1
|
Gruhl T, Weinert T, Rodrigues MJ, Milne CJ, Ortolani G, Nass K, Nango E, Sen S, Johnson PJM, Cirelli C, Furrer A, Mous S, Skopintsev P, James D, Dworkowski F, Båth P, Kekilli D, Ozerov D, Tanaka R, Glover H, Bacellar C, Brünle S, Casadei CM, Diethelm AD, Gashi D, Gotthard G, Guixà-González R, Joti Y, Kabanova V, Knopp G, Lesca E, Ma P, Martiel I, Mühle J, Owada S, Pamula F, Sarabi D, Tejero O, Tsai CJ, Varma N, Wach A, Boutet S, Tono K, Nogly P, Deupi X, Iwata S, Neutze R, Standfuss J, Schertler G, Panneels V. Ultrafast structural changes direct the first molecular events of vision. Nature 2023; 615:939-944. [PMID: 36949205 PMCID: PMC10060157 DOI: 10.1038/s41586-023-05863-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/17/2023] [Indexed: 03/24/2023]
Abstract
Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.
Collapse
Affiliation(s)
- Thomas Gruhl
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Matthew J Rodrigues
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Christopher J Milne
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
- European XFEL, Schenefeld, Germany
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Karol Nass
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Eriko Nango
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Saumik Sen
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Division of Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Philip J M Johnson
- Photon Science Division, Laboratory for Nonlinear Optics, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Biologics Center, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sandra Mous
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Petr Skopintsev
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Daniel James
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Department of Physics, Utah Valley University, Orem, UT, USA
| | - Florian Dworkowski
- Photon Science Division, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Demet Kekilli
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Division Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Rie Tanaka
- RIKEN SPring-8 Center, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hannah Glover
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Camila Bacellar
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Azeglio D Diethelm
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dardan Gashi
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Guillaume Gotthard
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Division of Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Victoria Kabanova
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
- Laboratory for Ultrafast X-ray Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gregor Knopp
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Elena Lesca
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Pikyee Ma
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Isabelle Martiel
- Photon Science Division, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Jonas Mühle
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Filip Pamula
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Daniel Sarabi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Oliver Tejero
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Ching-Ju Tsai
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Niranjan Varma
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Anna Wach
- Institute of Nuclear Physics Polish Academy of Sciences, Kraców, Poland
- Operando X-ray Spectroscopy, Energy and Environment Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Dioscuri Center For Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Xavier Deupi
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Division of Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gebhard Schertler
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Valerie Panneels
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.
| |
Collapse
|
2
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
3
|
Yao H, Cai H, Li D. Thermostabilization of Membrane Proteins by Consensus Mutation: A Case Study for a Fungal Δ8-7 Sterol Isomerase. J Mol Biol 2020; 432:5162-5183. [PMID: 32105736 DOI: 10.1016/j.jmb.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 11/15/2022]
Abstract
Membrane proteins are generally challenging to work with because of their notorious instability. Protein engineering has been used increasingly to thermostabilize labile membrane proteins such as G-protein-coupled receptors for structural and functional studies in recent years. Two major strategies exist. Scanning mutagenesis systematically eliminates destabilizing residues, whereas the consensus approach assembles mutants with the most frequent residues among selected homologs, bridging sequence conservation with stability. Here, we applied the consensus concept to stabilize a fungal homolog of the human sterol Δ8-7 isomerase, a 26.4 kDa protein with five transmembrane helices. The isomerase is also called emopamil-binding protein (EBP), as it binds this anti-ischemic drug with high affinity. The wild-type had an apparent melting temperature (Tm) of 35.9 °C as measured by the fluorescence-detection size-exclusion chromatography-based thermostability assay. A total of 87 consensus mutations sourced from 22 homologs gained expression level and thermostability, increasing the apparent Tm to 69.9 °C at the cost of partial function loss. Assessing the stability and activity of several systematic chimeric constructs identified a construct with an apparent Tm of 79.8 °C and two regions for function rescue. Further back-mutations of the chimeric construct in the two target regions yielded the final construct with similar apparent activity to the wild-type and an elevated Tm of 88.8 °C, totaling an increase of 52.9 °C. The consensus approach is effective and efficient because it involves fewer constructs compared with scanning mutagenesis. Our results should encourage more use of the consensus strategy for membrane protein thermostabilization.
Collapse
Affiliation(s)
- Hebang Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
4
|
Haider RS, Wilhelm F, Rizk A, Mutt E, Deupi X, Peterhans C, Mühle J, Berger P, Schertler GFX, Standfuss J, Ostermaier MK. Arrestin-1 engineering facilitates complex stabilization with native rhodopsin. Sci Rep 2019; 9:439. [PMID: 30679635 PMCID: PMC6346018 DOI: 10.1038/s41598-018-36881-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Arrestin-1 desensitizes the activated and phosphorylated photoreceptor rhodopsin by forming transient rhodopsin−arrestin-1 complexes that eventually decay to opsin, retinal and arrestin-1. Via a multi-dimensional screening setup, we identified and combined arrestin-1 mutants that form lasting complexes with light-activated and phosphorylated rhodopsin in harsh conditions, such as high ionic salt concentration. Two quadruple mutants, D303A + T304A + E341A + F375A and R171A + T304A + E341A + F375A share similar heterologous expression and thermo-stability levels with wild type (WT) arrestin-1, but are able to stabilize complexes with rhodopsin with more than seven times higher half-maximal inhibitory concentration (IC50) values for NaCl compared to the WT arrestin-1 protein. These quadruple mutants are also characterized by higher binding affinities to phosphorylated rhodopsin, light-activated rhodopsin and phosphorylated opsin, as compared with WT arrestin-1. Furthermore, the assessed arrestin-1 mutants are still specifically associating with phosphorylated or light-activated receptor states only, while binding to the inactive ground state of the receptor is not significantly altered. Additionally, we propose a novel functionality for R171 in stabilizing the inactive arrestin-1 conformation as well as the rhodopsin–arrestin-1 complex. The achieved stabilization of the active rhodopsin–arrestin-1 complex might be of great interest for future structure determination, antibody development studies as well as drug-screening efforts targeting G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Raphael S Haider
- InterAx Biotech AG, PARK InnovAARE, Villigen, 5234, Switzerland.,Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland.,Institute of Molecular Cell Biology, Jena, 07745, Germany
| | - Florian Wilhelm
- InterAx Biotech AG, PARK InnovAARE, Villigen, 5234, Switzerland
| | - Aurélien Rizk
- InterAx Biotech AG, PARK InnovAARE, Villigen, 5234, Switzerland
| | - Eshita Mutt
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Christian Peterhans
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Jonas Mühle
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Philipp Berger
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland.,ETH Zurich, Zurich, 8093, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | | |
Collapse
|
5
|
Abstract
It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin(+)Lrat(-/-)) expressing, transgenically, short-wavelength-sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor's outer segment. In R-opsin's absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin's presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling.
