activate several of these noncanonical sequences. The p53 protein forms monomers, dimers, and tetramers, and its nonspecific binding domain is well-defined; however, those for p63 or p73 are still not fully understood. Study of p63 and p73 structure to determine the monomers, dimers or tetramers to bind and regulate noncanonical sequence is a new challenge which is crucial to obtaining a complete picture of structure and function in order to understand how p63 and p73 regulate genes differently from p53. In this review, we will summarize the rules of p53 family non-canonical sequences, especially focusing on the structure of p53 family members in the regulation of specific target genes. In addition, we will compare different software programs for prediction of p53 family responsive elements containing parameters with canonical or non-canonical sequences.
Collapse
Affiliation(s)
- Bi-He Cai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
24
|
Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53. Sci Rep 2019; 9:8584. [PMID: 31253862 PMCID: PMC6599006 DOI: 10.1038/s41598-019-44688-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/22/2019] [Indexed: 01/19/2023] Open
Abstract
Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rational design method to obtain a peptide that can bind an IDR using only sequence information based on the statistical contact energy of amino acid pairs. We applied the method to the disordered C-terminal domain of the tumor suppressor p53. Titration experiments revealed that one of the designed peptides, DP6, has a druggable affinity of ~1 μM to the p53 C-terminal domain. NMR spectroscopy and molecular dynamics simulation revealed that DP6 selectively binds to the vicinity of the target sequence in the C-terminal domain of p53. DP6 inhibits the nonspecific DNA binding of a tetrameric form of the p53 C-terminal domain, but does not significantly affect the specific DNA binding of a tetrameric form of the p53 core domain. Single-molecule measurements revealed that DP6 retards the 1D sliding of p53 along DNA, implying modulation of the target searching of p53. Statistical potential-based design may be useful in designing peptides that target IDRs for therapeutic purposes.
Collapse
|
25
|
Kanada R, Terakawa T, Kenzaki H, Takada S. Nucleosome Crowding in Chromatin Slows the Diffusion but Can Promote Target Search of Proteins. Biophys J 2019; 116:2285-2295. [PMID: 31151739 DOI: 10.1016/j.bpj.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
Dynamics of nuclear proteins in crowded chromatin has only been poorly understood. Here, we address the diffusion, target search, and structural dynamics of three proteins in a model chromatin using coarse-grained molecular simulations run on the K computer. We prepared two structures of chromatin made of 20 nucleosomes with different nucleosome densities and investigated dynamics of two transcription factors, HMGB1 and p53, and one signaling protein, ERK, embedded in the chromatin. We found fast and normal diffusion of the nuclear proteins in the low-density chromatins and slow and subdiffusional movements in the high-density chromatin. The diffusion of the largest transcription factor, p53, is slowed by high-density chromatin most markedly. The on rates and off rates for DNA binding are increased and decreased, respectively, in the high-density chromatin. To our surprise, the DNA sequence search was faster in chromatin with high nucleosome density, though the diffusion is slower. We also found that the three nuclear proteins preferred to bind on the linker DNA and the entry and exit regions of nucleosomal DNA. In addition to these regions, HMGB1 and p53 also bound to the dyad.
Collapse
Affiliation(s)
- Ryo Kanada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Compass to Healthy Life Research Complex Program, Cluster for Science, Technology and Innovation Hub, RIKEN, Kobe, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroo Kenzaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Information Systems Division, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
26
|
Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S A 2018; 115:E11302-E11310. [PMID: 30420502 DOI: 10.1073/pnas.1814051115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atomic resolution characterization of the full-length p53 tetramer has been hampered by its size and the presence of extensive intrinsically disordered regions at both the N and C termini. As a consequence, the structural characteristics and dynamics of the disordered regions are poorly understood within the context of the intact p53 tetramer. Here we apply trans-intein splicing to generate segmentally 15N-labeled full-length p53 constructs in which only the resonances of the N-terminal transactivation domain (NTAD) are visible in NMR spectra, allowing us to observe this region of p53 with unprecedented detail within the tetramer. The N-terminal region is dynamically disordered in the full-length p53 tetramer, fluctuating between states in which it is free and fully exposed to solvent and states in which it makes transient contacts with the DNA-binding domain (DBD). Chemical-shift changes and paramagnetic spin-labeling experiments reveal that the amphipathic AD1 and AD2 motifs of the NTAD interact with the DNA-binding surface of the DBD through primarily electrostatic interactions. Importantly, this interaction inhibits binding of nonspecific DNA to the DBD while having no effect on binding to a specific p53 recognition element. We conclude that the NTAD:DBD interaction functions to enhance selectivity toward target genes by inhibiting binding to nonspecific sites in genomic DNA. This work provides some of the highest-resolution data on the disordered N terminus of the nearly 180-kDa full-length p53 tetramer and demonstrates a regulatory mechanism by which the N terminus of p53 transiently interacts with the DBD to enhance target site discrimination.
