1
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
2
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA-mediated Multimerization of DegU and an Upstream Activation Sequence Enhance Flagellar Gene Expression in Bacillus subtilis. J Mol Biol 2024; 436:168419. [PMID: 38141873 PMCID: PMC11462632 DOI: 10.1016/j.jmb.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The earliest genes in bacterial flagellar assembly are activated by narrowly-conserved proteins called master regulators that often act as heteromeric complexes. A complex of SwrA and the response-regulator transcription factor DegU is thought to form the master flagellar regulator in Bacillus subtilis but how the two proteins co-operate to activate gene expression is poorly-understood. Here we find using ChIP-Seq that SwrA interacts with a subset of DegU binding sites in the chromosome and does so in a DegU-dependent manner. Using this information, we identify a DegU-specific inverted repeat DNA sequence in the Pflache promoter region and show that SwrA synergizes with DegU phosphorylation to increase binding affinity. We further demonstrate that the SwrA/DegU footprint extends from the DegU binding site towards the promoter, likely through SwrA-induced DegU multimerization. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription by disrupting a previously-unrecognized upstream activation sequence (UAS). Thus, the SwrA-DegU heteromeric complex likely enables both remote binding and interaction between the activator and RNA polymerase. Small co-activator proteins like SwrA may allow selective activation of subsets of genes where activator multimerization is needed. Why some promoters require activator multimerization and some require UAS sequences is unknown.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Anna C Hughes
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
3
|
Kronborg K, Zhang YE. cAMP competitively inhibits periplasmic phosphatases to coordinate nutritional growth with competence of Haemophilus influenzae. J Biol Chem 2023; 299:105404. [PMID: 38229398 PMCID: PMC10694654 DOI: 10.1016/j.jbc.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024] Open
Abstract
Most naturally competent bacteria tightly regulate the window of the competent state to maximize their ecological fitness under specific conditions. Development of competence by Haemophilus influenzae strain Rd KW20 is stimulated by cAMP and inhibited by purine nucleotides, respectively. In contrast, cAMP inhibits cell growth, but nucleotides are important for KW20 growth. However, the mechanisms underlying the abovementioned reciprocal effects are unclear. Here, we first identified a periplasmic acid phosphatase AphAEc of Escherichia coli as a new cAMP-binding protein. We show cAMP competitively inhibits the phosphatase activities of AphAEc and its homolog protein AphAHi in the KW20 strain. Furthermore, we found cAMP inhibits two other periplasmic nonspecific phosphatases, NadNHi (which provides the essential growth factor V, NAD) and HelHi (eP4, which converts NADP to NAD) in KW20. We demonstrate cAMP inhibits cell growth rate, especially via NadNHi. On the other hand, the inhibitory effect of purine nucleotide AMP on competence was abolished in the triple deletion mutant ΔhelHiΔnadNHiΔaphAHi, but not in the single, double deletion or complemented strains. Adenosine, however, still inhibited the competence of the triple deletion mutant, demonstrating the crucial role of the three phosphatases in converting nucleotides to nucleosides and thus inhibiting KW20 competence. Finally, cAMP restored the competence inhibited by GMP in a dose-dependent manner, but not competence inhibited by guanosine. Altogether, we uncovered these three periplasmic phosphatases as the key players underlying the antagonistic effects of cAMP and purine nucleotides on both cell growth and competence development of H. influenzae.
Collapse
Affiliation(s)
- Kristina Kronborg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Shin J, Rychel K, Palsson BO. Systems biology of competency in Vibrio natriegens is revealed by applying novel data analytics to the transcriptome. Cell Rep 2023; 42:112619. [PMID: 37285268 DOI: 10.1016/j.celrep.2023.112619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Vibrio natriegens regulates natural competence through the TfoX and QstR transcription factors, which are involved in external DNA capture and transport. However, the extensive genetic and transcriptional regulatory basis for competency remains unknown. We used a machine-learning approach to decompose Vibrio natriegens's transcriptome into 45 groups of independently modulated sets of genes (iModulons). Our findings show that competency is associated with the repression of two housekeeping iModulons (iron metabolism and translation) and the activation of six iModulons; including TfoX and QstR, a novel iModulon of unknown function, and three housekeeping iModulons (representing motility, polycations, and reactive oxygen species [ROS] responses). Phenotypic screening of 83 gene deletion strains demonstrates that loss of iModulon function reduces or eliminates competency. This database-iModulon-discovery cycle unveils the transcriptomic basis for competency and its relationship to housekeeping functions. These results provide the genetic basis for systems biology of competency in this organism.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Liu D, Zhang H, Tan H, Jin Y, Zhang C, Bo Z, Zhang X, Guo M, Wu Y. Basic Characterization of Natural Transformation in Avibacterium paragallinarum. Microbiol Spectr 2023; 11:e0520922. [PMID: 37212663 PMCID: PMC10269479 DOI: 10.1128/spectrum.05209-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