Collapse
|
6
|
Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Front Pharmacol 2016; 7:76. [PMID: 27065866 PMCID: PMC4815248 DOI: 10.3389/fphar.2016.00076] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
Cell membrane receptors rarely work on isolation, often they form oligomeric complexes with other receptor molecules and they may directly interact with different proteins of the signal transduction machinery. For a variety of reasons, rhodopsin-like class A G-protein-coupled receptors (GPCRs) seem an exception to the general rule of receptor-receptor direct interaction. In fact, controversy surrounds their potential to form homo- hetero-dimers/oligomers with other class A GPCRs; in a sense, the field is going backward instead of forward. This review focuses on the convergent, complementary and telling evidence showing that homo- and heteromers of class A GPCRs exist in transfected cells and, more importantly, in natural sources. It is time to decide between questioning the occurrence of heteromers or, alternatively, facing the vast scientific and technical challenges that class A receptor-dimer/oligomer existence pose to Pharmacology and to Drug Discovery.
Collapse
Affiliation(s)
- Rafael Franco
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Institute of Biomedicine, University of BarcelonaBarcelona, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de OviedoAsturias, Spain; Neurosciences Division, Centre for Applied Medical Research, University of NavarraPamplona, Spain; Instituto de Investigaciones Sanitarias de NavarraPamplona, Spain
| | - José L Lanciego
- Centro de Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Neurosciences Division, Centre for Applied Medical Research, University of NavarraPamplona, Spain; Instituto de Investigaciones Sanitarias de NavarraPamplona, Spain
| | - Gemma Navarro
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
7
|
Mattle D, Singhal A, Schmid G, Dawson R, Standfuss J. Mammalian expression, purification, and crystallization of rhodopsin variants. Methods Mol Biol 2015; 1271:39-54. [PMID: 25697515 DOI: 10.1007/978-1-4939-2330-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
After 25 years of intensive research, the understanding of how photoreceptors in the eye perceive light and convert it into nerve signals has largely advanced. Central to this is the structural and mechanistic exploration of the G protein-coupled receptor rhodopsin acting as a dim-light sensing pigment in the retina. Investigation of rhodopsin by X-ray crystallographic, electron microscopic, and biochemical means depends on the ability to produce and isolate pure rhodopsin protein. Robust and well-defined protocols permit the production and crystallization of rhodopsin variants to investigate the inactive ground, the fully activated metarhodopsin II state, or disease-causing rhodopsin mutations. This chapter details how we express and purify biologically active variants of rhodopsin from HEK293S GnTI(-) cells in a quality and quantity suitable for biochemical assays, crystallization, and structure determination.
Collapse
Affiliation(s)
- Daniel Mattle
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Wu W, Nogly P, Rheinberger J, Kick LM, Gati C, Nelson G, Deupi X, Standfuss J, Schertler G, Panneels V. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser. Acta Crystallogr F Struct Biol Commun 2015; 71:856-60. [PMID: 26144230 PMCID: PMC4498706 DOI: 10.1107/s2053230x15009966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/22/2015] [Indexed: 11/11/2022] Open
Abstract
Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.
Collapse
Affiliation(s)
- Wenting Wu
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Przemyslaw Nogly
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Jan Rheinberger
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Leonhard M. Kick
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Cornelius Gati
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Garrett Nelson
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Xavier Deupi
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Jörg Standfuss
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Gebhard Schertler
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| | - Valérie Panneels
- Laboratory for Biomolecular Research, Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI, Switzerland
| |
Collapse
|
9
|
Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015; 6:66. [PMID: 25873898 PMCID: PMC4379943 DOI: 10.3389/fphar.2015.00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 01/26/2023] Open
Abstract
Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland ; Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich Switzerland
| |
Collapse
|
10
|
Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J. Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci U S A 2014; 111:1825-30. [PMID: 24449856 PMCID: PMC3918777 DOI: 10.1073/pnas.1319402111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arrestins function as adapter proteins that mediate G protein-coupled receptor (GPCR) desensitization, internalization, and additional rounds of signaling. Here we have compared binding of the GPCR rhodopsin to 403 mutants of arrestin-1 covering its complete sequence. This comprehensive and unbiased mutagenesis approach provides a functional dimension to the crystal structures of inactive, preactivated p44 and phosphopeptide-bound arrestins and will guide our understanding of arrestin-GPCR complexes. The presented functional map quantitatively connects critical interactions in the polar core and along the C tail of arrestin. A series of amino acids (Phe375, Phe377, Phe380, and Arg382) anchor the C tail in a position that blocks binding of the receptor. Interaction of phosphates in the rhodopsin C terminus with Arg29 controls a C-tail exchange mechanism in which the C tail of arrestin is released and exposes several charged amino acids (Lys14, Lys15, Arg18, Lys20, Lys110, and Lys300) for binding of the phosphorylated receptor C terminus. In addition to this arrestin phosphosensor, our data reveal several patches of amino acids in the finger (Gln69 and Asp73-Met75) and the lariat loops (L249-S252 and Y254) that can act as direct binding interfaces. A stretch of amino acids at the edge of the C domain (Trp194-Ser199, Gly337-Gly340, Thr343, and Thr345) could act as membrane anchor, binding interface for a second rhodopsin, or rearrange closer to the central loops upon complex formation. We discuss these interfaces in the context of experimentally guided docking between the crystal structures of arrestin and light-activated rhodopsin.
