1
|
Horton NC, Lyumkis D. Structures, mechanisms, and kinetic advantages of the SgrAI filament forming mechanism. Crit Rev Biochem Mol Biol 2024; 59:363-401. [PMID: 39699272 DOI: 10.1080/10409238.2024.2440315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
This review documents investigations leading to the unprecedented discovery of filamentation as a mode of enzyme regulation in the type II restriction endonuclease SgrAI. Filamentation is defined here as linear or helical polymerization of a single enzyme as occurs for SgrAI, and has now been shown to occur in many other enzyme systems, including conserved metabolic enzymes. In the case of SgrAI, filamentation activates the DNA cleavage rate by up to 1000-fold and also alters the enzyme's DNA sequence specificity. The investigations began with the observation that SgrAI cleaves two types of recognition sequences, primary and secondary, but cleaves the secondary sequences only when present on the same DNA as at least one primary. DNA cleavage rate measurements showed how the primary sequence is both a substrate and an allosteric effector of SgrAI. Biophysical measurements indicated that the activated form of SgrAI, stimulated by binding to the primary sequence, consisted of varied numbers of the SgrAI bound to DNA. Structural studies revealed the activated state of SgrAI as a left-handed helical filament which stabilizes an altered enzyme conformation, which binds a second divalent cation in the active site. Efforts to determine the mechanism of DNA sequence specificity alteration are ongoing and current models are discussed. Finally, global kinetic modeling of the filament mediated DNA cleavage reaction and simulations of in vivo activity suggest that the filament mechanism evolved to rapidly cleave invading DNA while protecting the Streptomyces host genome.
Collapse
Affiliation(s)
- Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, USA
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Bravo JPK, Ramos DA, Fregoso Ocampo R, Ingram C, Taylor DW. Plasmid targeting and destruction by the DdmDE bacterial defence system. Nature 2024; 630:961-967. [PMID: 38740055 PMCID: PMC11649018 DOI: 10.1038/s41586-024-07515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Although eukaryotic Argonautes have a pivotal role in post-transcriptional gene regulation through nucleic acid cleavage, some short prokaryotic Argonaute variants (pAgos) rely on auxiliary nuclease factors for efficient foreign DNA degradation1. Here we reveal the activation pathway of the DNA defence module DdmDE system, which rapidly eliminates small, multicopy plasmids from the Vibrio cholerae seventh pandemic strain (7PET)2. Through a combination of cryo-electron microscopy, biochemistry and in vivo plasmid clearance assays, we demonstrate that DdmE is a catalytically inactive, DNA-guided, DNA-targeting pAgo with a distinctive insertion domain. We observe that the helicase-nuclease DdmD transitions from an autoinhibited, dimeric complex to a monomeric state upon loading of single-stranded DNA targets. Furthermore, the complete structure of the DdmDE-guide-target handover complex provides a comprehensive view into how DNA recognition triggers processive plasmid destruction. Our work establishes a mechanistic foundation for how pAgos utilize ancillary factors to achieve plasmid clearance, and provides insights into anti-plasmid immunity in bacteria.
Collapse
Affiliation(s)
- Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuberg, Austria.
