1
|
Petersen M, Behera SP, Majumdar A, Barrick D. Thermodynamic Coupling in a Consensus-Designed Spectrin Repeat Protein. J Phys Chem B 2025; 129:4614-4628. [PMID: 40324019 DOI: 10.1021/acs.jpcb.4c08772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Cooperativity is a central feature to protein folding and is important for protein design. Repeat proteins are good systems for quantifying the thermodynamic basis of cooperativity. Analysis of repeat proteins composed of identical consensus repeats show that repeats strongly drive the folding of their neighbors through extensive tertiary contacts. Here, we use the consensus approach to quantify the cooperativity of folding of spectrin repeat arrays. Spectrin repeats are unique among tandem repeat proteins in that they share an elongated α-helix that spans neighboring repeats. We generate a consensus spectrin repeat sequence and show that this sequence is structured by CD and NMR spectroscopy, and is considerably more stable than extant spectrin repeats. By generating pairs of consensus spectrin repeats, we find tandem repeats to be further stabilized, demonstrating cooperative stabilization by neighboring repeats. Using an Ising model to analyze single- and tandem spectrin repeat unfolding, we find that the consensus stability increase results from intrinsic but not interfacial stabilization. By introducing mutations and insertions at the boundary between consensus repeats, we find that cooperativity is driven primarily by helical propagation; to a lesser extent, helix propagation also stabilizes partly folded states where one of two repeats is unfolded.
Collapse
Affiliation(s)
- Mark Petersen
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Soumya Prakash Behera
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- The Biophysical NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Doug Barrick
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Denha SA, DeLaet NR, Abukamil AW, Alexopoulos AN, Keller AR, Atang AE, Avery AW. Molecular consequences of SCA5 mutations in the spectrin-repeat domains of β-III-spectrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613313. [PMID: 39345584 PMCID: PMC11429872 DOI: 10.1101/2024.09.17.613313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Spinocerebellar ataxia type 5 (SCA5) mutations in the protein β-III-spectrin cluster to the N-terminal actin-binding domain (ABD) and the central spectrin-repeat domains (SRDs). We previously reported that a common molecular consequence of ABD-localized SCA5 mutations is increased actin binding. However, little is known about the molecular consequences of the SRD-localized mutations. It is known that the SRDs of β-spectrin proteins interact with α-spectrin to form an α/β-spectrin dimer. In addition, it is known that SRDs neighbouring the β-spectrin ABD enhance actin binding. Here, we tested the impact of the SRD-localized R480W and the E532_M544del mutations on the binding of β-III-spectrin to α-II-spectrin and actin. Using multiple experimental approaches, we show that both the R480W and E532_M544del mutants can bind α-II-spectrin. However, E532_M544del causes partial uncoupling of complementary SRDs in the α/β-spectrin dimer. Further, the R480W mutant forms large intracellular inclusions when co-expressed with α-II-spectrin in cells, supporting that R480W mutation grossly disrupts the α-II/β-III-spectrin physical complex. Moreover, actin-binding assays show that E532_M544del, but not R480W, increases β-III-spectrin actin binding. Altogether, these data support that SRD-localized mutations alter key interactions of β-III-spectrin with α-II-spectrin and actin.
Collapse
Affiliation(s)
- Sarah A. Denha
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Naomi R. DeLaet
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Abeer W. Abukamil
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | | | - Amanda R. Keller
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Alexandra E. Atang
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Adam W. Avery
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| |
Collapse
|
3
|
da Silva FB, Martins de Oliveira V, de Oliveira Junior AB, Contessoto VDG, Leite VBP. Probing the Energy Landscape of Spectrin R15 and R16 and the Effects of Non-native Interactions. J Phys Chem B 2023; 127:1291-1300. [PMID: 36723393 DOI: 10.1021/acs.jpcb.2c06178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding the details of a protein folding mechanism can be a challenging and complex task. One system with an interesting folding behavior is the α-spectrin domain, where the R15 folds three-orders of magnitude faster than its homologues R16 and R17, despite having similar structures. The molecular origins that explain these folding rate differences remain unclear, but our previous work revealed that a combined effect produced by non-native interactions could be a reasonable cause for these differences. In this study, we explore further the folding process by identifying the molecular paths, metastable states, and the collective motions that lead these unfolded proteins to their native state conformation. Our results uncovered the differences between the folding pathways for the wild-type R15 and R16 and an R16 mutant. The metastable ensembles that speed down the folding were identified using an energy landscape visualization method (ELViM). These ensembles correspond to similar experimentally reported configurations. Our observations indicate that the non-native interactions are also associated with secondary structure misdocking. This computational methodology can be used as a fast, straightforward protocol for shedding light on systems with unclear folding or conformational traps.
Collapse
Affiliation(s)
- Fernando Bruno da Silva
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo15054-000, Brazil
| | - Vinícius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | | | | | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo15054-000, Brazil
| |
Collapse
|
4
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Abstract
Cooperativity is a hallmark of protein folding, but the thermodynamic origins of cooperativity are difficult to quantify. Tandem repeat proteins provide a unique experimental system to quantify cooperativity due to their internal symmetry and their tolerance of deletion, extension, and in some cases fragmentation into single repeats. Analysis of repeat proteins of different lengths with nearest-neighbor Ising models provides values for repeat folding ([Formula: see text]) and inter-repeat coupling (ΔGi-1,i). In this article, we review the architecture of repeat proteins and classify them in terms of ΔGi and ΔGi-1,i; this classification scheme groups repeat proteins according to their degree of cooperativity. We then present various statistical thermodynamic models, based on the 1D-Ising model, for analysis of different classes of repeat proteins. We use these models to analyze data for highly and moderately cooperative and noncooperative repeat proteins and relate their fitted parameters to overall structural features.
Collapse
Affiliation(s)
- Mark Petersen
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.,T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
6
|
Cotranslational folding cooperativity of contiguous domains of α-spectrin. Proc Natl Acad Sci U S A 2020; 117:14119-14126. [PMID: 32513720 DOI: 10.1073/pnas.1909683117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.
Collapse
|
7
|
Leveille E, Estiar MA, Krohn L, Spiegelman D, Dionne-Laporte A, Dupré N, Trempe JF, Rouleau GA, Gan-Or Z. SPTAN1 variants as a potential cause for autosomal recessive hereditary spastic paraplegia. J Hum Genet 2019; 64:1145-1151. [DOI: 10.1038/s10038-019-0669-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
|
8
|
Ma KM, Thomas ES, Wereszczynski J, Menhart N. Empirical and Computational Comparison of Alternative Therapeutic Exon Skip Repairs for Duchenne Muscular Dystrophy. Biochemistry 2019; 58:2061-2076. [PMID: 30896926 DOI: 10.1021/acs.biochem.9b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a common and devastating genetic disease primarily caused by exon deletions that create a genetic frameshift in dystrophin. Exon skipping therapy seeks to correct this by masking an exon during the mRNA maturation process, restoring dystrophin expression, but creating an edited protein missing both the original defect and the therapeutically skipped region. Crucially, it is possible to correct many defects in alternative ways, by skipping an exon either before or after the patient's defect. This results in alternatively edited, hybrid proteins that might have different properties and therapeutic consequences. We examined three such dystrophin exon-skipped edits, Δe45-53, Δe46-54, and Δe47-55, comprising two pairs of alternative repairs of Δe46-53 and Δe47-54 DMD defects. We found that in both cases, Δe46-54 was the more stable repair as determined by a variety of thermodynamic and biochemical measurements. We also examined the origin of these differences with molecular dynamics simulations, which showed that these stability differences were the result of different types of structural perturbations. For example, in one edit there was partial unfolding at the edit site that caused domain-localized perturbations while in another there was unfolding at the protein domain junctions distal to the edit site that increased molecular flexibility. These results demonstrate that alternative exon skip repairs of the same underlying defect can have very different consequences at the level of protein structure and stability and furthermore that these can arise by different mechanisms, either locally or by more subtle long-range perturbations.