Collapse
|
27
|
Offutt TL, Ieong PU, Demir Ö, Amaro RE. Dynamics and Molecular Mechanisms of p53 Transcriptional Activation. Biochemistry 2018; 57:6528-6537. [PMID: 30388364 DOI: 10.1021/acs.biochem.8b01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The "guardian of the genome", p53, functions as a tumor suppressor that responds to cell stressors such as DNA damage, hypoxia, and tumor formation by inducing cell-cycle arrest, senescence, or apoptosis. Mutation of p53 disrupts its tumor suppressor function, leading to various types of human cancers. One particular mutant, R175H, is a structural mutant that inactivates the DNA damage response pathway and acquires oncogenic functions that promotes both cancer and drug resistance. Our current work aims to understand how p53 wild-type function is disrupted due to the R175H mutation. We use a series of atomistic integrative models built previously from crystal structures of the full-length p53 tetramer bound to DNA and model the R175H mutant using in silico site-directed mutagenesis. Explicitly solvated all-atom molecular dynamics (MD) simulations on wild-type and the R175H mutant p53 reveal insights into how wild-type p53 searches and recognizes DNA, and how this mechanism is disrupted as a result of the R175H mutation. Specifically, our work reveals the optimal quaternary DNA binding mode of the DNA binding domain and shows how this binding mode is altered via symmetry loss as a result of the R175H mutation, indicating a recognition mechanism that is reminiscent of the asymmetry seen in wild type p53 binding to nonspecific genomic elements. Altogether our work sheds new light into the hitherto unseen molecular mechanisms governing transcription factor, DNA recognition.
Collapse
Affiliation(s)
- Tavina L Offutt
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| | - Pek U Ieong
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| | - Özlem Demir
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States
| |
Collapse
|
28
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
29
|
Murata A, Itoh Y, Mano E, Kanbayashi S, Igarashi C, Takahashi H, Takahashi S, Kamagata K. One-Dimensional Search Dynamics of Tumor Suppressor p53 Regulated by a Disordered C-Terminal Domain. Biophys J 2017; 112:2301-2314. [PMID: 28591603 DOI: 10.1016/j.bpj.2017.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 11/15/2022] Open
Abstract
Tumor suppressor p53 slides along DNA and finds its target sequence in drastically different and changing cellular conditions. To elucidate how p53 maintains efficient target search at different concentrations of divalent cations such as Ca2+ and Mg2+, we prepared two mutants of p53, each possessing one of its two DNA-binding domains, the CoreTet mutant having the structured core domain plus the tetramerization (Tet) domain, and the TetCT mutant having Tet plus the disordered C-terminal domain. We investigated their equilibrium and kinetic dissociation from DNA and search dynamics along DNA at various [Mg2+]. Although binding of CoreTet to DNA becomes markedly weaker at higher [Mg2+], binding of TetCT depends slightly on [Mg2+]. Single-molecule fluorescence measurements revealed that the one-dimensional diffusion of CoreTet along DNA consists of fast and slow search modes, the ratio of which depends strongly on [Mg2+]. In contrast, diffusion of TetCT consisted of only the fast mode. The disordered C-terminal domain can associate with DNA irrespective of [Mg2+], and can maintain an equilibrium balance of the two search modes and the p53 search distance. These results suggest that p53 modulates the quaternary structure of the complex between p53 and DNA under different [Mg2+] and that it maintains the target search along DNA.