| | - Delisa A Ramos
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Caiden Ingram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, Austin, TX, USA
| |
Collapse
|
3
|
Shan Z, Ghadirian N, Lyumkis D, Horton NC. Pretransition state and apo structures of the filament-forming enzyme SgrAI elucidate mechanisms of activation and substrate specificity. J Biol Chem 2022; 298:101760. [PMID: 35202658 PMCID: PMC8960973 DOI: 10.1016/j.jbc.2022.101760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/01/2022] Open
Abstract
Enzyme filamentation is a widespread phenomenon that mediates enzyme regulation and function. For the filament-forming sequence-specific DNA endonuclease SgrAI, the process of filamentation both accelerates its DNA cleavage activity and expands its DNA sequence specificity, thus allowing for many additional DNA sequences to be rapidly cleaved. Both outcomes-the acceleration of DNA cleavage and the expansion of sequence specificity-are proposed to regulate critical processes in bacterial innate immunity. However, the mechanistic bases underlying these events remain unclear. Herein, we describe two new structures of the SgrAI enzyme that shed light on its catalytic function. First, we present the cryo-EM structure of filamentous SgrAI bound to intact primary site DNA and Ca2+ resolved to ∼2.5 Å within the catalytic center, which represents the trapped enzyme-DNA complex prior to the DNA cleavage reaction. This structure reveals important conformational changes that contribute to the catalytic mechanism and the binding of a second divalent cation in the enzyme active site, which is expected to contribute to increased DNA cleavage activity of SgrAI in the filamentous state. Second, we present an X-ray crystal structure of DNA-free (apo) SgrAI resolved to 2.0 Å resolution, which reveals a disordered loop involved in DNA recognition. Collectively, these multiple new observations clarify the mechanism of expansion of DNA sequence specificity of SgrAI, including the indirect readout of sequence-dependent DNA structure, changes in protein-DNA interactions, and the disorder-to-order transition of a crucial DNA recognition element.
Collapse
Affiliation(s)
- Zelin Shan
- Laboratory of Genetics, The Salk Institute of Biological Sciences, La Jolla, California, USA
| | - Niloofar Ghadirian
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
4
|
Zhang J, Pan X, Bell CE. Crystal structure of λ exonuclease in complex with DNA and Ca(2+). Biochemistry 2014; 53:7415-25. [PMID: 25370446 DOI: 10.1021/bi501155q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteriophage λ exonuclease (λexo) is a ring-shaped homotrimer that resects double-stranded DNA ends in the 5'-3' direction to generate a long 3'-overhang that is a substrate for recombination. λexo is a member of the type II restriction endonuclease-like superfamily of proteins that use a Mg(2+)-dependent mechanism for nucleotide cleavage. A previous structure of λexo in complex with DNA and Mg(2+) was determined using a nuclease defective K131A variant to trap a stable complex. This structure revealed the detailed coordination of the two active site Mg(2+) ions but did not show the interactions involving the side chain of the conserved active site Lys-131 residue. Here, we have determined the crystal structure of wild-type (WT) λexo in complex with the same DNA substrate, but in the presence of Ca(2+) instead of Mg(2+). Surprisingly, there is only one Ca(2+) bound in the active site, near the position of Mg(A) in the structure with Mg(2+). The scissile phosphate is displaced by 2.2 Å relative to its position in the structure with Mg(2+), and the network of interactions involving the attacking water molecule is broken. Thus, the structure does not represent a catalytic configuration. However, the crystal structure does show clear electron density for the side chain of Lys-131, which is held in place by interactions with Gln-157 and Glu-129. By combining the K131A-Mg(2+) and WT-Ca(2+) structures, we constructed a composite model to show the likely interactions of Lys-131 during catalysis. The implications with regard to the catalytic mechanism are discussed.
Collapse
Affiliation(s)
- Jinjin Zhang
- Ohio State Biochemistry Program, ‡Department of Molecular and Cellular Biochemistry, and §Department of Chemistry and Biochemistry, The Ohio State University , 1645 Neil Avenue, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
5
|
Nagamalleswari E, Vasu K, Nagaraja V. Ca(2+) binding to the ExDxD motif regulates the DNA cleavage specificity of a promiscuous endonuclease. Biochemistry 2012; 51:8939-49. [PMID: 23072305 DOI: 10.1021/bi301151y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most of the restriction endonucleases (REases) are dependent on Mg(2+) for DNA cleavage, and in general, Ca(2+) inhibits their activity. R.KpnI, an HNH active site containing ββα-Me finger nuclease, is an exception. In presence of Ca(2+), the enzyme exhibits high-fidelity DNA cleavage and complete suppression of Mg(2+)-induced promiscuous activity. To elucidate the mechanism of unusual Ca(2+)-mediated activity, we generated alanine variants in the putative Ca(2+) binding motif, E(132)xD(134)xD(136), of the enzyme. Mutants showed decreased levels of DNA cleavage in the presence of Ca(2+). We demonstrate that ExDxD residues are involved in Ca(2+) coordination; however, the invariant His of the catalytic HNH motif acts as a general base for nucleophile activation, and the other two active site residues, D148 and Q175, also participate in Ca(2+)-mediated cleavage. Insertion of a 10-amino acid linker to disrupt the spatial organization of the ExDxD and HNH motifs impairs Ca(2+) binding and affects DNA cleavage by the enzyme. Although ExDxD mutant enzymes retained efficient cleavage at the canonical sites in the presence of Mg(2+), the promiscuous activity was greatly reduced, indicating that the carboxyl residues of the acidic triad play an important role in sequence recognition by the enzyme. Thus, the distinct Ca(2+) binding motif that confers site specific cleavage upon Ca(2+) binding is also critical for the promiscuous activity of the Mg(2+)-bound enzyme, revealing its role in metal ion-mediated modulation of DNA cleavage.