Collapse
Affiliation(s)
| | | | | | - Xavier Deupi
- Laboratory of Biomolecular Research and
- Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | |
Collapse
|
11
|
Abstract
Since the publication of the first X-ray structure of a GPCR (G-protein couple receptor) in 2000, the rate at which subsequent ones have appeared has steadily increased. This has required the development of new methodology to overcome the challenges presented by instability of isolated GPCRs, combined with a systematic optimization of existing approaches for protein expression, purification and crystallization. In addition, quality control measures that are predictive of successful outcomes have been identified. Repeated attempts at solving the structures of GPCRs have highlighted experimental approaches that are most likely to lead to success, and have allowed definition of a first-pass protocol for new receptors.
Collapse
|
12
|
Brueckner F, Piscitelli CL, Tsai CJ, Standfuss J, Deupi X, Schertler GFX. Structure of β-adrenergic receptors. Methods Enzymol 2013; 520:117-51. [PMID: 23332698 DOI: 10.1016/b978-0-12-391861-1.00006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Adrenergic receptors (βARs) control key physiological functions by transducing signals encoded in catecholamine hormones and neurotransmitters to activate intracellular signaling pathways. As members of the large family of G protein-coupled receptors (GPCRs), βARs have a seven-transmembrane helix topology and signal via G protein- and arrestin-dependent pathways. Until 2007, three-dimensional structural information of GPCRs activated by diffusible ligands, including βARs, was limited to homology models that used the related photoreceptor rhodopsin as a template. Over many years, several labs have developed strategies that have finally allowed the structures of the turkey β(1)AR and the human β(2)AR to be determined experimentally. The challenges to overcome included heterologous receptor overexpression, design of stabilized and crystallizable modified receptor constructs, ligand-affinity purification of active receptor and the development of novel techniques in crystallization and microcrystallography. The structures of βARs in complex with inverse agonists, antagonists, and agonists have revealed the binding mode of ligands with different efficacies, have allowed to obtain insights into ligand selectivity, and have provided better templates for drug design. Also, the structures of β(2)AR in complex with a G protein and a G protein-mimicking nanobody have provided important insights into the mechanism of receptor activation and G protein coupling. This chapter summarizes the strategies and methods that have been successfully applied to the structural studies of βARs. These are exemplified with detailed protocols toward the structure determination of stabilized turkey β(1)AR-ligand complexes. We also discuss the spectacular insights into adrenergic receptor function that were obtained from the structures.
Collapse
Affiliation(s)
- Florian Brueckner
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Grossfield A. Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1868-78. [DOI: 10.1016/j.bbamem.2011.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/23/2011] [Accepted: 03/21/2011] [Indexed: 01/28/2023]
|
14
|
Makino CL, Riley CK, Looney J, Crouch RK, Okada T. Binding of more than one retinoid to visual opsins. Biophys J 2011; 99:2366-73. [PMID: 20923672 DOI: 10.1016/j.bpj.2010.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] Open
Abstract
Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, β-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more β-ionones per rhodopsin. X-ray crystallography revealed binding of one β-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of β-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind β-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but β-ionone binds to the latter type of rhodopsin with low affinity and low efficacy.
Collapse
Affiliation(s)
- Clint L Makino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
15
|
Practical considerations of membrane protein instability during purification and crystallisation. Methods Mol Biol 2010; 601:187-203. [PMID: 20099147 DOI: 10.1007/978-1-60761-344-2_12] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Crystallisation of integral membranes requires milligrams of purified protein in a homogeneous, monodisperse state, and crucially, the membrane protein must also be fully functional and stable. The stability of membrane proteins in solution is dependent on the type of detergents used, but unfortunately the use of the most stabilising detergent can often decrease the probability of obtaining crystals that diffract to high resolution, especially of small membrane proteins. A number of strategies have been developed to facilitate the purification of membrane proteins in a functional form, which have led to new possibilities for structure determination.
Collapse
|
16
|
Warne T, Serrano-Vega MJ, Tate CG, Schertler GFX. Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expr Purif 2009; 65:204-13. [PMID: 19297694 DOI: 10.1016/j.pep.2009.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Structure determination of G protein-coupled receptors is still in its infancy and many factors affect whether crystals are obtained and whether the diffraction is of sufficient quality for structure determination. We recently solved the structure of a thermostabilised turkey beta 1-adrenergic receptor by crystallization in the presence of the detergent octylthioglucoside. Three factors were essential for this success. Firstly, truncations were required at the N-terminus to give optimal expression. Secondly, 6 thermostabilising point mutations were incorporated to make the receptor sufficiently stable in short-chain detergents to allow crystallization. Thirdly, truncations at the C-terminus and within cytoplasmic loop 3, in combination with the removal of the palmitoylation site, were required to obtain well-diffracting crystals in octylthioglucoside. Here, we describe the strategy employed and the utility of thermostability assays in assessing how point mutations, truncations, detergents and ligands combine to develop a construct that forms diffraction-grade crystals.