Collapse
Affiliation(s)
- Agato Murata
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Chihiro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
30
|
Subekti DRG, Murata A, Itoh Y, Fukuchi S, Takahashi H, Kanbayashi S, Takahashi S, Kamagata K. The Disordered Linker in p53 Participates in Nonspecific Binding to and One-Dimensional Sliding along DNA Revealed by Single-Molecule Fluorescence Measurements. Biochemistry 2017; 56:4134-4144. [DOI: 10.1021/acs.biochem.7b00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dwiky Rendra Graha Subekti
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Agato Murata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Fukuchi
- Faculty
of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Hiroto Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Saori Kanbayashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kiyoto Kamagata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
31
|
p53 Dynamically Directs TFIID Assembly on Target Gene Promoters. Mol Cell Biol 2017; 37:MCB.00085-17. [PMID: 28416636 DOI: 10.1128/mcb.00085-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
p53 is a central regulator that turns on vast gene networks to maintain cellular integrity in the presence of various stimuli. p53 activates transcription initiation in part by aiding recruitment of TFIID to the promoter. However, the precise means by which p53 dynamically interacts with TFIID to facilitate assembly on target gene promoters remains elusive. To address this key issue, we have undertaken an integrated approach involving single-molecule fluorescence microscopy, single-particle cryo-electron microscopy, and biochemistry. Our real-time single-molecule imaging data demonstrate that TFIID alone binds poorly to native p53 target promoters. p53 unlocks TFIID's ability to bind DNA by stabilizing TFIID contacts with both the core promoter and a region within p53's response element. Analysis of single-molecule dissociation kinetics reveals that TFIID interacts with promoters via transient and prolonged DNA binding modes that are each regulated by p53. Importantly, our structural work reveals that TFIID's conversion to a rearranged DNA binding conformation is enhanced in the presence of DNA and p53. Notably, TFIID's interaction with DNA induces p53 to rapidly dissociate, which likely leads to additional rounds of p53-mediated recruitment of other basal factors. Collectively, these findings indicate that p53 dynamically escorts and loads TFIID onto its target promoters.
Collapse
|
32
|
Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Structural Evolution and Dynamics of the p53 Proteins. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a028308. [PMID: 27091942 DOI: 10.1101/cshperspect.a028308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the KOFF over KON.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome 00185, Italy
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Arnold J Levine
- Institute for Advanced Study, Princeton, New Jersey 08540.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
33
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Itoh Y, Murata A, Sakamoto S, Nanatani K, Wada T, Takahashi S, Kamagata K. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability. J Mol Biol 2016; 428:2916-30. [DOI: 10.1016/j.jmb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
|
35
|
Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study. PLoS One 2015; 10:e0134638. [PMID: 26244575 PMCID: PMC4526489 DOI: 10.1371/journal.pone.0134638] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor protein p53 can lose its function upon DNA-contact mutations (R273C and R273H) in the core DNA-binding domain. The activity can be restored by second-site suppressor or rescue mutations (R273C_T284R, R273H_T284R, and R273H_S240R). In this paper, we elucidate the structural and functional consequence of p53 proteins upon DNA-contact mutations and rescue mutations and the underlying mechanisms at the atomic level by means of molecular dynamics simulations. Furthermore, we also apply the docking approach to investigate the binding phenomena between the p53 protein and DNA upon DNA-contact mutations and rescue mutations. This study clearly illustrates that, due to DNA-contact mutants, the p53 structure loses its stability and becomes more rigid than the native protein. This structural loss might affect the p53-DNA interaction and leads to inhibition of the cancer suppression. Rescue mutants (R273C_T284R, R273H_T284R and R273H_S240R) can restore the functional activity of the p53 protein upon DNA-contact mutations and show a good interaction between the p53 protein and a DNA molecule, which may lead to reactivate the cancer suppression function. Understanding the effects of p53 cancer and rescue mutations at the molecular level will be helpful for designing drugs for p53 associated cancer diseases. These drugs should be designed so that they can help to inhibit the abnormal function of the p53 protein and to reactivate the p53 function (cell apoptosis) to treat human cancer.
Collapse
|
36
|
Murata A, Ito Y, Kashima R, Kanbayashi S, Nanatani K, Igarashi C, Okumura M, Inaba K, Tokino T, Takahashi S, Kamagata K. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. J Mol Biol 2015; 427:2663-78. [DOI: 10.1016/j.jmb.2015.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
37
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
38
|
Gabizon R, Friedler A. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front Chem 2014; 2:9. [PMID: 24790978 PMCID: PMC3982530 DOI: 10.3389/fchem.2014.00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/22/2014] [Indexed: 01/05/2023] Open
Abstract
Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.