Collapse
Affiliation(s)
- Easa Nagamalleswari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
6
|
Molina R, Redondo P, Stella S, Marenchino M, D’Abramo M, Gervasio FL, Charles Epinat J, Valton J, Grizot S, Duchateau P, Prieto J, Montoya G. Non-specific protein-DNA interactions control I-CreI target binding and cleavage. Nucleic Acids Res 2012; 40:6936-45. [PMID: 22495931 PMCID: PMC3413129 DOI: 10.1093/nar/gks320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homing endonucleases represent protein scaffolds that provide powerful tools for genome manipulation, as these enzymes possess a very low frequency of DNA cleavage in eukaryotic genomes due to their high specificity. The basis of protein–DNA recognition must be understood to generate tailored enzymes that target the DNA at sites of interest. Protein–DNA interaction engineering of homing endonucleases has demonstrated the potential of these approaches to create new specific instruments to target genes for inactivation or repair. Protein–DNA interface studies have been focused mostly on specific contacts between amino acid side chains and bases to redesign the binding interface. However, it has been shown that 4 bp in the central DNA sequence of the 22-bp substrate of a homing endonuclease (I-CreI), which do not show specific protein–DNA interactions, is not devoid of content information. Here, we analyze the mechanism of target discrimination in this substrate region by the I-CreI protein, determining how it can occur independently of the specific protein–DNA interactions. Our data suggest the important role of indirect readout in this substrate region, opening the possibility for a fully rational search of new target sequences, thus improving the development of redesigned enzymes for therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Rafael Molina
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Pilar Redondo
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Stefano Stella
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Marco Marenchino
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Marco D’Abramo
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Francesco Luigi Gervasio
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Jean Charles Epinat
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Julien Valton
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Silvestre Grizot
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Phillipe Duchateau
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
| | - Jesús Prieto
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
- *To whom correspondence should be addressed. Tel: +34 91 2246900; Fax: +34 91 2246976;
| | - Guillermo Montoya
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), NMR Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Computational Biophysics Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain and CELLECTIS S.A., 8 rue de la croix Jarry, 75013 Paris, France
- *To whom correspondence should be addressed. Tel: +34 91 2246900; Fax: +34 91 2246976;
| |
Collapse
|
7
|
Little EJ, Dunten PW, Bitinaite J, Horton NC. New clues in the allosteric activation of DNA cleavage by SgrAI: structures of SgrAI bound to cleaved primary-site DNA and uncleaved secondary-site DNA. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:67-74. [PMID: 21206063 PMCID: PMC3016018 DOI: 10.1107/s0907444910047785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/17/2010] [Indexed: 11/10/2022]
Abstract
SgrAI is a type II restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-activation with expansion of DNA-sequence specificity. The three-dimensional crystal structures of SgrAI bound to cleaved primary-site DNA and Mg²(+) and bound to secondary-site DNA with either Mg²(+) or Ca²(+) are presented. All three structures show a conformation of enzyme and DNA similar to the previously determined dimeric structure of SgrAI bound to uncleaved primary-site DNA and Ca²(+) [Dunten et al. (2008), Nucleic Acids Res. 36, 5405-5416], with the exception of the cleaved bond and a slight shifting of the DNA in the SgrAI/cleaved primary-site DNA/Mg²(+) structure. In addition, a new metal ion binding site is located in one of the two active sites in this structure, which is consistent with proposals for the existence of a metal-ion site near the 3'-O leaving group.