Avibacterium paragallinarum is the pathogen involved in infectious coryza (IC), an acute infectious upper respiratory disease in chickens. The prevalence of IC has increased in China in recent years. There is a lack of reliable and effective procedures for gene manipulation, which has limited the research on the bacterial genetics and pathogenesis of A. paragallinarum. Natural transformation has been developed as a method of gene manipulation in Pasteurellaceae by the introduction of foreign genes or DNA fragments into bacterial cells, but there has been no report on natural transformation in A. paragallinarum. In this study, we analyzed the existence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum and established a method for transformation in it. Through bioinformatics analysis, we identified 16 homologs of Haemophilus influenzae competence proteins in A. paragallinarum. We found that the uptake signal sequence (USS) was overrepresented in the genome of A. paragallinarum (1,537 to 1,641 copies of the core sequence ACCGCACTT). We then constructed a plasmid, pEA-KU, that carries the USS and a plasmid, pEA-K, without the USS. These plasmids can be transferred via natural transformation into naturally competent strains of A. paragallinarum. Significantly, the plasmid that carries USS showed a higher transformation efficiency. In summary, our results demonstrate that A. paragallinarum has the ability to undergo natural transformation. These findings should prove to be a valuable tool for gene manipulation in A. paragallinarum. IMPORTANCE Natural transformation is an important mechanism for bacteria to acquire exogenous DNA molecules during the process of evolution. Additionally, it can also be used as a method to introduce foreign genes into bacteria under laboratory conditions. Natural transformation does not require equipment such as an electroporation apparatus. It is easy to perform and is similar to gene transfer under natural conditions. However, there have been no reports on natural transformation in Avibacterium paragallinarum. In this study, we analyzed the presence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum. Our results indicate that natural competence could be induced in A. paragallinarum serovars A, B, and C. Furthermore, the method that we established to transform plasmids into naturally competent A. paragallinarum strains was stable and efficient.
Collapse
Affiliation(s)
- Donghui Liu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huihui Tan
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yikun Jin
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, Jiangsu, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Euba B, Gil-Campillo C, Asensio-López J, López-López N, Sen-Kilic E, Díez-Martínez R, Burgui S, Barbier M, Garmendia J. In Vivo Genome-Wide Gene Expression Profiling Reveals That Haemophilus influenzae Purine Synthesis Pathway Benefits Its Infectivity within the Airways. Microbiol Spectr 2023; 11:e0082323. [PMID: 37195232 PMCID: PMC10269889 DOI: 10.1128/spectrum.00823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Haemophilus influenzae is a human-adapted bacterial pathogen that causes airway infections. Bacterial and host elements associated with the fitness of H. influenzae within the host lung are not well understood. Here, we exploited the strength of in vivo-omic analyses to study host-microbe interactions during infection. We used in vivo transcriptome sequencing (RNA-seq) for genome-wide profiling of both host and bacterial gene expression during mouse lung infection. Profiling of murine lung gene expression upon infection showed upregulation of lung inflammatory response and ribosomal organization genes, and downregulation of cell adhesion and cytoskeleton genes. Transcriptomic analysis of bacteria recovered from bronchoalveolar lavage fluid samples from infected mice showed a significant metabolic rewiring during infection, which was highly different from that obtained upon bacterial in vitro growth in an artificial sputum medium suitable for H. influenzae. In vivo RNA-seq revealed upregulation of bacterial de novo purine biosynthesis, genes involved in non-aromatic amino acid biosynthesis, and part of the natural competence machinery. In contrast, the expression of genes involved in fatty acid and cell wall synthesis and lipooligosaccharide decoration was downregulated. Correlations between upregulated gene expression and mutant attenuation in vivo were established, as observed upon purH gene inactivation leading to purine auxotrophy. Likewise, the purine analogs 6-thioguanine and 6-mercaptopurine reduced H. influenzae viability in a dose-dependent manner. These data expand our understanding of H. influenzae requirements during infection. In particular, H. influenzae exploits purine nucleotide synthesis as a fitness determinant, raising the possibility of purine synthesis as an anti-H. influenzae target. IMPORTANCE In vivo-omic strategies offer great opportunities for increased understanding of host-pathogen interplay and for identification of therapeutic targets. Here, using transcriptome sequencing, we profiled host and pathogen gene expression during H. influenzae infection within the murine airways. Lung pro-inflammatory gene expression reprogramming was observed. Moreover, we uncovered bacterial metabolic requirements during infection. In particular, we identified purine synthesis as a key player, highlighting that H. influenzae may face restrictions in purine nucleotide availability within the host airways. Therefore, blocking this biosynthetic process may have therapeutic potential, as supported by the observed inhibitory effect of 6-thioguanine and 6-mercaptopurine on H. influenzae growth. Together, we present key outcomes and challenges for implementing in vivo-omics in bacterial airway pathogenesis. Our findings provide metabolic insights into H. influenzae infection biology, raising the possibility of purine synthesis as an anti-H. influenzae target and of purine analog repurposing as an antimicrobial strategy against this pathogen.