Collapse
Affiliation(s)
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
39
|
Matissek KJ, Okal A, Mossalam M, Lim CS. Delivery of a monomeric p53 subdomain with mitochondrial targeting signals from pro-apoptotic Bak or Bax. Pharm Res 2014; 31:2503-15. [PMID: 24633417 DOI: 10.1007/s11095-014-1346-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/24/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE p53 targeted to the mitochondria is the fastest and most direct pathway for executing p53 death signaling. The purpose of this work was to determine if mitochondrial targeting signals (MTSs) from pro-apoptotic Bak and Bax are capable of targeting p53 to the mitochondria and inducing rapid apoptosis. METHODS p53 and its DNA-binding domain (DBD) were fused to MTSs from Bak (p53-BakMTS, DBD-BakMTS) or Bax (p53-BaxMTS, DBD-BaxMTS). Mitochondrial localization was tested via fluorescence microscopy in 1471.1 cells, and apoptosis was detected via 7-AAD in breast (T47D), non-small cell lung (H1373), ovarian (SKOV-3) and cervical (HeLa) cancer cells. To determine that apoptosis is via the intrinsic apoptotic pathway, TMRE and caspase-9 assays were conducted. Finally, the involvement of p53/Bak specific pathway was tested. RESULTS MTSs from Bak and Bax are capable of targeting p53 to the mitochondria, and p53-BakMTS and p53-BaxMTS cause apoptosis through the intrinsic apoptotic pathway. Additionally, p53-BakMTS, DBD-BakMTS, p53-BaxMTS and DBD-BaxMTS caused apoptosis in T47D, H1373, SKOV-3 and HeLa cells. The apoptotic mechanism of p53-BakMTS and DBD-BakMTS was Bak dependent. CONCLUSION Our data demonstrates that p53-BakMTS (or BaxMTS) and DBD-BakMTS (or BaxMTS) cause apoptosis at the mitochondria and can be used as a potential gene therapeutic in cancer.
Collapse
Affiliation(s)
- Karina J Matissek
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
40
|
Menon V, Povirk L. Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell Biochem 2014; 85:321-36. [PMID: 25201202 PMCID: PMC4235614 DOI: 10.1007/978-94-017-9211-0_17] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
p53 is a tumor suppressor protein that prevents oncogenic transformation and maintains genomic stability by blocking proliferation of cells harboring unrepaired or misrepaired DNA. A wide range of genotoxic stresses such as DNA damaging anti-cancer drugs and ionizing radiation promote nuclear accumulation of p53 and trigger its ability to activate or repress a number of downstream target genes involved in various signaling pathways. This cascade leads to the activation of multiple cell cycle checkpoints and subsequent cell cycle arrest, allowing the cells to either repair the DNA or undergo apoptosis, depending on the intensity of DNA damage. In addition, p53 has many transcription-independent functions, including modulatory roles in DNA repair and recombination. This chapter will focus on the role of p53 in regulating or influencing the repair of DNA double-strand breaks that mainly includes homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Through this discussion, we will try to establish that p53 acts as an important linchpin between upstream DNA damage signaling cues and downstream cellular events that include repair, recombination, and apoptosis.