Collapse
Affiliation(s)
- Tony Warne
- MRC Laboratory of Molecular Biology, Structural Studies, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
17
|
McKibbin C, Farmer NA, Edwards PC, Villa C, Booth PJ. Urea Unfolding of Opsin in Phospholipid Bicelles. Photochem Photobiol 2009; 85:494-500. [DOI: 10.1111/j.1751-1097.2008.00503.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Möller M, Alexiev U. Surface Charge Changes upon Formation of the Signaling State in Visual Rhodopsin. Photochem Photobiol 2009; 85:501-8. [DOI: 10.1111/j.1751-1097.2008.00528.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Holst B, Frimurer TM, Mokrosinski J, Halkjaer T, Cullberg KB, Underwood CR, Schwartz TW. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor. Mol Pharmacol 2009; 75:44-59. [PMID: 18923064 DOI: 10.1124/mol.108.049189] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone secretagogue GHRP-6) plus four nonpeptide agonists-the original benzolactam L-692,429 [3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5-yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamide], the spiroindoline sulfonamide MK-677 [N-[1(R)-1, 2-dihydro-1-ethanesulfonylspiro-3H-indole-3,4'-piperidin)-1'-yl]carbonyl-2-(phenylmethoxy)-ethyl-2-amino-2-methylpropanamide], and two novel oxindole derivatives, SM-130686 [(+)-6-carbamoyl-3-(2-chlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole] and SM-157740 [(+/-)-6-carbamoyl-3-(2, 4-dichlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole)]. The strongest mutational effect with respect to decrease in potency for stimulation of inositol phosphate turnover was for all six agonists the GluIII:09-to-Gln substitution in the extracellular segment of TM-III. Likewise, all six agonists were affected by substitutions of PheVI:16, ArgVI:20, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common mutational map for agonism but it was not identical with the map for the agonist property of these small-molecule ligands. In molecular models, built over the inactive conformation of rhodopsin, low energy conformations of the nonpeptide agonists could be docked to satisfy many of their mutational hits. It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor.
Collapse
Affiliation(s)
- Birgitte Holst
- Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
20
|
Stenkamp RE. Alternative models for two crystal structures of bovine rhodopsin. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; D64:902-4. [PMID: 18645239 PMCID: PMC2483493 DOI: 10.1107/s0907444908017162] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/06/2008] [Indexed: 11/15/2022]
Abstract
The space-group symmetry of two crystal forms of rhodopsin (PDB codes 1gzm and 2j4y; space group P3(1)) can be re-interpreted as hexagonal (space group P6(4)). Two molecules of the G protein-coupled receptor are present in the asymmetric unit in the trigonal models. However, the noncrystallographic twofold axes parallel to the c axis can be treated as crystallographic symmetry operations in the hexagonal space group. This halves the asymmetric unit and makes all of the protein molecules equivalent in these structures. Corrections for merohedral twinning were also applied in the refinement in the higher symmetry space group for one of the structures (2j4y).
Collapse
Affiliation(s)
- Ronald E Stenkamp
- Departments of Biological Structure and Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Xia H, Liu L, Reinhart C, Michel H. Heterologous expression of human Neuromedin U receptor 1 and its subsequent solubilization and purification. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2203-9. [PMID: 18598671 DOI: 10.1016/j.bbamem.2008.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/08/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
Human Neuromedin U receptor 1 (hNmU-R1) is a member of G protein-coupled receptor family. For structural determination of hNmU-R1, the production of hNmU-R1 in milligram amounts is a prerequisite. Here we reported two different eukaryotic expression systems, namely, Semliki Forest virus (SFV)/BHK-21 and baculovirus/Spodoptera frugiperda (Sf9) cell systems for overproduction of this receptor. In the SFV-based expression system, hNmU-R1 was produced at a level of 5 pmol receptor/mg membrane protein and the yield could be further increased to 22 pmol receptor/mg membrane protein by supplementation with 2% dimethyl sulfoxide (DMSO). Around 8 pmol receptor/mg membrane protein could be achieved in baculovirus-infected Sf9 cells. The recombinant hNmU-R1 from SFV- and baculovirus-based systems was functional, with a Kd value of [125I] NmU-23 (rat) similar to that from transiently transfected COS-7 cells, where hNmU-R1 was first identified. With the aid of 1% n-dodecyl-beta-D-maltoside (LM)/0.25% cholesteryl hemisuccinate (CHS), the yield of functional hNmU-R1 could reach 80%. The recombinant receptor from Sf9 cells was purified to homogeneity. The specific binding of the purified receptor to [125I] NmU-23 (rat) indicated that the receptor is bioactive. This is the first report of successful solubilization and purification of hNmU-R1, and will enable functional and structural studies of the hNmU-R1.
Collapse
Affiliation(s)
- Hongyan Xia
- Max-Planck-Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
22
|
Röhrig UF, Sebastiani D. NMR Chemical Shifts of the Rhodopsin Chromophore in the Dark State and in Bathorhodopsin: A Hybrid QM/MM Molecular Dynamics Study. J Phys Chem B 2008; 112:1267-74. [DOI: 10.1021/jp075662q] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ute F. Röhrig
- Ludwig Institute for Cancer Research and Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building CH-1015 Lausanne, Switzerland, and Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Sebastiani
- Ludwig Institute for Cancer Research and Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building CH-1015 Lausanne, Switzerland, and Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
23
|
|
24
|
McKibbin C, Toye AM, Reeves PJ, Khorana HG, Edwards PC, Villa C, Booth PJ. Opsin Stability and Folding: The Role of Cys185 and Abnormal Disulfide Bond Formation in the Intradiscal Domain. J Mol Biol 2007; 374:1309-18. [DOI: 10.1016/j.jmb.2007.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/11/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
|
25
|
Opsin stability and folding: modulation by phospholipid bicelles. J Mol Biol 2007; 374:1319-32. [PMID: 17996895 DOI: 10.1016/j.jmb.2007.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/28/2007] [Accepted: 10/10/2007] [Indexed: 11/22/2022]
Abstract
Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-alpha-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin. Opsin is particularly unstable in detergent solution but can be directly purified into DMPC/Chaps. We show that opsin can also be directly purified in DMPC/DHPC bicelles to give correctly folded functional opsin, as shown by the ability to regenerate rhodopsin to approximately 70% yield. These well-characterised DMPC/DHPC bicelles enable us to probe the influence of bicelle properties on opsin stability. These bicelles are thought to provide DMPC bilayer fragments with most DHPC capping the bilayer edge, giving a soluble bilayer disc. Opsin stability is shown to be modulated by the q value, the ratio of DMPC to DHPC, which reflects changes in the bicelle size and, thus, proportion of DMPC bilayer present. The observed changes in stability also correlate with loss of opsin secondary structure as determined by synchrotron far-UV circular dichroism spectroscopy; the most stable bicelle results in the least helix loss. The inclusion of Chaps rather than DHPC in the DMPC/Chaps bicelles, however, imparts the greatest stability. This suggests that it is not just the DMPC bilayer fragment in the bicelles that stabilises the protein, but that Chaps provides additional stability either through direct interaction with the protein or by altering the DMPC/Chaps bilayer properties within the bicelle. The significant stability enhancements and preservation of secondary structure reported here in bicelles are pertinent to other membrane proteins, notably G-protein-coupled receptors, which are unstable in detergent solution.