Collapse
|
9
|
Bruno da Silva F, Contessoto VG, de Oliveira VM, Clarke J, Leite VBP. Non-Native Cooperative Interactions Modulate Protein Folding Rates. J Phys Chem B 2018; 122:10817-10824. [DOI: 10.1021/acs.jpcb.8b08990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernando Bruno da Silva
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| | - Vinícius G. Contessoto
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Campinas - São Paulo 13083-100, Brazil
| | - Vinícius M. de Oliveira
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Vitor B. P. Leite
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| |
Collapse
|
10
|
Yrazu FM, Pinamonti G, Clementi C. The Effect of Electrostatic Interactions on the Folding Kinetics of a 3-α-Helical Bundle Protein Family. J Phys Chem B 2018; 122:11800-11806. [PMID: 30277393 DOI: 10.1021/acs.jpcb.8b08676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The trio of protein segment repeats called spectrins diverges by more than 2 orders of magnitude in their folding and unfolding rates, despite having very similar stabilities and almost coincidental topologies. Experimental studies revealed that the mutation of five particular residues dramatically alters the kinetic rates in the slow folders, making them similar to the rates of the fast folder. This is considered to be an exceptional behavior which seems in principle to challenge the current understanding of the protein folding process. In this work, we analyze this scenario, using a simplified computational model, combined with state-of-the-art kinetic analysis techniques. Our model faithfully separates the kinetics of the fast and slow folders and captures the effect of the five mutations. We show that the inclusion of electrostatics in the model is necessary to explain the experimental findings.
Collapse
Affiliation(s)
- Fernando Miguel Yrazu
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Giovanni Pinamonti
- Department of Informatics and Mathematics , Freie Universität Berlin , 14195 Berlin , Germany
| | - Cecilia Clementi
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States.,Department of Informatics and Mathematics , Freie Universität Berlin , 14195 Berlin , Germany.,Center for Theoretical Biological Physics and Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
11
|
Le S, Hu X, Yao M, Chen H, Yu M, Xu X, Nakazawa N, Margadant FM, Sheetz MP, Yan J. Mechanotransmission and Mechanosensing of Human alpha-Actinin 1. Cell Rep 2017; 21:2714-2723. [DOI: 10.1016/j.celrep.2017.11.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/15/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
|
12
|
Structural analysis of P. falciparum KAHRP and PfEMP1 complexes with host erythrocyte spectrin suggests a model for cytoadherent knob protrusions. PLoS Pathog 2017; 13:e1006552. [PMID: 28806784 PMCID: PMC5570508 DOI: 10.1371/journal.ppat.1006552] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/24/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues. Here we characterize the interactions of PfEMP1 and KAHRP with host erythrocyte spectrin using biophysical, structural and computational approaches. These interactions assist knob formation and, thus, promote cytoadherence. We show that the folded core of the PfEMP1 cytosolic domain interacts broadly with erythrocyte spectrin but shows weak, residue-specific preference for domain 17 of α spectrin, which is proximal to the erythrocyte cytoskeletal junction. In contrast, a protein sequence repeat region in KAHRP preferentially associates with domains 10–14 of β spectrin, proximal to the spectrin–ankyrin complex. Structural models of PfEMP1 and KAHRP with spectrin combined with previous microscopy and protein interaction data suggest a model for knob architecture. Formation of cytoadherent knobs on the surface of P. falciparum infected erythrocytes correlates with malaria pathology. Two parasite proteins central for knob formation and cytoadherence, KAHRP and PfEMP1, have previously been shown to bind the erythrocyte cytoskeleton. Both KAHRP and PfEMP1 include large segments of protein disorder, which have previously hampered their analysis. In this study we use biophysics and structural biology tools to analyze the interactions between these proteins and host spectrin. We devise a novel computational tool to help us towards this goal that may be broadly applicable to characterizing other complexes of widespread, disordered Plasmodial proteins and host components. We derive atomistic models of KAHRP–spectrin and PfEMP1 –spectrin complexes, and integrate these into an emerging model of knob architecture.
Collapse
|
13
|
Gessner C, Steinchen W, Bédard S, J Skinner J, Woods VL, Walsh TJ, Bange G, Pantazatos DP. Computational method allowing Hydrogen-Deuterium Exchange Mass Spectrometry at single amide Resolution. Sci Rep 2017. [PMID: 28630467 PMCID: PMC5476592 DOI: 10.1038/s41598-017-03922-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (HDXMS) is a rapid and effective method for localizing and determining protein stability and dynamics. Localization is routinely limited to a peptide resolution of 5 to 20 amino acid residues. HDXMS data can contain information beyond that needed for defining protein stability at single amide resolution. Here we present a method for extracting this information from an HDX dataset to generate a HDXMS protein stability fingerprint. High resolution (HR)-HDXMS was applied to the analysis of a model protein of a spectrin tandem repeat that exemplified an intuitive stability profile based on the linkage of two triple helical repeats connected by a helical linker. The fingerprint recapitulated expected stability maximums and minimums with interesting structural features that corroborate proposed mechanisms of spectrin flexibility and elasticity. HR-HDXMS provides the unprecedented ability to accurately assess protein stability at the resolution of a single amino acid. The determination of HDX stability fingerprints may be broadly applicable in many applications for understanding protein structure and function as well as protein ligand interactions.
Collapse
Affiliation(s)
- Chris Gessner
- Indiana University, Department of Informatics and Computing, Bloomington, IN, USA
| | - Wieland Steinchen
- Philipps-University Marburg, Faculty of Chemistry & LOEWE Center for Synthetic Microbiology Hans-Meerwein-Strasse, 35043, Marburg, Germany
| | - Sabrina Bédard
- GlaxoSmithKline, Platform Technology & Science, Collegeville Road, Collegeville, Pennsylvania, 19426, United States
| | - John J Skinner
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, China
| | - Virgil L Woods
- Indiana University, Department of Informatics and Computing, Bloomington, IN, USA
| | - Thomas J Walsh
- Weill Cornell Medicine, Transplantation-Oncology Infectious Disease Program, Division of Infectious Diseases, 1300 York Ave, New York, NY, 10065, USA
| | - Gert Bange
- Philipps-University Marburg, Faculty of Chemistry & LOEWE Center for Synthetic Microbiology Hans-Meerwein-Strasse, 35043, Marburg, Germany
| | - Dionysios P Pantazatos
- Weill Cornell Medicine, Transplantation-Oncology Infectious Disease Program, Division of Infectious Diseases, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Delalande O, Czogalla A, Hubert JF, Sikorski A, Le Rumeur E. Dystrophin and Spectrin, Two Highly Dissimilar Sisters of the Same Family. Subcell Biochem 2017; 82:373-403. [PMID: 28101868 DOI: 10.1007/978-3-319-49674-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dystrophin and Spectrin are two proteins essential for the organization of the cytoskeleton and for the stabilization of membrane cells. The comparison of these two sister proteins, and with the dystrophin homologue utrophin, enables us to emphasise that, despite a similar topology with common subdomains and a common structural basis of a three-helix coiled-coil, they show a large range of dissimilarities in terms of genetics, cell expression and higher level structural organisation. Interactions with cellular partners, including proteins and membrane phospholipids, also show both strikingly similar and very different behaviours. The differences between dystrophin and spectrin are also illustrated by the large variety of pathological anomalies emerging from the dysfunction or the absence of these proteins, showing that they are keystones in their function of providing a scaffold that sustains cell structure.