Collapse
Affiliation(s)
- Vijay Menon
- Goodwin Research Laboratories, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Room No. 380A, Richmond, VA, 23298-0035, USA
| | | |
Collapse
|
41
|
Okal A, Mossalam M, Matissek KJ, Dixon AS, Moos PJ, Lim CS. A chimeric p53 evades mutant p53 transdominant inhibition in cancer cells. Mol Pharm 2013; 10:3922-33. [PMID: 23964676 DOI: 10.1021/mp400379c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because of the dominant negative effect of mutant p53, there has been limited success with wild-type (wt) p53 cancer gene therapy. Therefore, an alternative oligomerization domain for p53 was investigated to enhance the utility of p53 for gene therapy. The tetramerization domain of p53 was substituted with the coiled-coil (CC) domain from Bcr (breakpoint cluster region). Our p53 variant (p53-CC) maintains proper nuclear localization in breast cancer cells detected via fluorescence microscopy and shows a similar expression profile of p53 target genes as wt-p53. Additionally, similar tumor suppressor activities of p53-CC and wt-p53 were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), annexin-V, 7-aminoactinomycin D (7-AAD), and colony-forming assays. Furthermore, p53-CC was found to cause apoptosis in four different cancer cell lines, regardless of endogenous p53 status. Interestingly, the transcriptional activity of p53-CC was higher than wt-p53 in 3 different reporter gene assays. We hypothesized that the higher transcriptional activity of p53-CC over wt-p53 was due to the sequestration of wt-p53 by endogenous mutant p53 found in cancer cells. Co-immunoprecipitation revealed that wt-p53 does indeed interact with endogenous mutant p53 via its tetramerization domain, while p53-CC escapes this interaction. Therefore, we investigated the impact of the presence of a transdominant mutant p53 on tumor suppressor activities of wt-p53 and p53-CC. Overexpression of a potent mutant p53 along with wt-p53 or p53-CC revealed that, unlike wt-p53, p53-CC retains the same level of tumor suppressor activity. Finally, viral transduction of wt-p53 and p53-CC into a breast cancer cell line that harbors a tumor derived transdominant mutant p53 validated that p53-CC indeed evades sequestration and consequent transdominant inhibition by endogenous mutant p53.
Collapse
Affiliation(s)
- Abood Okal
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | | | | | | | | | | |
Collapse
|
42
|
Herzog G, Joerger AC, Shmueli MD, Fersht AR, Gazit E, Segal D. Evaluating Drosophila p53 as a model system for studying cancer mutations. J Biol Chem 2012; 287:44330-7. [PMID: 23135266 DOI: 10.1074/jbc.m112.417980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor p53 is a key tumor suppressor protein. In about half of human cancers, p53 is inactivated directly through mutation in its sequence-specific DNA-binding domain. Drosophila p53 (Dmp53) has similar apoptotic functions as its human homolog and is therefore an attractive model system for studying cancer pathways. To probe the structure and function of Dmp53, we studied the effect of point mutations, corresponding to cancer hot spot mutations in human p53 (Hp53), on the stability and DNA binding affinity of the full-length protein. Despite low sequence conservation, the Hp53 and Dmp53 proteins had a similar melting temperature and generally showed a similar energetic and functional response to cancer-associated mutations. We also found a correlation between the thermodynamic stability of the mutant proteins and their rate of aggregation. The effects of the mutations were rationalized based on homology modeling of the Dmp53 DNA-binding domain, suggesting that the drastically different effects of a cancer mutation in the loop-sheet-helix motif (R282W in Hp53 and R268W in Dmp53) on stability and DNA binding affinity of the two proteins are related to conformational differences in the L1 loop adjacent to the mutation site. On the basis of these data, we discuss the advantages and limitations of using Dmp53 as a model system for studying p53 function and testing p53 rescue drugs.
Collapse
Affiliation(s)
- Gal Herzog
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Molecular basis for modulation of the p53 target selectivity by KLF4. PLoS One 2012; 7:e48252. [PMID: 23118962 PMCID: PMC3484126 DOI: 10.1371/journal.pone.0048252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/20/2012] [Indexed: 12/15/2022] Open
Abstract
The tumour suppressor p53 controls transcription of various genes involved in apoptosis, cell-cycle arrest, DNA repair and metabolism. However, its DNA-recognition specificity is not nearly sufficient to explain binding to specific locations in vivo. Here, we present evidence that KLF4 increases the DNA-binding affinity of p53 through the formation of a loosely arranged ternary complex on DNA. This effect depends on the distance between the response elements of KLF4 and p53. Using nuclear magnetic resonance and fluorescence techniques, we found that the amino-terminal domain of p53 interacts with the KLF4 zinc fingers and mapped the interaction site. The strength of this interaction was increased by phosphorylation of the p53 N-terminus, particularly on residues associated with regulation of cell-cycle arrest genes. Taken together, the cooperative binding of KLF4 and p53 to DNA exemplifies a regulatory mechanism that contributes to p53 target selectivity.