Collapse
Affiliation(s)
- Elizabeth J. Little
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Pete W. Dunten
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | | | - Nancy C. Horton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Pingoud V, Wende W, Friedhoff P, Reuter M, Alves J, Jeltsch A, Mones L, Fuxreiter M, Pingoud A. On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family. J Mol Biol 2009; 393:140-60. [PMID: 19682999 DOI: 10.1016/j.jmb.2009.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022]
Abstract
Restriction endonucleases of the PD...D/EXK family need Mg(2+) for DNA cleavage. Whereas Mg(2+) (or Mn(2+)) promotes catalysis, Ca(2+) (without Mg(2+)) only supports DNA binding. The role of Mg(2+) in DNA cleavage by restriction endonucleases has elicited many hypotheses, differing mainly in the number of Mg(2+) involved in catalysis. To address this problem, we measured the Mg(2+) and Mn(2+) concentration dependence of DNA cleavage by BamHI, BglII, Cfr10I, EcoRI, EcoRII (catalytic domain), MboI, NgoMIV, PspGI, and SsoII, which were reported in co-crystal structure analyses to bind one (BglII and EcoRI) or two (BamHI and NgoMIV) Me(2+) per active site. DNA cleavage experiments were carried out at various Mg(2+) and Mn(2+) concentrations at constant ionic strength. All enzymes show a qualitatively similar Mg(2+) and Mn(2+) concentration dependence. In general, the Mg(2+) concentration optimum (between approximately 1 and 10 mM) is higher than the Mn(2+) concentration optimum (between approximately 0.1 and 1 mM). At still higher Mg(2+) or Mn(2+) concentrations, the activities of all enzymes tested are reduced but can be reactivated by Ca(2+). Based on these results, we propose that one Mg(2+) or Mn(2+) is critical for restriction enzyme activation, and binding of a second Me(2+) plays a role in modulating the activity. Steady-state kinetics carried out with EcoRI and BamHI suggest that binding of a second Mg(2+) or Mn(2+) mainly leads to an increase in K(m), such that the inhibitory effect of excess Mg(2+) or Mn(2+) can be overcome by increasing the substrate concentration. Our conclusions are supported by molecular dynamics simulations and are consistent with the structural observations of both one and two Me(2+) binding to these enzymes.
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A bridge crosses the active-site canyon of the Epstein-Barr virus nuclease with DNase and RNase activities. J Mol Biol 2009; 391:717-28. [PMID: 19538972 DOI: 10.1016/j.jmb.2009.06.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/29/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022]
Abstract
Epstein-Barr virus, a double-stranded DNA (dsDNA) virus, is a major human pathogen from the herpesvirus family. The nuclease is one of the lytic cycle proteins required for successful viral replication. In addition to the previously described endonuclease and exonuclease activities on single-stranded DNA and dsDNA substrates, we observed an RNase activity for Epstein-Barr virus nuclease in the presence of Mn(2+), giving a possible explanation for its role in host mRNA degradation. Its crystal structure shows a catalytic core of the D-(D/E)XK nuclease superfamily closely related to the exonuclease from bacteriophage lambda with a bridge across the active-site canyon. This bridge may reduce endonuclease activity, ensure processivity or play a role in strand separation of dsDNA substrates. As the DNA strand that is subject to cleavage is likely to make a sharp turn in front of the bridge, endonuclease activity on single-stranded DNA stretches appears to be possible, explaining the cleavage of circular substrates.