Collapse
|
26
|
Vohra S, Chintapalli SV, Illingworth CJR, Reeves PJ, Mullineaux PM, Clark HSX, Dean MK, Upton GJG, Reynolds CA. Computational studies of Family A and Family B GPCRs. Biochem Soc Trans 2007; 35:749-54. [PMID: 17635140 DOI: 10.1042/bst0350749] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A full picture of the similarities between Family A and Family B GPCRs (G-protein coupled receptors) has been frustrated by the lack of clear homology between the respective sequences. Here, we review previous computational studies on GPCR dimerization in which the putative dimerization interfaces have been analysed using entropy, the ET (evolutionary trace) method and related methods. The results derived from multiple sequence alignments of Family A subfamilies have been mapped on to the rhodopsin crystal structure using standard alignments. Similarly, the results for the Family B alignments have been mapped on to the rhodopsin crystal structure using the 'cold-spot' alignment. For both Family A and Family B GPCRs, the sequence analysis indicates that there are functional sites on essentially all transmembrane helices, consistent with the parallel daisy chain model of GPCR oligomerization in which each GPCR makes interactions with a number of neighbouring GPCRs. The results are not too sensitive to the quality of the alignment. Molecular Dynamics simulations of the activation process within a single transmembrane bundle of the rhodopsin and the beta(2)-adrenergic receptor have been reviewed; the key observation, which is consistent with other computational studies, is that there is a translation and bending of helix 6, which contributes to a significant opening out of the intracellular face of the receptor, as shown in the accompanying movies. The simulations required the application of specific experiment-derived harmonic and half-harmonic distance restraints and so the application of such simulations to Family B GPCRs requires considerable care because of the alignment problem. Thus, in order to address the alignment problem, we have exploited the observation that GCR1, a plant GPCR, has homology with Family A, Family B and Family E GPCRs. The resulting alignment for transmembrane helix 3 is presented.
Collapse
Affiliation(s)
- S Vohra
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lacapère JJ, Pebay-Peyroula E, Neumann JM, Etchebest C. Determining membrane protein structures: still a challenge! Trends Biochem Sci 2007; 32:259-70. [PMID: 17481903 DOI: 10.1016/j.tibs.2007.04.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/07/2007] [Accepted: 04/13/2007] [Indexed: 11/20/2022]
Abstract
Determination of structures and dynamics events of transmembrane proteins is important for the understanding of their function. Analysis of such events requires high-resolution 3D structures of the different conformations coupled with molecular dynamics analyses describing the conformational pathways. However, the solution of 3D structures of transmembrane proteins at atomic level remains a particular challenge for structural biochemists--the need for purified and functional transmembrane proteins causes a 'bottleneck'. There are various ways to obtain 3D structures: X-ray diffraction, electron microscopy, NMR and modelling; these methods are not used exclusively of each other, and the chosen combination depends on several criteria. Progress in this field will improve knowledge of ligand-induced activation and inhibition of membrane proteins in addition to aiding the design of membrane-protein-targeted drugs.
Collapse
Affiliation(s)
- Jean-Jacques Lacapère
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Faculté de Médecine X. Bichat, Université Paris 7, BP 416, F-75018, Paris, France.
| | | | | | | |
Collapse
|
28
|
Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GFX. Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 2007; 372:1179-88. [PMID: 17825322 PMCID: PMC2258155 DOI: 10.1016/j.jmb.2007.03.007] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/28/2007] [Accepted: 03/06/2007] [Indexed: 11/16/2022]
Abstract
We determined the structure of the rhodopsin mutant N2C/D282C expressed in mammalian cells; the first structure of a recombinantly produced G protein-coupled receptor (GPCR). The mutant was designed to form a disulfide bond between the N terminus and loop E3, which allows handling of opsin in detergent solution and increases thermal stability of rhodopsin by 10 deg.C. It allowed us to crystallize a fully deglycosylated rhodopsin (N2C/N15D/D282C). N15 mutations are normally misfolding and cause retinitis pigmentosa in humans. Microcrystallographic techniques and a 5 microm X-ray beam were used to collect data along a single needle measuring 5 microm x 5 microm x 90 microm. The disulfide introduces only minor changes but fixes the N-terminal cap over the beta-sheet lid covering the ligand-binding site, a likely explanation for the increased stability. This work allows structural investigation of rhodopsin mutants and shows the problems encountered during structure determination of GPCRs and other mammalian membrane proteins.
Collapse
Affiliation(s)
- Jörg Standfuss
- MRC Laboratory of Molecular Biology, Structural Studies, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
29
|
Deng Q, Clemas JA, Chrebet G, Fischer P, Hale JJ, Li Z, Mills SG, Bergstrom J, Mandala S, Mosley R, Parent SA. Identification of Leu276 of the S1P1 receptor and Phe263 of the S1P3 receptor in interaction with receptor specific agonists by molecular modeling, site-directed mutagenesis, and affinity studies. Mol Pharmacol 2007; 71:724-35. [PMID: 17170199 DOI: 10.1124/mol.106.029223] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) receptor agonists are novel immunosuppressive agents. The selectivity of S1P1 against S1P3 is strongly correlated with lymphocyte sequestration and minimum acute toxicity and bradycardia. This study describes molecular modeling, site-directed mutagenesis, and affinity studies exploring the molecular basis for selectivity between S1P1 and S1P3 receptors. Computational models of human S1P1 and S1P3 receptors bound with two nonselective agonists or two S1P1-selective agonists were developed based on the X-ray crystal structure of bovine rhodopsin. The models predict that S1P1 Leu276 and S1P3 Phe263 contribute to the S1P1/S1P3 selectivity of the two S1P1-selective agonists. These residues were subjected to site-directed mutagenesis. The wild-type and mutant S1P receptors were expressed in Chinese hamster ovary cells and examined for their abilities to bind to and be activated by agonists in vitro. The results indicate that the mutations have minimal effects on the activities of the two nonselective agonists, although they have dramatic effects on the S1P1-selective agonists. These studies provide a fundamental understanding of how these two receptor-selective agonists bind to the S1P1 and S1P3 receptors, which should aid development of more selective S1P1 receptor agonists with immunosuppressive properties and improved safety profiles.