Collapse
|
44
|
Retzlaff M, Rohrberg J, Küpper NJ, Lagleder S, Bepperling A, Manzenrieder F, Peschek J, Kessler H, Buchner J. The regulatory domain stabilizes the p53 tetramer by intersubunit contacts with the DNA binding domain. J Mol Biol 2012; 425:144-55. [PMID: 23103206 DOI: 10.1016/j.jmb.2012.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022]
Abstract
The tumor suppressor protein p53 is often referred to as the guardian of the genome. In the past, controversial findings have been presented for the role of the C-terminal regulatory domain (RD) of p53 as both a negative regulator and a positive regulator of p53 activity. However, the underlying mechanism remained enigmatic. To understand the function of the RD and of a dominant phosphorylation site within the RD, we analyzed p53 variants in vivo and in vitro. Our experiments revealed, surprisingly, that the p53 RD of one subunit interacts with the DNA binding domain of an adjacent subunit in the tetramer. This leads to the formation of intersubunit contacts that stabilize the tetrameric state of p53 and enhance its transcriptional activity in a cooperative manner. These effects are further modulated by phosphorylation of a conserved serine within the RD.
Collapse
Affiliation(s)
- Marco Retzlaff
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Domain-domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy. Proc Natl Acad Sci U S A 2012; 109:15752-6. [PMID: 22972749 DOI: 10.1073/pnas.1214176109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The tumor suppressor p53 is a homotetramer of 4 × 393 residues. Its core domain and tetramerization domain are linked and flanked by intrinsically disordered sequences, which hinder its full structural characterization. There is an outstanding problem of the state of the tetramerization domain. Structural studies on the isolated tetramerization domain show it is in a folded tetrameric conformation, but there are conflicting models from electron microscopy of the full-length protein, one of which proposes that the domain is not tetramerically folded and the tetrameric protein is stabilized by interactions between the N and C termini. Here, we present methyl-transverse relaxation optimized NMR spectroscopy (methyl-TROSY) investigations on the full-length and separate domains of the protein with its methionine residues enriched with (13)C to probe its quaternary structure. We obtained high-quality spectra of both the full-length tetrameric p53 and its DNA complex, observing the environment at 11 specific methyl sites. The tetramerization domain was as tetramerically folded in the full-length constructs as in the isolated domain. The N and C termini were intrinsically disordered in both the full-length protein and its complex with a 20-residue specific DNA sequence. Additionally, we detected in the interface of the core (DNA-binding) and N-terminal parts of the protein a slow conformational exchange process that was modulated by specific recognition of DNA, indicating allosteric processes.
Collapse
|
46
|
Terakawa T, Kenzaki H, Takada S. p53 Searches on DNA by Rotation-Uncoupled Sliding at C-Terminal Tails and Restricted Hopping of Core Domains. J Am Chem Soc 2012; 134:14555-62. [DOI: 10.1021/ja305369u] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tsuyoshi Terakawa
- Department of Biophysics
Graduate
School of Science, Kyoto University, Kyoto
606-8502 Japan
| | - Hiroo Kenzaki
- Department of Biophysics
Graduate
School of Science, Kyoto University, Kyoto
606-8502 Japan
| | - Shoji Takada
- Department of Biophysics
Graduate
School of Science, Kyoto University, Kyoto
606-8502 Japan
- CREST Japan Science and Technology Agency, Saitama 332-0012 Japan
| |
Collapse
|
47
|
Ray D, Murphy KR, Gal S. The DNA binding and accumulation of p53 from breast cancer cell lines and the link with serine 15 phosphorylation. Cancer Biol Ther 2012; 13:848-57. [PMID: 22785213 DOI: 10.4161/cbt.20835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stress treatment generally causes the post-translational modification and accumulation of the p53 protein, although the role of these aspects has not been always understood in relation to this protein's tumor suppressor activity. We analyzed these attributes of p53 in eight different breast cancer cell lines, with either wild-type or mutant p53 protein, in response to oxidative stress. We found that the wild-type p53 protein from MCF-7 and ZR-75-1 cells binds with different affinity to 12 gene sequences covering several pathways regulated by p53. Treatment of MCF-7 cells with H2O2 caused an increase in this binding affinity while this same treatment of ZR-75-1 cells caused the p53 protein to lose binding affinity to several genes. The mutant p53 proteins from all cell lines had minimal to weak binding to these sequences even after treatment with H2O2. The p53 protein from the ZR-75-1 cells and three cell lines with mutant p53 showed serine 15 phosphorylated protein, but we found no correlation between that modification and the levels or localization of this protein although DNA binding affinity of wild-type protein might be affected by this modification. From this and other work, it appears that the mutation status of the TP53 gene alone cannot predict the activity of this tumor suppressor since cell lines with the same genetic information do not show the same properties of this protein.