Collapse
|
10
|
Babic AC, Little EJ, Manohar VM, Bitinaite J, Horton NC. DNA distortion and specificity in a sequence-specific endonuclease. J Mol Biol 2008; 383:186-204. [PMID: 18762194 PMCID: PMC2605692 DOI: 10.1016/j.jmb.2008.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/04/2008] [Accepted: 08/12/2008] [Indexed: 11/30/2022]
Abstract
Five new structures of the Q138F HincII enzyme bound to a total of three different DNA sequences and three different metal ions (Ca(2+), Mg(2+), and Mn(2+)) are presented. While previous structures were produced from soaking Ca(2+) into preformed Q138F HincII/DNA crystals, the new structures are derived from cocrystallization with Ca(2+), Mg(2+), or Mn(2+). The Mn(2)(+)-bound structure provides the first view of a product complex of Q138F HincII with cleaved DNA. Binding studies and a crystal structure show how Ca(2+) allows trapping of a Q138F HincII complex with noncognate DNA in a catalytically incompetent conformation. Many Q138F HincII/DNA structures show asymmetry, despite the binding of a symmetric substrate by a symmetric enzyme. The various complexes are fit into a model describing the different conformations of the DNA-bound enzyme and show how DNA conformational energetics determine DNA-cleavage rates by the Q138F HincII enzyme.
Collapse
Affiliation(s)
- Andrea C. Babic
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | - Elizabeth J. Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | - Veena M. Manohar
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | | | - Nancy C. Horton
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
11
|
Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Proc Natl Acad Sci U S A 2008; 105:16888-93. [PMID: 18974222 DOI: 10.1073/pnas.0804795105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homing endonucleases, also known as meganucleases, are sequence-specific enzymes with large DNA recognition sites. These enzymes can be used to induce efficient homologous gene targeting in cells and plants, opening perspectives for genome engineering with applications in a wide series of fields, ranging from biotechnology to gene therapy. Here, we report the crystal structures at 2.0 and 2.1 A resolution of the I-DmoI meganuclease in complex with its substrate DNA before and after cleavage, providing snapshots of the catalytic process. Our study suggests that I-DmoI requires only 2 cations instead of 3 for DNA cleavage. The structure sheds light onto the basis of DNA binding, indicating key residues responsible for nonpalindromic target DNA recognition. In silico and in vivo analysis of the I-DmoI DNA cleavage specificity suggests that despite the relatively few protein-base contacts, I-DmoI is highly specific when compared with other meganucleases. Our data open the door toward the generation of custom endonucleases for targeted genome engineering using the monomeric I-DmoI scaffold.
Collapse
|
12
|
Dunten PW, Little EJ, Gregory MT, Manohar VM, Dalton M, Hough D, Bitinaite J, Horton NC. The structure of SgrAI bound to DNA; recognition of an 8 base pair target. Nucleic Acids Res 2008; 36:5405-16. [PMID: 18701646 PMCID: PMC2532715 DOI: 10.1093/nar/gkn510] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/19/2008] [Accepted: 07/24/2008] [Indexed: 11/14/2022] Open
Abstract
The three-dimensional X-ray crystal structure of the 'rare cutting' type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca(2+) bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn(2+), with strong binding at the protein-DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI.
Collapse
Affiliation(s)
- Pete W. Dunten
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Elizabeth J. Little
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Mark T. Gregory
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Veena M. Manohar
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Michael Dalton
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - David Hough
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Jurate Bitinaite
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Nancy C. Horton
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
13
|
Oezguen N, Schein CH, Peddi SR, Power TD, Izumi T, Braun W. A "moving metal mechanism" for substrate cleavage by the DNA repair endonuclease APE-1. Proteins 2007; 68:313-23. [PMID: 17427952 DOI: 10.1002/prot.21397] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apurinic/apyrimidinic endonuclease (APE-1) is essential for base excision repair (BER) of damaged DNA. Here molecular dynamics (MD) simulations of APE1 complexed with cleaved and uncleaved damaged DNA were used to determine the role and position of the metal ion(s) in the active site before and after DNA cleavage. The simulations started from an energy minimized wild-type structure of the metal-free APE1/damaged-DNA complex (1DE8). A grid search with one Mg2+ ion located two low energy clusters of Mg2+ consistent with the experimentally determined metal ion positions. At the start of the longer MD simulations, Mg2+ ions were placed at different positions as seen in the crystal structures and the movement of the ion was followed over the course of the trajectory. Our analysis suggests a "moving metal mechanism" in which one Mg2+ ion moves from the B- (more buried) to the A-site during substrate cleavage. The anticipated inversion of the phosphate oxygens occurs during the in-line cleavage reaction. Experimental results, which show competition between Ca2+ and Mg2+ for catalyzing the reaction, and high concentrations of Mg2+ are inhibitory, indicate that both sites cannot be simultaneously occupied for maximal activity.