Collapse
Affiliation(s)
- Olivier Delalande
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France.
| | - Aleksander Czogalla
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jean-François Hubert
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| | - Aleksander Sikorski
- Biotechnology Faculty, Department of Cytobiochemistry, University of Wrocław, ul. joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Elisabeth Le Rumeur
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, Rennes, France
| |
Collapse
|
15
|
Ortega E, Manso JA, Buey RM, Carballido AM, Carabias A, Sonnenberg A, de Pereda JM. The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape. J Biol Chem 2016; 291:18643-62. [PMID: 27413182 DOI: 10.1074/jbc.m116.732909] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 11/06/2022] Open
Abstract
Plakins are large multi-domain proteins that interconnect cytoskeletal structures. Plectin is a prototypical plakin that tethers intermediate filaments to membrane-associated complexes. Most plakins contain a plakin domain formed by up to nine spectrin repeats (SR1-SR9) and an SH3 domain. The plakin domains of plectin and other plakins harbor binding sites for junctional proteins. We have combined x-ray crystallography with small angle x-ray scattering (SAXS) to elucidate the structure of the plakin domain of plectin, extending our previous analysis of the SR1 to SR5 region. Two crystal structures of the SR5-SR6 region allowed us to characterize its uniquely wide inter-repeat conformational variability. We also report the crystal structures of the SR7-SR8 region, refined to 1.8 Å, and the SR7-SR9 at lower resolution. The SR7-SR9 region, which is conserved in all other plakin domains, forms a rigid segment stabilized by uniquely extensive inter-repeat contacts mediated by unusually long helices in SR8 and SR9. Using SAXS we show that in solution the SR3-SR6 and SR7-SR9 regions are rod-like segments and that SR3-SR9 of plectin has an extended shape with a small central kink. Other plakins, such as bullous pemphigoid antigen 1 and microtubule and actin cross-linking factor 1, are likely to have similar extended plakin domains. In contrast, desmoplakin has a two-segment structure with a central flexible hinge. The continuous versus segmented structures of the plakin domains of plectin and desmoplakin give insight into how different plakins might respond to tension and transmit mechanical signals.
Collapse
Affiliation(s)
- Esther Ortega
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - José A Manso
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Rubén M Buey
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain, the Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Salamanca, 37007, Spain, and
| | - Ana M Carballido
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Carabias
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - Arnoud Sonnenberg
- the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M de Pereda
- From the Instituto de Biología Molecular y Celular del Cancer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain,
| |
Collapse
|
16
|
Oruc Z, Oblet C, Boumediene A, Druilhe A, Pascal V, Le Rumeur E, Cuvillier A, El Hamel C, Lecardeur S, Leanderson T, Morelle W, Demengeot J, Aldigier JC, Cogné M. IgA Structure Variations Associate with Immune Stimulations and IgA Mesangial Deposition. J Am Soc Nephrol 2016; 27:2748-61. [PMID: 26825533 DOI: 10.1681/asn.2015080911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/17/2015] [Indexed: 11/03/2022] Open
Abstract
IgA1 mesangial deposition is the hallmark of IgA nephropathy and Henoch-Schönlein purpura, the onset of which often follows infections. Deposited IgA has been reported as polymeric, J chain associated, and often, hypogalactosylated but with no information concerning the influence of the IgA repertoire or the link between immune stimuli and IgA structure. We explored these issues in the α1KI mouse model, which produces polyclonal human IgA1 prone to mesangial deposition. Compared with mice challenged by a conventional environment, mice in a specific pathogen-free environment had less IgA deposition. However, serum IgA of specific pathogen-free mice showed more galactosylation and much lower polymerization. Notably, wild-type, α1KI, and even J chain-deficient mice showed increased polymeric serum IgA on exposure to pathogens. Strict germfree conditions delayed but did not completely prevent deposition; mice housed in these conditions had very low serum IgA levels and produced essentially monomeric IgA. Finally, comparing monoclonal IgA1 that had different variable regions and mesangial deposition patterns indicated that, independently of glycosylation and polymerization, deposition might also depend on IgA carrying specific variable domains. Together with IgA quantities and constant region post-translational modifications, repertoire changes during immune responses might, thus, modulate IgA propensity to deposition. These IgA features are not associated with circulating immune complexes and C3 deposition and are more pertinent to an initial IgA deposition step preceding overt clinical symptoms in patients.
Collapse
Affiliation(s)
- Zeliha Oruc
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | - Christelle Oblet
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | - Ahmed Boumediene
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | - Anne Druilhe
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | - Virginie Pascal
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | - Elisabeth Le Rumeur
- Genetics and Development Instittute, Rennes University, Centre National de la Recherche Scientifique, Rennes, France
| | | | - Chahrazed El Hamel
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | - Sandrine Lecardeur
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | | | - Willy Morelle
- Centre National de la Recherche Scientifique, Laboratory of Structural and Functional Glycobiology, University of Lille 1, France; and
| | | | - Jean-Claude Aldigier
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France
| | - Michel Cogné
- Limoges University Hospital Dupuytren, Centre National de la Recherche Scientifique, Limoges University, Limoges, France;
| |
Collapse
|
17
|
Brown JW, Bullitt E, Sriswasdi S, Harper S, Speicher DW, McKnight CJ. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap. PLoS Comput Biol 2015; 11:e1004302. [PMID: 26067675 PMCID: PMC4466138 DOI: 10.1371/journal.pcbi.1004302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 01/29/2023] Open
Abstract
The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin’s physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin’s quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use. Spectrins are cytoskeletal and scaffolding proteins ubiquitously expressed in essentially all cell-types. Despite unequivocal evidence for a short physiological length of ~55–65 nm at rest, spectrin is typically represented as an extended ~200 nm molecule that is implied based on crystallographic structures of a number of tandem repeats. Here, we incorporate previously reported biochemical and crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the physiological compact form of spectrin. In addition to explaining spectrin’s physiological resting length (~55–65 nm), our model provides a mechanism by which spectrin can undergo a seamless three-fold extension, which is an experimentally observed property that is responsible for restoration of cell shape after mechanical deformation.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, UPMC Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sira Sriswasdi
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sandra Harper
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- Center for Systems and Computational Biology, and Molecular and Cellular Oncogenesis Program, the Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Monlezun L, Liebl D, Fenel D, Grandjean T, Berry A, Schoehn G, Dessein R, Faudry E, Attree I. PscI is a type III secretion needle anchoring protein within vitropolymerization capacities. Mol Microbiol 2015; 96:419-36. [DOI: 10.1111/mmi.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Monlezun
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - David Liebl
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Daphna Fenel
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
| | - Teddy Grandjean
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Alice Berry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Guy Schoehn
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
- Unit for Virus Host Cell Interactions UMI 3265 (UJF-EMBL-CNRS); 38027 Grenoble France
| | - Rodrigue Dessein
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Eric Faudry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Ina Attree
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| |
Collapse
|
19
|
Patra M, Mukhopadhyay C, Chakrabarti A. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride. PLoS One 2015; 10:e0116991. [PMID: 25617632 PMCID: PMC4305312 DOI: 10.1371/journal.pone.0116991] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGuH20) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from.