Collapse
Affiliation(s)
- Debolina Ray
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
48
|
Vuzman D, Levy Y. Intrinsically disordered regions as affinity tuners in protein–DNA interactions. ACTA ACUST UNITED AC 2012; 8:47-57. [DOI: 10.1039/c1mb05273j] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Zhao J, Lu Y, Shen HM. Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett 2011; 314:8-23. [PMID: 22030255 DOI: 10.1016/j.canlet.2011.09.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/18/2011] [Accepted: 09/28/2011] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been intensively studied as a cancer therapeutic agent due to its unique ability to induce apoptosis in malignant cells but not in normal cells. However, as more human cancer cells are reported to be resistant to TRAIL treatment, it is important to develop new therapeutic strategies to overcome this resistance. p53 is an important tumor suppressor that is widely involved in cellular responses to various stresses. In this mini-review, we aim to provide an overview of the intricate relationship between p53 and the TRAIL-mediated apoptosis pathway, and to summarize the current approaches of targeting p53 as a therapeutic strategy to sensitize TRAIL-induced apoptosis in human cancer cells. Although in some cases TRAIL kills cancer cells in a p53-independent manner, it is believed that in cancers with wild-type and functional p53, targeting p53 may be an important strategy for overcoming TRAIL-resistance in cancer therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, Republic of Singapore
| | | | | |
Collapse
|
50
|
Wang YV, Leblanc M, Fox N, Mao JH, Tinkum KL, Krummel K, Engle D, Piwnica-Worms D, Piwnica-Worms H, Balmain A, Kaushansky K, Wahl GM. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes Dev 2011; 25:1426-1438. [PMID: 21724834 PMCID: PMC3134085 DOI: 10.1101/gad.2024411] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
Abstract
Cell cycle regulation in hematopoietic stem cells (HSCs) is tightly controlled during homeostasis and in response to extrinsic stress. p53, a well-known tumor suppressor and transducer of diverse stress signals, has been implicated in maintaining HSC quiescence and self-renewal. However, the mechanisms that control its activity in HSCs, and how p53 activity contributes to HSC cell cycle control, are poorly understood. Here, we use a genetically engineered mouse to show that p53 C-terminal modification is critical for controlling HSC abundance during homeostasis and HSC and progenitor proliferation after irradiation. Preventing p53 C-terminal modification renders mice exquisitely radiosensitive due to defects in HSC/progenitor proliferation, a critical determinant for restoring hematopoiesis after irradiation. We show that fine-tuning the expression levels of the cyclin-dependent kinase inhibitor p21, a p53 target gene, contributes significantly to p53-mediated effects on the hematopoietic system. These results have implications for understanding cell competition in response to stresses involved in stem cell transplantation, recovery from adverse hematologic effects of DNA-damaging cancer therapies, and development of radioprotection strategies.
Collapse
Affiliation(s)
- Yunyuan V. Wang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Norma Fox
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Jian-Hua Mao
- The Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94158, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kelsey L. Tinkum
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, Missouri 63110, USA
- Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, Missouri 63110, USA
- The BRIGHT Institute, Washington University Medical School, St. Louis, Missouri 63110, USA
| | - Kurt Krummel
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Dannielle Engle
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - David Piwnica-Worms
- Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, Missouri 63110, USA
- The BRIGHT Institute, Washington University Medical School, St. Louis, Missouri 63110, USA
- Department of Developmental Biology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | - Helen Piwnica-Worms
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, Missouri 63110, USA
- The BRIGHT Institute, Washington University Medical School, St. Louis, Missouri 63110, USA
- Department of Medicine, Washington University Medical School, St. Louis, Missouri 63110, USA
- the Howard Hughes Medical Institute, St. Louis, Missouri 63130, USA
| | - Allan Balmain
- The Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kenneth Kaushansky
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|