Collapse
Affiliation(s)
- Qiaolin Deng
- Department of Molecular Systems, Merck Research Laboratories, PO Box 2000, RY80Y-225, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Crozier PS, Stevens MJ, Woolf TB. How a small change in retinal leads to G-protein activation: initial events suggested by molecular dynamics calculations. Proteins 2007; 66:559-74. [PMID: 17109408 PMCID: PMC2848121 DOI: 10.1002/prot.21175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rhodopsin is the prototypical G-protein coupled receptor, coupling light activation with high efficiency to signaling molecules. The dark-state X-ray structures of the protein provide a starting point for consideration of the relaxation from initial light activation to conformational changes that may lead to signaling. In this study we create an energetically unstable retinal in the light activated state and then use molecular dynamics simulations to examine the types of compensation, relaxation, and conformational changes that occur following the cis-trans light activation. The results suggest that changes occur throughout the protein, with changes in the orientation of Helices 5 and 6, a closer interaction between Ala 169 on Helix 4 and retinal, and a shift in the Schiff base counterion that also reflects changes in sidechain interactions with the retinal. Taken together, the simulation is suggestive of the types of changes that lead from local conformational change to light-activated signaling in this prototypical system.
Collapse
Affiliation(s)
- Paul S Crozier
- Sandia National Laboratories, MS 1322, Albuquerque, New Mexico 87185-1322, USA.
| | | | | |
Collapse
|
31
|
Lodowski DT, Salom D, Le Trong I, Teller DC, Ballesteros JA, Palczewski K, Stenkamp RE. Crystal packing analysis of Rhodopsin crystals. J Struct Biol 2007; 158:455-62. [PMID: 17374491 PMCID: PMC1950280 DOI: 10.1016/j.jsb.2007.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/04/2007] [Accepted: 01/12/2007] [Indexed: 11/25/2022]
Abstract
Oligomerization has been proposed as one of several mechanisms to regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallographic analyses of two new crystal forms of rhodopsin reveal an interaction surface which may be involved in the formation of functional dimers or oligomers. New crystallization conditions lead to the formation of two crystal forms with similar rhodopsin-rhodopsin interactions, but changes in the crystal lattice are induced by the addition of different surfactant additives. However, the intermolecular interactions between rhodopsin molecules in these crystal structures may reflect the contacts necessary for the maintenance of dimers or oligomers in rod outer segment membranes. Similar contacts may assist in the formation of dimers or oligomers in other GPCRs as well. These new dimers are compared with other models proposed by crystallography or EM and AFM studies. The inter-monomer surface contacts are different for each model, but several of these models coincide in implicating helix I, II, and H-8 as contributors to the main contact surface stabilizing the dimers.
Collapse
Affiliation(s)
- David T Lodowski
- Department of Pharmacology, Case-Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Salom D, Le Trong I, Pohl E, Ballesteros JA, Stenkamp RE, Palczewski K, Lodowski DT. Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals. J Struct Biol 2006; 156:497-504. [PMID: 16837211 DOI: 10.1016/j.jsb.2006.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/02/2006] [Accepted: 05/19/2006] [Indexed: 11/21/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.
Collapse
Affiliation(s)
- David Salom
- Novasite Pharmaceuticals, Inc., San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kobilka BK. G protein coupled receptor structure and activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:794-807. [PMID: 17188232 PMCID: PMC1876727 DOI: 10.1016/j.bbamem.2006.10.021] [Citation(s) in RCA: 421] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/23/2006] [Indexed: 11/25/2022]
Abstract
G protein coupled receptors (GPCRs) are remarkably versatile signaling molecules. The members of this large family of membrane proteins are activated by a spectrum of structurally diverse ligands, and have been shown to modulate the activity of different signaling pathways in a ligand specific manner. In this manuscript I will review what is known about the structure and mechanism of activation of GPCRs focusing primarily on two model systems, rhodopsin and the beta(2) adrenoceptor.
Collapse
Affiliation(s)
- Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Hu J, Jiang J, Costanzi S, Thomas C, Yang W, Feyen JHM, Jacobson KA, Spiegel AM. A Missense Mutation in the Seven-transmembrane Domain of the Human Ca2+ Receptor Converts a Negative Allosteric Modulator into a Positive Allosteric Modulator. J Biol Chem 2006; 281:21558-21565. [PMID: 16735501 DOI: 10.1074/jbc.m603682200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the most common targets of drug action. Allosteric modulators bind to the seven-transmembrane domain of family 3 GPCRs and offer enhanced selectivity over orthosteric ligands that bind to the large extracellular N terminus. We characterize a novel negative allosteric modulator of the human Ca(2+) receptor, Compound 1, that retains activity against the E837A mutant that lacks a response to previously described positive and negative modulators. A related compound, JKJ05, acts as a negative allosteric modulator on the wild type receptor but as a positive modulator on the E837A mutant receptor. This positive modulation critically depends on the primary amine in JKJ05, which appears to interact with acidic residue Glu(767) in our model of the seven-transmembrane domain of the receptor. Our results suggest the need for identification of possible genetic variation in the allosteric site of therapeutically targeted GPCRs.