Collapse
Affiliation(s)
- Malay Patra
- Chemistry Department, University of Calcutta, Kolkata, West Bengal, India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Nicolas A, Delalande O, Hubert JF, Le Rumeur E. The spectrin family of proteins: A unique coiled-coil fold for various molecular surface properties. J Struct Biol 2014; 186:392-401. [DOI: 10.1016/j.jsb.2014.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
|
21
|
Kwa LG, Wensley BG, Alexander CG, Browning SJ, Lichman BR, Clarke J. The folding of a family of three-helix bundle proteins: spectrin R15 has a robust folding nucleus, unlike its homologous neighbours. J Mol Biol 2014; 426:1600-10. [PMID: 24373753 PMCID: PMC3988883 DOI: 10.1016/j.jmb.2013.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/13/2022]
Abstract
Three homologous spectrin domains have remarkably different folding characteristics. We have previously shown that the slow-folding R16 and R17 spectrin domains can be altered to resemble the fast folding R15, in terms of speed of folding (and unfolding), landscape roughness and folding mechanism, simply by substituting five residues in the core. Here we show that, by contrast, R15 cannot be engineered to resemble R16 and R17. It is possible to engineer a slow-folding version of R15, but our analysis shows that this protein neither has a rougher energy landscape nor does change its folding mechanism. Quite remarkably, R15 appears to be a rare example of a protein with a folding nucleus that does not change in position or in size when its folding nucleus is disrupted. Thus, while two members of this protein family are remarkably plastic, the third has apparently a restricted folding landscape.
Collapse
Affiliation(s)
- Lee Gyan Kwa
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Beth G Wensley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Crispin G Alexander
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Stuart J Browning
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Benjamin R Lichman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
22
|
Probing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry. Proc Natl Acad Sci U S A 2014; 111:1801-6. [PMID: 24453214 DOI: 10.1073/pnas.1317620111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conformational changes of macromolecular complexes play key mechanistic roles in many biological processes, but large, highly flexible proteins and protein complexes usually cannot be analyzed by crystallography or NMR. Here, structures and conformational changes of the highly flexible, dynamic red cell spectrin and effects of a common mutation that disrupts red cell membranes were elucidated using chemical cross-linking coupled with mass spectrometry. Interconversion of spectrin between closed dimers, open dimers, and tetramers plays a key role in maintaining red cell shape and membrane integrity, and spectrins in other cell types serve these as well as more diverse functions. Using a minispectrin construct, experimentally verified structures of closed dimers and tetramers were determined by combining distance constraints from zero-length cross-links with molecular models and biophysical data. Subsequent biophysical and structural mass spectrometry characterization of a common hereditary elliptocytosis-related mutation of α-spectrin, L207P, showed that cell membranes were destabilized by a shift of the dimer-tetramer equilibrium toward closed dimers. The structure of αL207P mutant closed dimers provided previously unidentified mechanistic insight into how this mutation, which is located a large distance from the tetramerization site, destabilizes spectrin tetramers and cell membrane integrity.
Collapse
|
23
|
Zhang R, Zhang C, Zhao Q, Li D. Spectrin: structure, function and disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1076-85. [PMID: 24302288 DOI: 10.1007/s11427-013-4575-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/20/2013] [Indexed: 01/23/2023]
Abstract
Spectrin is a large, cytoskeletal, and heterodimeric protein composed of modular structure of α and β subunits, it typically contains 106 contiguous amino acid sequence motifs called "spectrin repeats". Spectrin is crucial for maintaining the stability and structure of the cell membrane and the shape of a cell. Moreover, it contributes to diverse cell functions such as cell adhesion, cell spreading, and the cell cycle. Mutations of spectrin lead to various human diseases such as hereditary hemolytic anemia, type 5 spinocerebellar ataxia, cancer, as well as others. This review focuses on recent advances in determining the structure and function of spectrin as well as its role in disease.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | | | | | | |
Collapse
|
24
|
Giudice E, Molza AE, Laurin Y, Nicolas A, Le Rumeur E, Delalande O. Molecular clues about the dystrophin-neuronal nitric oxide synthase interaction: a theoretical approach. Biochemistry 2013; 52:7777-84. [PMID: 24063785 DOI: 10.1021/bi400794p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dystrophin is a large skeletal muscle protein located at the internal face of the plasma membrane and interacting with membrane phospholipids and a number of cytosolic proteins. Binding of neuronal nitric oxide synthase (nNOS) to dystrophin appears to be crucial for exercise-induced increases in blood supply in muscle cells. By contrast, utrophin, the developmental homologous protein of dystrophin, does not display nNOS interaction. Recent in vitro and in vivo experiments showed that the dystrophin region involved in nNOS binding is located in spectrin-like repeats R16 and R17 of its filamentous central domain. Using homology modeling and atomistic molecular dynamics simulation, we compared the structural organization and surface potentials of dystrophin, utrophin, and chimeric fragments, thus revisiting the dystrophin-nNOS binding region. Our simulation results are in good agreement with experimental data. They provide a three-dimensional representation of the repeats and give insight into the molecular organization of the regions involved in dystrophin-nNOS interaction. This study also further elucidates the physical properties crucial for this interaction, particularly the presence of a large hydrophobic patch. These results will be helpful to improving our understanding of the phenotypic features of patients bearing mutations in the nNOS-binding region of dystrophin.
Collapse
|
25
|
Harper SL, Sriswasdi S, Tang HY, Gaetani M, Gallagher PG, Speicher DW. The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation. Blood 2013; 122:3045-53. [PMID: 23974198 PMCID: PMC3811177 DOI: 10.1182/blood-2013-02-487702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/15/2013] [Indexed: 12/13/2022] Open
Abstract
Hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP) are common disorders of erythrocyte shape primarily because of mutations in spectrin. The most common HE/HPP mutations are located distant from the critical αβ-spectrin tetramerization site, yet still interfere with formation of spectrin tetramers and destabilize the membrane by unknown mechanisms. To address this question, we studied the common HE-associated mutation, αL260P, in the context of a fully functional mini-spectrin. The mutation exhibited wild-type tetramer binding in univalent binding assays, but reduced binding affinity in bivalent-binding assays. Biophysical analyses demonstrated the mutation-containing domain was only modestly structurally destabilized and helical content was not significantly changed. Gel filtration analysis of the αL260P mini-spectrin indicated more compact structures for dimers and tetramers compared with wild-type. Chemical crosslinking showed structural changes in the mutant mini-spectrin dimer were primarily restricted to the vicinity of the αL260P mutation and indicated large conformational rearrangements of this region. These data indicate the mutation increased the stability of the closed dimer state, thereby reducing tetramer assembly and resulting in membrane destabilization. These results reveal a novel mechanism of erythrocyte membrane destabilization that could contribute to development of therapeutic interventions for mutations in membrane proteins containing spectrin-type domains associated with inherited disease.