Collapse
Affiliation(s)
- Numan Oezguen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mones L, Kulhánek P, Florián J, Simon I, Fuxreiter M. Probing the two-metal ion mechanism in the restriction endonuclease BamHI. Biochemistry 2007; 46:14514-23. [PMID: 18020376 DOI: 10.1021/bi701630s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choreography of restriction endonuclease catalysis is a long-standing paradigm in molecular biology. Bivalent metal ions are required almost for all PD..D/ExK type enzymes, but the number of cofactors essential for the DNA backbone scission remained ambiguous. On the basis of crystal structures and biochemical data for various restriction enzymes, three models have been developed that assign critical roles for one, two, or three metal ions during the phosphodiester hydrolysis. To resolve this apparent controversy, we investigated the mechanism of BamHI catalysis using quantum mechanical/molecular mechanical simulation techniques and determined the activation barriers of three possible pathways that involve a Glu-113 or a neighboring water molecule as a general base or an external nucleophile that penetrated from bulk solution. The extrinsic mechanism was found to be the most favorable with an activation free energy of 23.4 kcal/mol, in reasonable agreement with the experimental data. On the basis of the effect of the individual metal ions on the activation barrier, metal ion A was concluded to be pivotal for the reaction, while the enzyme lacking metal ion B still has moderate efficiency. Thus, we propose that the catalytic scheme of BamHI does not involve a general base for nucleophile generation and requires one obligatory metal ion for catalysis that stabilizes the attacking nucleophile and coordinates it throughout the nucleophilic attack. Such a model may also explain the variation in the number of metal ions in the crystal structures and thus could serve as a framework for a unified catalytic scheme of type II restriction endonucleases.
Collapse
Affiliation(s)
- Letif Mones
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
15
|
Solt I, Simon I, Császár AG, Fuxreiter M. Electrostatic versus nonelectrostatic effects in DNA sequence discrimination by divalent ions Mg2+ and Mn2+. J Phys Chem B 2007; 111:6272-9. [PMID: 17497910 DOI: 10.1021/jp0668192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mg2+ and Mn2+ ions are critical to the functioning of phosphoryl transfer enzymes, such as restriction endonucleases. Although these ions play similar roles in the chemical steps, they govern substrate specificity via modulating sequence discrimination by up to a factor of 10(5) with Mg2+ and only up to a factor of 10 with Mn2+. To explain whether such diversity originates in fundamental differences in the electronic structures of the nucleobase-hydrated-metal ion complexes, structures and interaction energies were determined at the density functional (DFT) and second-order Møller-Plesset (MP2) levels of theory. Although both metal ions favor identical binding sites, Mn2+ complexes exhibit greater distortions from the ideal octahedral geometry and larger variability than the corresponding Mg2+ systems. In inner-shell complexes, with direct contact between the metal and the nucleobase, Mg2+ is preferred over Mn2+ in the gas phase, due primarily to nonelectrostatic effects. The interaction energies of the two metal ions are more similar in the outer-shell complexes, likely due to reduced charge transfer between the hydrated metal ion and the base moieties. Inclusion of solvation effects can amplify the relative nucleobase preferences of Mg2+ and Mn2+, indicating that bulk hydration modulates the balance between electrostatic and nonelectrostatic terms. In most cases, the base substitutions in solution are facilitated more by Mn2+ than by Mg2+. Electrostatic properties of the environment were demonstrated to have a major influence on the nucleobase preferences of the two metal ions. Overall, quantum chemical calculations suggest that the contrasting selectivity of Mg2+ and Mn2+ cofactors toward nucleobases derives from the larger flexibility of the Mn2+ complexes accompanied by the excessive polarization and charge-transfer effects as well as less favorable solvation.