Collapse
Affiliation(s)
- Jianxin Hu
- Molecular Pathophysiology Section, NIDCD, National Institutes of Health, Bethesda, Maryland 20892.
| | - Jiankang Jiang
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Stefano Costanzi
- Computational Chemistry Core Laboratory, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Craig Thomas
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Wu Yang
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543
| | - Jean H M Feyen
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Allen M Spiegel
- Molecular Pathophysiology Section, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Chen CK. The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol 2006; 154:101-21. [PMID: 16634148 DOI: 10.1007/s10254-005-0004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The biochemical cascade which transduces light into a neuronal signal in retinal photoreceptors is a heterotrimeric GTP-binding protein (G protein) signaling pathway called phototransduction. Works from psychophysicists, electrophysiologists, biochemists, and geneticists over several decades have come together to shape our understanding of how photon absorption leads to photoreceptor membrane hyperpolarization. The insights of phototransduction provide the foundation for a mechanistic account of signaling from many other G protein-coupled receptors (GPCR) found throughout nature. The application of reverse genetic techniques has strengthened many historic findings and helped to describe this pathway at greater molecular details. However, many important questions remain to be answered.
Collapse
Affiliation(s)
- C K Chen
- Virginia Commonwealth University, Department of Biochemistry, 1101 E. Marshall Street, Rm 2-032, Richmond, 23298-0614 VA, USA.
| |
Collapse
|
36
|
Higgins MK, Oprian DD, Schertler GFX. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. J Biol Chem 2006; 281:19426-32. [PMID: 16675451 DOI: 10.1074/jbc.m602203200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recoverin is a calcium-dependent inhibitor of rhodopsin kinase. It prevents premature phosphorylation of rhodopsin until the opening of cGMP-gated ion channels causes a decrease in intracellular calcium levels, signaling completion of the light response. This calcium depletion causes release of recoverin from rhodopsin kinase, freeing the kinase to phosphorylate rhodopsin and to terminate the light response. Previous studies have shown that recoverin is able to bind to a region at the N terminus of rhodopsin kinase. In this study we map this interaction interface, showing that residues 1-15 of the kinase form the interaction site for recoverin binding. Mutation of hydrophobic residues in this region have the greatest effect on the interaction. The periodic nature of these residues suggests that they lie along one face of an amphipathic helix. We show that this region is essential for recoverin binding, as a catalytically active kinase lacking these residues is unable to bind recoverin. In addition, we show that neither the N-terminal deletion nor the presence of recoverin inhibits the overall catalytic activity of the kinase, as measured by light-independent autophosphorylation. Finally, we observe that a kinase mutant lacking the N-terminal recoverin binding site is unable to phosphorylate light-activated rhodopsin. Taken together, these data support a model in which recoverin prevents rhodopsin phosphorylation by sterically blocking a region of kinase essential for its interaction with rhodopsin, thereby preventing recognition of rhodopsin as a kinase substrate.
Collapse
Affiliation(s)
- Matthew K Higgins
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
37
|
Gan L, Alexander JM, Wittelsberger A, Thomas B, Rosenblatt M. Large-scale purification and characterization of human parathyroid hormone-1 receptor stably expressed in HEK293S GnTI− cells. Protein Expr Purif 2006; 47:296-302. [PMID: 16376105 DOI: 10.1016/j.pep.2005.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/04/2005] [Accepted: 11/05/2005] [Indexed: 11/25/2022]
Abstract
Human parathyroid hormone-1 receptor (hPTHR1) belongs to class II of the G protein-coupled receptor (GPCR) family, whose members all contain a seven-transmembrane helix domain. The receptor regulates bone metabolism through interactions with its ligand, human parathyroid hormone (hPTH). For structural studies of the hPTHR1/hPTH complex, we constructed a mammalian cell line to stably express recombinant hPTHR1 in large-scale. The receptor was solubilized with dodecyl maltoside and purified with affinity chromatography. The purified receptor displayed restricted N-glycosylation as expected. Functionality was demonstrated: the hPTHR1 retained affinity for bPTH-(1-34) and specifically cross-linked to a radioiodinated bPTH-(1-34) analog. This work describes an approach for preparing milligram-scale quantities of receptor for elucidation of the structural biology of this seven-transmembrane GPCR.
Collapse
Affiliation(s)
- Lu Gan
- Department of Physiology, Tufts University, School of Medicine, 136 Harrison Avenue, Boston, MA 02111-1800, USA
| | | | | | | | | |
Collapse
|
38
|
Expression and functional purification of a glycosylation deficient version of the human adenosine 2a receptor for structural studies. Protein Expr Purif 2006; 49:129-37. [PMID: 16630725 DOI: 10.1016/j.pep.2006.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
A glycosylation deficient (dG) version of the human adenosine 2a receptor (hA2aR) was made in Pichia pastoris strain SMD1163. Under optimal conditions, expression levels of between 8 and 12pmol receptor/mg membrane protein were obtained routinely. In a shake flask, this is equivalent to ca. 0.2mg of receptor per litre of culture. The level of functional receptor produced was essentially independent of the pH of the yeast media. In contrast to this, addition of the hA2aR antagonist theophylline to the culture media caused a twofold increase in receptor expression. A similar effect on dG hA2aR production was also observed when the induction temperature was reduced from 29 to 22 degrees C. In P. pastoris membranes, dG hA2aR had native-like pharmacological properties, binding antagonists with rank potency ZM241385>XAC>theophylline, as well as the agonist NECA. Furthermore, the receptor was made with its large (ca. 120 amino acid) C-terminal domain intact. dG hA2aR was purified to homogeneity in three steps, and its identity confirmed by electrospray tandem mass spectrometry following digestion with trypsin. The secondary structure of the entire receptor is largely (ca. 81%) alpha-helical. Purified dG hA2aR bound [(3)H]ZM241385 in a saturable manner with a B(max) of 18.1+/-0.5 nmol/mg protein, close to the theoretical B(max) value for pure protein (21.3 nmol/mg protein), showing that the receptor had retained its functionality during the purification process. Regular production of pure dG hA2aR in milligram quantities has enabled crystallisation trials to be started.
Collapse
|
39
|
Grossfield A, Feller SE, Pitman MC. A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci U S A 2006; 103:4888-93. [PMID: 16547139 PMCID: PMC1458765 DOI: 10.1073/pnas.0508352103] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Indexed: 11/18/2022] Open
Abstract
Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; omega-3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA's effects on rhodopsin stability and kinetics.