Collapse
Affiliation(s)
- Sandra L Harper
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
26
|
Best RB. How well does a funneled energy landscape capture the folding mechanism of spectrin domains? J Phys Chem B 2013; 117:13235-44. [PMID: 23947368 PMCID: PMC3808457 DOI: 10.1021/jp403305a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three structurally similar domains from α-spectrin have been shown to fold very differently. First, there is a contrast in the folding mechanism, as probed by Φ-value analysis, between the R15 domain and the R16 and R17 domains. Second, there are very different contributions from internal friction to folding: the folding rate of the R15 domain was found to be inversely proportional to solvent viscosity, showing no apparent frictional contribution from the protein, but in the other two domains, a large internal friction component was evident. Non-native misdocking of helices has been suggested to be responsible for this phenomenon. Here, I study the folding of these three proteins with minimalist coarse-grained models based on a funneled energy landscape. Remarkably, I find that, despite the absence of non-native interactions, the differences in folding mechanism of the domains are well captured by the model, and the agreement of the Φ-values with experiment is fairly good. On the other hand, within the context of this model, there are no significant differences in diffusion coefficient along the chosen folding coordinate, and the model cannot explain the large differences in folding rates between the proteins found experimentally. These results are nonetheless consistent with the expectations from the energy landscape perspective of protein folding, namely, that the folding mechanism is primarily determined by the native-like interactions present in the Gō-like model, with missing non-native interactions being required to explain the differences in "internal friction" seen in experiment.
Collapse
Affiliation(s)
- Robert B. Best
- Cambridge University, Department of Chemistry, Lensfield Road Cambridge CB2 1EW, and Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| |
Collapse
|
27
|
Applewhite DA, Grode KD, Duncan MC, Rogers SL. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol Biol Cell 2013; 24:2885-93. [PMID: 23885120 PMCID: PMC3771950 DOI: 10.1091/mbc.e12-11-0798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The authors investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot) and found that Shot undergoes an intramolecular conformational change that regulates its cross-linking activity. This intramolecular interaction depends on Shot's NH2-terminal actin-binding domain and EF-hand-GAS2 domain. Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.
Collapse
Affiliation(s)
- Derek A Applewhite
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | | | | | |
Collapse
|
28
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
29
|
Autore F, Pfuhl M, Quan X, Williams A, Roberts RG, Shanahan CM, Fraternali F. Large-scale modelling of the divergent spectrin repeats in nesprins: giant modular proteins. PLoS One 2013; 8:e63633. [PMID: 23671687 PMCID: PMC3646009 DOI: 10.1371/journal.pone.0063633] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 04/09/2013] [Indexed: 11/29/2022] Open
Abstract
Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.
Collapse
Affiliation(s)
- Flavia Autore
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Mark Pfuhl
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
| | - Xueping Quan
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
| | - Aisling Williams
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Roland G. Roberts
- Division of Medical and Molecular Genetics, Kings College London, Guy's Hospital, London, United Kingdom
| | - Catherine M. Shanahan
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, School of Physical Sciences and Engineering, King's College London, London, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, London, United Kingdom
| |
Collapse
|
30
|
Wensley BG, Kwa LG, Shammas SL, Rogers JM, Clarke J. Protein folding: adding a nucleus to guide helix docking reduces landscape roughness. J Mol Biol 2012; 423:273-83. [PMID: 22917971 PMCID: PMC3469821 DOI: 10.1016/j.jmb.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022]
Abstract
The elongated three-helix‐bundle spectrin domains R16 and R17 fold and unfold unusually slowly over a rough energy landscape, in contrast to the homologue R15, which folds fast over a much smoother, more typical landscape. R15 folds via a nucleation–condensation mechanism that guides the docking of the A and C-helices. However, in R16 and R17, the secondary structure forms first and the two helices must then dock in the correct register. Here, we use variants of R16 and R17 to demonstrate that substitution of just five key residues is sufficient to alter the folding mechanism and reduce the landscape roughness. We suggest that, by providing access to an alternative, faster, folding route over their landscape, R16 and R17 can circumvent their slow, frustrated wild-type folding mechanism.
Collapse
Affiliation(s)
- Beth G Wensley
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | | | |
Collapse
|
31
|
Muthu M, Richardson KA, Sutherland-Smith AJ. The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries. PLoS One 2012; 7:e40066. [PMID: 22911693 PMCID: PMC3401230 DOI: 10.1371/journal.pone.0040066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.
Collapse
Affiliation(s)
- Muralidharan Muthu
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Kylie A. Richardson
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
32
|
Vishwanatha KS, Wang YP, Keutmann HT, Mains RE, Eipper BA. Structural organization of the nine spectrin repeats of Kalirin. Biochemistry 2012; 51:5663-73. [PMID: 22738176 DOI: 10.1021/bi300583s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sequence analysis suggests that KALRN, a Rho GDP/GTP exchange factor genetically linked to schizophrenia, could contain as many as nine tandem spectrin repeats (SRs). We expressed and purified fragments of Kalirin containing from one to five putative SRs to determine whether they formed nested structures that could endow Kalirin with the flexible rodlike properties characteristic of spectrin and dystrophin. Far-UV circular dichroism studies indicated that Kalirin contains nine SRs. On the basis of thermal denaturation, sensitivity to chemical denaturants, and the solubility of pairs of repeats, the nine SRs of Kalirin form nested structures. Modeling studies confirmed this conclusion and identified an exposed loop in SR5; consistent with the modeling, this loop was extremely labile to proteolytic cleavage. Analysis of a direpeat fragment (SR4:5) encompassing the region of Kalirin known to interact with NOS2, DISC-1, PAM, and Arf6 identified this as the least stable region. Analytical ultracentrifugation indicated that SR1:3, SR4:6, and SR7:9 were monomers and adopted an extended conformation. Gel filtration suggested that ΔKal7, a natural isoform that includes SR5:9, was monomeric and was not more extended than SR5:9. Similarly, the nine SRs of Kal7, which was also monomeric, were not more extended than SR5:9. The rigidity and flexibility of the nine SRs of Kal7, which separate its essential N-terminal Sec14p domain from its catalytic domain, play an essential role in its contribution to the formation and function of dendritic spines.
Collapse
Affiliation(s)
- K S Vishwanatha
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
33
|
Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains. Proc Natl Acad Sci U S A 2012; 109:17795-9. [PMID: 22711800 DOI: 10.1073/pnas.1201793109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The elongated three-helix bundle domains spectrin R16 and R17 fold some two to three orders of magnitude more slowly than their homologue R15. We have shown that this slow folding is due, at least in part, to roughness in the free-energy landscape of R16 and R17. We have proposed that this roughness is due to a frustrated search for the correct docking of partly preformed helices. However, this accounts for only a small part of the slowing of folding and unfolding. Five residues on the A helix of R15, when inserted together into R16 or R17, increase the folding rate constants, reduce landscape roughness, and alter the folding mechanism to one resembling R15. The effect of each of these mutations individually is investigated here. No one mutation causes the behavior seen for the five in combination. However, two mutations, E18F and K25V, significantly increase the folding and unfolding rates of both R16 and R17 but without a concomitant loss in landscape roughness. E18F has the greatest effect on the kinetics, and a Φ-value analysis of the C helix reveals that the folding mechanism is unchanged. For both E18F and K25V the removal of the charge and resultant transition state stabilization is the main origin of the faster folding. Consequently, the major cause of the unusually slow folding of R16 and R17 is the non-native burial of the two charged residues in the transition state. The slowing due to landscape roughness is only about fivefold.