Collapse
Affiliation(s)
- Iván Solt
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest PO Box 7, Hungary
| | | | | | | |
Collapse
|
16
|
Mones L, Simon I, Fuxreiter M. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism. Biol Chem 2007; 388:73-8. [PMID: 17214552 DOI: 10.1515/bc.2007.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The number of metal ions required for phosphoryl transfer in restriction endonucleases is still an unresolved question in molecular biology. The two Ca(2+) and Mn(2+) ions observed in the pre- and post-reactive complexes of BamHI conform to the classical two-metal ion choreography. We probed the Mg(2+) cofactor positions at the active site of BamHI by molecular dynamics simulations with one and two metal ions present and identified several catalytically relevant sites. These can mark the pathway of a single ion during catalysis, suggesting its critical role, while a regulatory function is proposed for a possible second ion.
Collapse
Affiliation(s)
- Letif Mones
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Hungary
| | | | | |
Collapse
|
17
|
Joshi HK, Etzkorn C, Chatwell L, Bitinaite J, Horton NC. Alteration of sequence specificity of the type II restriction endonuclease HincII through an indirect readout mechanism. J Biol Chem 2006; 281:23852-69. [PMID: 16675462 DOI: 10.1074/jbc.m512339200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional and structural consequences of a mutation of the DNA intercalating residue of HincII, Q138F, are presented. Modeling has suggested that the DNA intercalation by Gln-138 results in DNA distortions potentially used by HincII in indirect readout of its cognate DNA, GTYRAC (Y = C or T, R = A or G) (Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47). Kinetic data presented here indicate that the mutation of glutamine 138 to phenylalanine (Q138F) results in a change in sequence specificity at the center two base pairs of the cognate recognition site. We show that the preference of HincII for cutting, but not binding, the three cognate sites differing in the center two base pairs has been altered by the mutation Q138F. Five new crystal structures are presented including Q138F HincII bound to GTTAAC and GTCGAC both with and without Ca2+ as well as the structure of wild type HincII bound to GTTAAC. The Q138F HincII/DNA structures show conformational changes in the protein, bound DNA, and at the protein-DNA interface, consistent with the formation of adaptive complexes. Analysis of these structures and the effect of Ca2+ binding on the protein-DNA interface illuminates the origin of the altered specificity by the mutation Q138F in the HincII enzyme.
Collapse
Affiliation(s)
- Hemant K Joshi
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
18
|
Little EJ, Horton NC. DNA-induced conformational changes in type II restriction endonucleases: the structure of unliganded HincII. J Mol Biol 2005; 351:76-88. [PMID: 15993893 DOI: 10.1016/j.jmb.2005.05.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/23/2005] [Accepted: 05/27/2005] [Indexed: 11/23/2022]
Abstract
The 2.1A crystal structure of the unliganded type II restriction endonuclease, HincII, is described. Although the asymmetric unit contains only a single monomer, crystal lattice contacts bring two monomers together to form a dimer very similar to that found in the DNA bound form. Comparison with the published DNA bound structure reveals that the DNA binding pocket is expanded in the unliganded structure. Comparison of the unliganded and DNA liganded structures reveals a simple rotation of subunits by 11 degrees each, or 22 degrees total, to a more closed structure around the bound DNA. Comparison of this conformational change to that observed in the other type II restriction endonucleases where DNA bound and unliganded forms have both been characterized, shows considerable variation in the types of conformational changes that can occur. The conformational changes in three can be described by a simple rotation of subunits, while in two others both rotation and translation of subunits relative to one another occurs. In addition, the endonucleases having subunits that undergo the greatest amount of rotation upon DNA binding are found to be those that distort the bound DNA the least, suggesting that DNA bending may be less facile in dimers possessing greater flexibility.
Collapse
Affiliation(s)
- Elizabeth J Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|