Collapse
Affiliation(s)
- Alan Grossfield
- *T. J. Watson Research Center, IBM, 1101 Kitchawan Road, Yorktown Heights, NY 10598; and
| | - Scott E. Feller
- Department of Chemistry, Wabash College, 301 West Wabash Avenue, Crawfordsville, IN 47933
| | - Michael C. Pitman
- *T. J. Watson Research Center, IBM, 1101 Kitchawan Road, Yorktown Heights, NY 10598; and
| |
Collapse
|
40
|
Riekel C, Burghammer M, Schertler G. Protein crystallography microdiffraction. Curr Opin Struct Biol 2006; 15:556-62. [PMID: 16168633 DOI: 10.1016/j.sbi.2005.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 11/15/2022]
Abstract
Protein microdiffraction using monochromatic beams is becoming a routine tool at third-generation synchrotron radiation sources. Beam sizes have reached the scale of about 5 microm, with illuminated crystal volumes of approximately 500 microm3, as shown for the case of bovine rhodopsin, which was refined to a resolution of 2.6 A. Progress in X-ray optical systems and instrumentation will enable the method to be extended to smaller beams and smaller crystal volumes.
Collapse
Affiliation(s)
- Christian Riekel
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France.
| | | | | |
Collapse
|
41
|
Akermoun M, Koglin M, Zvalova-Iooss D, Folschweiller N, Dowell SJ, Gearing KL. Characterization of 16 human G protein-coupled receptors expressed in baculovirus-infected insect cells. Protein Expr Purif 2006; 44:65-74. [PMID: 15951199 DOI: 10.1016/j.pep.2005.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/21/2005] [Accepted: 04/24/2005] [Indexed: 10/25/2022]
Abstract
Understanding the three-dimensional structure of G protein-coupled receptors (GPCRs) has been limited by the technical challenges associated with expression, purification, and crystallization of membrane proteins, and their low abundance in native tissue. In the first large-scale comparative study of GPCR protein production using recombinant baculovirus, we report the characterization of 16 human receptors. The GPCRs were produced in three insect cell lines and functional protein levels monitored over 72 h using radioligand binding assays. Different GPCRs exhibited widely different expression levels, ranging from less than 1 pmol receptor/mg protein to more than 250 pmol/mg. No single set of conditions was suitable for all GPCRs, and large differences were seen for the expression of individual GPCRs in different cell lines. Closely related GPCRs did not share similar expression profiles; however, high expression (greater than 20 pmol/mg) was achieved for over half the GPCRs in our study. Overall, the levels of protein production compared favourably to other published systems.
Collapse
Affiliation(s)
- Malika Akermoun
- Gene Expression and Protein Biochemistry, GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Rhodopsin, the first purified G-protein-coupled receptor (GPCR), was characterized as a functional monomer 30 year ago, but dimerization of GPCRs recently became the new paradigm of signal transduction. It has even been claimed, on the basis of recent biophysical and biochemical studies, that this new concept could be extended to higher-order oligomerization. Here this view is challenged. The new studies of rhodopsin and other simple (class 1a) GPCRs solubilized in detergent are re-assessed and are compared to the earlier classical studies of rhodopsin and other membrane proteins solubilized in detergent. The new studies are found to strengthen rather than invalidate the conclusions of the early ones and to support a monomeric model for rhodopsin and other class 1a GPCRs. A molecular model is proposed for the functional coupling of a rhodopsin monomeric unit with a G-protein heterotrimer. This model should be valid even for GPCRs that exist as structural dimers.
Collapse
Affiliation(s)
- Marc Chabre
- Institut de Pharmacologie Moleculaire et Cellulaire, CNRS and Université de Nice-Sophia-Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
43
|
Jidenko M, Nielsen RC, Sørensen TLM, Møller JV, le Maire M, Nissen P, Jaxel C. Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2005; 102:11687-91. [PMID: 16087876 PMCID: PMC1187984 DOI: 10.1073/pnas.0503986102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ca2+-ATPase SERCA1a (sarcoplasmic-endoplasmic reticulum Ca2+-ATPase isoform 1a) from rabbit has been overexpressed in Saccharomyces cerevisiae. This membrane protein was purified by avidin agarose affinity chromatography based on natural biotinylation in the expression host, followed by HPLC gel filtration. Both the functional and structural properties of the overexpressed protein validate the method. Thus, calcium-dependent ATPase activity and calcium transport are essentially intact after reconstitution in proteoliposomes. Moreover, the recombinant protein crystallizes in a form that is isomorphous to the native SERCA1a protein from rabbit, and the diffraction properties are similar. This represents a successful crystallization of a mammalian membrane protein derived from a heterologous expression system, and it opens the way for the study of mutant forms of SERCA1a.
Collapse
Affiliation(s)
- Marie Jidenko
- Unité de Recherche Associée 2096 of the Centre National de la Recherche Scientifique and Service de Biophysique des Fonctions Membranaires, Département de Biologie Joliot Curie, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Jongejan A, Leurs R. Delineation of Receptor-Ligand Interactions at the Human Histamine H1 Receptor by a Combined Approach of Site-Directed Mutagenesis and Computational Techniques - or - How to Bind the H1 Receptor. Arch Pharm (Weinheim) 2005; 338:248-59. [PMID: 15952243 DOI: 10.1002/ardp.200400998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Histamine H(1) antagonists or "antihistamines" are one of the most prescribed drug families in Western countries. They exert their effect by binding to the histamine H(1) receptor, a receptor belonging to the class of rhodopsin-like G protein-coupled receptors (GPCRs). In this review, the binding of ligands to the human histamine H(1) receptor with respect to site-directed mutagenesis studies and molecular modeling techniques is described. The ligands described include agonists (histamine and histaprodifens), a stereoselective partial agonist (lisuride), and selected inverse agonists (mepyramine, acrivastine and triprolidine).
Collapse
Affiliation(s)
- Aldo Jongejan
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | | |
Collapse
|