Collapse
|
34
|
Brenner AK, Kieffer B, Travé G, Frøystein NA, Raae AJ. Thermal stability of chicken brain α-spectrin repeat 17: a spectroscopic study. JOURNAL OF BIOMOLECULAR NMR 2012; 53:71-83. [PMID: 22569754 DOI: 10.1007/s10858-012-9620-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/12/2012] [Indexed: 05/31/2023]
Abstract
Spectrin is a rod-like multi-modular protein that is mainly composed of triple-helical repeats. These repeats show very similar 3D-structures but variable conformational and thermodynamical stabilities, which may be of great importance for the flexibility and dynamic behaviour of spectrin in the cell. For instance, repeat 17 (R17) of the chicken brain spectrin α-chain is four times less stable than neighbouring repeat 16 (R16) in terms of ∆G. The structure of spectrin repeats has mainly been investigated by X-ray crystallography, but the structures of a few repeats, e.g. R16, have also been determined by NMR spectroscopy. Here, we undertook a detailed characterization of the neighbouring R17 by NMR spectroscopy. We assigned most backbone resonances and observed NOE restraints, relaxation values and coupling constants that all indicated that the fold of R17 is highly similar to that of R16, in agreement with previous X-ray analysis of a tandem repeat of the two domains. However, (15)N heteronuclear NMR spectra measured at different temperatures revealed particular features of the R17 domain that might contribute to its lower stability. Conformational exchange appeared to alter the linker connecting R17 to R16 as well as the BC-loop in close proximity. In addition, heat-induced splitting was observed for backbone resonances of a few spatially related residues including V99 of helix C, which in R16 is replaced by the larger hydrophobic tryptophan residue that is relatively conserved among other spectrin repeats. These data support the view that the substitution of tryptophan by valine at this position may contribute to the lower stability of R17.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Chemistry, University of Bergen, PObox 7800, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
35
|
A new twist to coiled coil. FEBS Lett 2012; 586:2717-22. [DOI: 10.1016/j.febslet.2012.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/21/2023]
|
36
|
Acsadi G, Moore SA, Chéron A, Delalande O, Bennett L, Kupsky W, El-Baba M, Le Rumeur E, Hubert JF. Novel mutation in spectrin-like repeat 1 of dystrophin central domain causes protein misfolding and mild Becker muscular dystrophy. J Biol Chem 2012; 287:18153-62. [PMID: 22453924 DOI: 10.1074/jbc.m111.284521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the dystrophin gene without disruption of the reading frame often lead to Becker muscular dystrophy, but a genotype/phenotype correlation is difficult to establish. Amino acid substitutions may disrupt binding capacities of dystrophin and have a major impact on the functionality of this protein. We have identified two brothers (ages 8 and 10 years) with very mild proximal weakness, recurrent abdominal pain, and moderately elevated serum creatine kinase levels. Gene sequencing revealed a novel mutation in exon 11 of the dystrophin gene (c.1280T>C) leading to a L427P amino acid substitution in repeat 1 of the central rod domain. Immunostaining of skeletal muscle showed weak staining of the dystrophin region encoded by exons 7 and 8 corresponding to the end of the actin-binding domain 1 and the N-terminal part of hinge 1. Spectrofluorescence and circular dichroism analysis of the domain repeat 1-2 (R1-2) revealed partial misfolding of the L427P mutated protein as well as a reduced refolding rate after denaturation. Based on computational homology models of the wild-type and mutated R1-2, a molecular dynamics study showed an alteration in the flexibility of the structure, which also strongly affects the conformational space available in the N-terminal region of the fragment. Our results suggest that this missense mutation hinders the dynamic properties of the entire N-terminal region of dystrophin.
Collapse
Affiliation(s)
- Gyula Acsadi
- Connecticut Children's Medical Center, Hartford, Connecticut 06106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Two immunoglobulin tandem proteins with a linking β-strand reveal unexpected differences in cooperativity and folding pathways. J Mol Biol 2011; 416:137-47. [PMID: 22197372 PMCID: PMC3277889 DOI: 10.1016/j.jmb.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022]
Abstract
The study of the folding of single domains, in the context of their multidomain environment, is important because more than 70% of eukaryotic proteins are composed of multiple domains. The structures of the tandem immunoglobulin (Ig) domain pairs A164–A165 and A168–A169, from the A-band of the giant muscle protein titin, reveal that they form tightly associated domain arrangements, connected by a continuous β-strand. We investigate the thermodynamic and kinetic properties of these tandem domain pairs. While A164–A165 apparently behaves as a single cooperative unit at equilibrium, unfolding without the accumulation of a large population of intermediates, domains in A168–A169 behave independently. Although A169 appears to be stabilized in the tandem protein, we show that this is due to nonspecific stabilization by extension. We elucidate the folding and unfolding pathways of both tandem pairs and show that cooperativity in A164–A165 is a manifestation of the relative refolding and unfolding rate constants of each individual domain. We infer that the differences between the two tandem pairs result from a different pattern of interactions at the domain/domain interface.
Collapse
|
38
|
Addario B, Huang S, Sauer UH, Backman L. Crystallization and preliminary X-ray analysis of the Entamoeba histolytica α-actinin-2 rod domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1214-7. [PMID: 22102030 PMCID: PMC3212365 DOI: 10.1107/s1744309111026066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/01/2011] [Indexed: 11/10/2022]
Abstract
α-Actinins form antiparallel homodimers that are able to cross-link actin filaments. The protein contains three domains: an N-terminal actin-binding domain followed by a central rod domain and a calmodulin-like EF-hand domain at the C-terminus. Here, crystallization of the rod domain of Entamoeba histolytica α-actinin-2 is reported; it crystallized in space group P2(1)2(1)2(1), with unit-cell parameters a = 47.8, b = 79.1, c = 141.8 Å. A Matthews coefficient V(M) of 2.6 Å(3) Da(-1) suggests that there are two molecules and 52.5% solvent content in the asymmetric unit. A complete native data set extending to a d-spacing of 2.8 Å was collected on beamline I911-2 at MAX-lab, Sweden.
Collapse
Affiliation(s)
- Barbara Addario
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
39
|
Legrand B, Giudice E, Nicolas A, Delalande O, Le Rumeur E. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics. PLoS One 2011; 6:e23819. [PMID: 21901138 PMCID: PMC3162007 DOI: 10.1371/journal.pone.0023819] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/26/2011] [Indexed: 01/16/2023] Open
Abstract
Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.
Collapse
Affiliation(s)
- Baptiste Legrand
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Emmanuel Giudice
- Université de Rennes 1, Rennes, France
- Equipe SDM, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Aurélie Nicolas
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Olivier Delalande
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Elisabeth Le Rumeur
- Université de Rennes 1, Rennes, France
- Equipe RMN-ILP, Faculté de médecine, UMR CNRS 6026, Rennes, France
- Université Européenne de Bretagne, Rennes, France
- * E-mail:
| |
Collapse
|
40
|
Kajava AV. Tandem repeats in proteins: from sequence to structure. J Struct Biol 2011; 179:279-88. [PMID: 21884799 DOI: 10.1016/j.jsb.2011.08.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
The bioinformatics analysis of proteins containing tandem repeats requires special computer programs and databases, since the conventional approaches predominantly developed for globular domains have limited success. Here, I survey bioinformatics tools which have been developed recently for identification and proteome-wide analysis of protein repeats. The last few years have also been marked by an emergence of new 3D structures of these proteins. Appraisal of the known structures and their classification uncovers a straightforward relationship between their architecture and the length of the repetitive units. This relationship and the repetitive character of structural folds suggest rules for better prediction of the 3D structures of such proteins. Furthermore, bioinformatics approaches combined with low resolution structural data, from biophysical techniques, especially, the recently emerged cryo-electron microscopy, lead to reliable prediction of the protein repeat structures and their mode of binding with partners within molecular complexes. This hybrid approach can actively be used for structural and functional annotations of proteomes.
Collapse
Affiliation(s)
- Andrey V Kajava
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, Université Montpellier 1 et 2, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France.
| |
Collapse
|
41
|
Sarkis J, Hubert JF, Legrand B, Robert E, Chéron A, Jardin J, Hitti E, Le Rumeur E, Vié V. Spectrin-like repeats 11-15 of human dystrophin show adaptations to a lipidic environment. J Biol Chem 2011; 286:30481-30491. [PMID: 21712383 DOI: 10.1074/jbc.m111.243881] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dystrophin is essential to skeletal muscle function and confers resistance to the sarcolemma by interacting with cytoskeleton and membrane. In the present work, we characterized the behavior of dystrophin 11-15 (DYS R11-15), five spectrin-like repeats from the central domain of human dystrophin, with lipids. DYS R11-15 displays an amphiphilic character at the liquid/air interface while maintaining its secondary α-helical structure. The interaction of DYS R11-15 with small unilamellar vesicles (SUVs) depends on the lipid nature, which is not the case with large unilamellar vesicles (LUVs). In addition, switching from anionic SUVs to anionic LUVs suggests the lipid packing as a crucial factor for the interaction of protein and lipid. The monolayer model and the modulation of surface pressure aim to mimic the muscle at work (i.e. dynamic changes of muscle membrane during contraction and relaxation) (high and low surface pressure). Strikingly, the lateral pressure modifies the protein organization. Increasing the lateral pressure leads the proteins to be organized in a regular network. Nevertheless, a different protein conformation after its binding to monolayer is revealed by trypsin proteolysis. Label-free quantification by nano-LC/MS/MS allowed identification of the helices in repeats 12 and 13 involved in the interaction with anionic SUVs. These results, combined with our previous studies, indicate that DYS R11-15 constitutes the only part of dystrophin that interacts with anionic as well as zwitterionic lipids and adapts its interaction and organization depending on lipid packing and lipid nature. We provide strong experimental evidence for a physiological role of the central domain of dystrophin in sarcolemma scaffolding through modulation of lipid-protein interactions.
Collapse
Affiliation(s)
- Joe Sarkis
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France; UMR-CNRS 6251, Institut de Physique de Rennes, Université de Rennes 1, 35042 Rennes, France
| | - Jean-François Hubert
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Baptiste Legrand
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Estelle Robert
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6251, Institut de Physique de Rennes, Université de Rennes 1, 35042 Rennes, France
| | - Angélique Chéron
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Julien Jardin
- Université Européenne de Bretagne, 35000 Rennes, France; Institut National de la Recherche Agronomique (INRA), AGROCAMPUS-OUEST, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35042 Rennes, France
| | - Eric Hitti
- Université Européenne de Bretagne, 35000 Rennes, France; Laboratoire Traitement du Signal et de l'Image (LTSI), INSERM 642, 35042 Rennes, France
| | - Elisabeth Le Rumeur
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6026-IFR 140, Equipe RMN-Interactions Lipides Protéines, Faculté de Médecine, CS 34317, 35043 Rennes, France
| | - Véronique Vié
- Université Européenne de Bretagne, 35000 Rennes, France; UMR-CNRS 6251, Institut de Physique de Rennes, Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
42
|
Sknepnek R, Vernizzi G, de la Cruz MO. Shape change of nanocontainers via a reversible ionic buckling. PHYSICAL REVIEW LETTERS 2011; 106:215504. [PMID: 21699315 DOI: 10.1103/physrevlett.106.215504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 05/31/2023]
Abstract
We demonstrate that small charged nanocages can undergo reversible changes of shapes by modifying the ionic conditions including salt concentration, pH, and dielectric permittivity of the medium. Using numerical simulations, we analyze structures with various charge stoichiometric ratios. At zero or low charge densities, the shape of the cage is determined by its elastic properties, and the surface charge pattern is dictated by the globally fixed geometry. As the charge density per molecule increases, the shape is strongly affected by the electrostatic forces. In this regime, the shape of the nanocage is controlled by the charge distribution.
Collapse
Affiliation(s)
- Rastko Sknepnek
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
43
|
Crystal structure of a rigid four-spectrin-repeat fragment of the human desmoplakin plakin domain. J Mol Biol 2011; 409:800-12. [PMID: 21536047 DOI: 10.1016/j.jmb.2011.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 12/17/2022]
Abstract
The plakin protein family serves to connect cell-cell and cell-matrix adhesion molecules to the intermediate filament cytoskeleton. Desmoplakin (DP) is an integral part of desmosomes, where it links desmosomal cadherins to the intermediate filaments. The 1056-amino-acid N-terminal region of DP contains a plakin domain common to members of the plakin family. Plakin domains contain multiple copies of spectrin repeats (SRs). We determined the crystal structure of a fragment of DP, residues 175-630, consisting of four SRs and an inserted SH3 domain. The four repeats form an elongated, rigid structure. The SH3 domain is present in a loop between two helices of an SR and interacts extensively with the preceding SR in a manner that appears to limit inter-repeat flexibility. The intimate intramolecular association of the SH3 domain with the preceding SR is also observed in plectin, another plakin protein, but not in α-spectrin, suggesting that the SH3 domain of plakins contributes to the stability and rigidity of this subfamily of SR-containing proteins.
Collapse
|
44
|
Czogalla A, Sikorski AF. Do we already know how spectrin attracts ankyrin? Cell Mol Life Sci 2010; 67:2679-83. [PMID: 20411297 PMCID: PMC11115695 DOI: 10.1007/s00018-010-0371-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
The interaction of ankyrin and spectrin yields the major anchor between the membrane skeleton and the lipid bilayer. It is critical for red cell deformability and stability, and it is also involved in the cellular localization of several proteins, in cell differentiation, and in neuron activity. Therefore, its nature is of great interest, and recently, several researchers have had varying degrees of success in elucidating the structural basis of ankyrin-spectrin recognition. In this short paper, we briefly summarize the data obtained and compare the resulting conclusions.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland.
| | | |
Collapse
|
45
|
Eastman P, Pande VS. Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. J Comput Chem 2010; 31:1268-72. [PMID: 19847780 DOI: 10.1002/jcc.21413] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe an algorithm for computing nonbonded interactions with cutoffs on a graphics processing unit. We have incorporated it into OpenMM, a library for performing molecular simulations on high-performance computer architectures. We benchmark it on a variety of systems including boxes of water molecules, proteins in explicit solvent, a lipid bilayer, and proteins with implicit solvent. The results demonstrate that its performance scales linearly with the number of atoms over a wide range of system sizes, while being significantly faster than other published algorithms.
Collapse
Affiliation(s)
- Peter Eastman
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
46
|
Saitsu H, Tohyama J, Kumada T, Egawa K, Hamada K, Okada I, Mizuguchi T, Osaka H, Miyata R, Furukawa T, Haginoya K, Hoshino H, Goto T, Hachiya Y, Yamagata T, Saitoh S, Nagai T, Nishiyama K, Nishimura A, Miyake N, Komada M, Hayashi K, Hirai SI, Ogata K, Kato M, Fukuda A, Matsumoto N. Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet 2010; 86:881-91. [PMID: 20493457 DOI: 10.1016/j.ajhg.2010.04.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 11/24/2022] Open
Abstract
A de novo 9q33.3-q34.11 microdeletion involving STXBP1 has been found in one of four individuals (group A) with early-onset West syndrome, severe hypomyelination, poor visual attention, and developmental delay. Although haploinsufficiency of STXBP1 was involved in early infantile epileptic encephalopathy in a previous different cohort study (group B), no mutations of STXBP1 were found in two of the remaining three subjects of group A (one was unavailable). We assumed that another gene within the deletion might contribute to the phenotype of group A. SPTAN1 encoding alpha-II spectrin, which is essential for proper myelination in zebrafish, turned out to be deleted. In two subjects, an in-frame 3 bp deletion and a 6 bp duplication in SPTAN1 were found at the initial nucleation site of the alpha/beta spectrin heterodimer. SPTAN1 was further screened in six unrelated individuals with WS and hypomyelination, but no mutations were found. Recombinant mutant (mut) and wild-type (WT) alpha-II spectrin could assemble heterodimers with beta-II spectrin, but alpha-II (mut)/beta-II spectrin heterodimers were thermolabile compared with the alpha-II (WT)/beta-II heterodimers. Transient expression in mouse cortical neurons revealed aggregation of alpha-II (mut)/beta-II and alpha-II (mut)/beta-III spectrin heterodimers, which was also observed in lymphoblastoid cells from two subjects with in-frame mutations. Clustering of ankyrinG and voltage-gated sodium channels at axon initial segment (AIS) was disturbed in relation to the aggregates, together with an elevated action potential threshold. These findings suggest that pathological aggregation of alpha/beta spectrin heterodimers and abnormal AIS integrity resulting from SPTAN1 mutations were involved in pathogenesis of infantile epilepsy.
Collapse
|
47
|
Dystrophin: more than just the sum of its parts. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1713-22. [PMID: 20472103 DOI: 10.1016/j.bbapap.2010.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/05/2023]
Abstract
Dystrophin is one of a number of large cytoskeleton associated proteins that connect between various cytoskeletal elements and often are tethered to the membrane through other transmembrane protein complexes. These cytolinker proteins often provide structure and support to the cells where they are expressed, and mutations in genes encoding these proteins frequently gives rise to disease. Dystrophin is no exception in any of these respects, providing connections between a transmembrane complex known as the dystrophin-glycoprotein complex and the underlying cytoskeleton. The most established connection and possibly the most important is that to F-actin, but more recently evidence has been forthcoming of connections to membrane phospholipids, intermediate filaments and microtubules. Moreover it is becoming increasingly clear that the multiple spectrin-like repeats in the centre of the molecule, that had hitherto been thought to be largely redundant, harbour binding activities that have a significant impact on dystrophin functionality. This functionality is particularly apparent when assessed by the ability to rescue the dystrophic phenotype in mdx mice. This review will focus on the relatively neglected but functionally vital coiled-coil region of dystrophin, highlighting the structural relationships and interactions of the coiled-coil region and providing new insights into the functional role of this region.
Collapse
|
48
|
Zhong Z, Chang SA, Kalinowski A, Wilson KL, Dahl KN. Stabilization of the spectrin-like domains of nesprin-1α by the evolutionarily conserved "adaptive" domain. Cell Mol Bioeng 2010; 3:139-150. [PMID: 20563238 DOI: 10.1007/s12195-010-0121-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nesprins are located at the outer and inner membranes of the nuclear envelope and help link the cytoskeleton to the nucleoskeleton. Nesprin-1α, located at the inner nuclear membrane, binds to A-type lamins and emerin and has homology to spectrin-repeat proteins. However, the mechanical and thermodynamic properties of the spectrin-like repeats (SLRs) of nesprin-1α and the potential structural contributions of the unique central domain were untested. In other spectrin superfamily proteins, tandem spectrin-repeat domains undergo cooperatively coupled folding and unfolding. We hypothesized that the large central domain, which interrupts SLRs and is conserved in other nesprin isoforms, might confer unique structural properties. To test this model we measured the thermal unfolding of nesprin-1α fragments using circular dichroism and dynamic light scattering. The SLRs in nesprin-1α were found to have structural and thermodynamic properties typical of spectrins. The central domain had relatively little secondary structure as an isolated fragment, but significantly stabilized larger SLR-containing molecules by increasing their overall helicity, thermal stability and cooperativity of folding. We suggest this domain, now termed the 'adaptive' domain (AD), also strengthens dimerization and inhibits unfolding. Further engineering of the isolated AD, and AD-containing nesprin molecules, may yield new information about the higher-order association of cooperative protein motifs.
Collapse
Affiliation(s)
- Zhixia Zhong
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
49
|
Mehboob S, Song Y, Witek M, Long F, Santarsiero BD, Johnson ME, Fung LWM. Crystal structure of the nonerythroid alpha-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J Biol Chem 2010; 285:14572-84. [PMID: 20228407 DOI: 10.1074/jbc.m109.080028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have solved the crystal structure of a segment of nonerythroid alpha-spectrin (alphaII) consisting of the first 147 residues to a resolution of 2.3 A. We find that the structure of this segment is generally similar to a corresponding segment from erythroid alpha-spectrin (alphaI) but exhibits unique differences with functional significance. Specific features include the following: (i) an irregular and frayed first helix (Helix C'); (ii) a helical conformation in the junction region connecting Helix C' with the first structural domain (D1); (iii) a long A(1)B(1) loop in D1; and (iv) specific inter-helix hydrogen bonds/salt bridges that stabilize D1. Our findings suggest that the hydrogen bond networks contribute to structural domain stability, and thus rigidity, in alphaII, and the lack of such hydrogen bond networks in alphaI leads to flexibility in alphaI. We have previously shown the junction region connecting Helix C' to D1 to be unstructured in alphaI (Park, S., Caffrey, M. S., Johnson, M. E., and Fung, L. W. (2003) J. Biol. Chem. 278, 21837-21844) and now find it to be helical in alphaII, an important difference for alpha-spectrin association with beta-spectrin in forming tetramers. Homology modeling and molecular dynamics simulation studies of the structure of the tetramerization site, a triple helical bundle of partial domain helices, show that mutations in alpha-spectrin will affect Helix C' structural flexibility and/or the junction region conformation and may alter the equilibrium between spectrin dimers and tetramers in cells. Mutations leading to reduced levels of functional tetramers in cells may potentially lead to abnormal neuronal functions.
Collapse
Affiliation(s)
- Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 2010; 115:4843-52. [PMID: 20197550 DOI: 10.1182/blood-2010-01-261396] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrin fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in alpha-spectrin that occur upon binding to beta-spectrin, and it reports the first structure of the beta-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.
Collapse
|