Collapse
Affiliation(s)
- Begoña Euba
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emel Sen-Kilic
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Mariette Barbier
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Junkal Garmendia
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexión Nanomedicina-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Green VE, Klancher CA, Yamamoto S, Dalia AB. The molecular mechanism for carbon catabolite repression of the chitin response in Vibrio cholerae. PLoS Genet 2023; 19:e1010767. [PMID: 37172034 PMCID: PMC10208484 DOI: 10.1371/journal.pgen.1010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/24/2023] [Accepted: 04/30/2023] [Indexed: 05/14/2023] Open
Abstract
Vibrio cholerae is a facultative pathogen that primarily occupies marine environments. In this niche, V. cholerae commonly interacts with the chitinous shells of crustacean zooplankton. As a chitinolytic microbe, V. cholerae degrades insoluble chitin into soluble oligosaccharides. Chitin oligosaccharides serve as both a nutrient source and an environmental cue that induces a strong transcriptional response in V. cholerae. Namely, these oligosaccharides induce the chitin sensor, ChiS, to activate the genes required for chitin utilization and horizontal gene transfer by natural transformation. Thus, interactions with chitin impact the survival of V. cholerae in marine environments. Chitin is a complex carbon source for V. cholerae to degrade and consume, and the presence of more energetically favorable carbon sources can inhibit chitin utilization. This phenomenon, known as carbon catabolite repression (CCR), is mediated by the glucose-specific Enzyme IIA (EIIAGlc) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). In the presence of glucose, EIIAGlc becomes dephosphorylated, which inhibits ChiS transcriptional activity by an unknown mechanism. Here, we show that dephosphorylated EIIAGlc interacts with ChiS. We also isolate ChiS suppressor mutants that evade EIIAGlc-dependent repression and demonstrate that these alleles no longer interact with EIIAGlc. These findings suggest that EIIAGlc must interact with ChiS to exert its repressive effect. Importantly, the ChiS suppressor mutations we isolated also relieve repression of chitin utilization and natural transformation by EIIAGlc, suggesting that CCR of these behaviors is primarily regulated through ChiS. Together, our results reveal how nutrient conditions impact the fitness of an important human pathogen in its environmental reservoir.
Collapse
Affiliation(s)
- Virginia E. Green
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Catherine A. Klancher
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
8
|
Daveri A, Benigno V, van der Meer JR. Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida. Nucleic Acids Res 2023; 51:2345-2362. [PMID: 36727472 PMCID: PMC10018362 DOI: 10.1093/nar/gkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.
Collapse
Affiliation(s)
- Andrea Daveri
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
9
|
Tang X, Yang Z, Dai K, Liu G, Chang YF, Tang X, Wang K, Zhang Y, Hu B, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Lang Y, Han X, Huang Y, Wen X, Wen Y. The molecular diversity of transcriptional factor TfoX is a determinant in natural transformation in Glaesserella parasuis. Front Microbiol 2022; 13:948633. [PMID: 35966685 PMCID: PMC9372613 DOI: 10.3389/fmicb.2022.948633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Natural transformation is a mechanism by which a particular bacterial species takes up foreign DNA and integrates it into its genome. The swine pathogen Glaesserella parasuis (G. parasuis) is a naturally transformable bacterium. The regulation of competence, however, is not fully understood. In this study, the natural transformability of 99 strains was investigated. Only 44% of the strains were transformable under laboratory conditions. Through a high-resolution melting curve and phylogenetic analysis, we found that genetic differences in the core regulator of natural transformation, the tfoX gene, leads to two distinct natural transformation phenotypes. In the absence of the tfoX gene, the highly transformable strain SC1401 lost its natural transformability. In addition, when the SC1401 tfoX gene was replaced by the tfoX of SH0165, which has no natural transformability, competence was also lost. These results suggest that TfoX is a core regulator of natural transformation in G. parasuis, and that differences in tfoX can be used as a molecular indicator of natural transformability. Transcriptomic and proteomic analyses of the SC1401 wildtype strain, and a tfoX gene deletion strain showed that differential gene expression and protein synthesis is mainly centered on pathways related to glucose metabolism. The results suggest that tfoX may mediate natural transformation by regulating the metabolism of carbon sources. Our study provides evidence that tfoX plays an important role in the natural transformation of G. parasuis.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Geyan Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xinwei Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bangdi Hu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yiping Wen,
| |
Collapse
|
10
|
López-López N, Gil-Campillo C, Díez-Martínez R, Garmendia J. Learning from -omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Comput Struct Biotechnol J 2021; 19:3042-3050. [PMID: 34136102 PMCID: PMC8178019 DOI: 10.1016/j.csbj.2021.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Haemophilus influenzae has contributed to key bacterial genome sequencing hallmarks, as being not only the first bacterium to be genome-sequenced, but also starring the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, and pioneering Tn-seq methodologies. Over the years, the phenomenal and constantly evolving development of -omic technologies applied to a whole range of biological questions of clinical relevance in the H. influenzae-host interplay, has greatly moved forward our understanding of this human-adapted pathogen, responsible for multiple acute and chronic infections of the respiratory tract. In this way, essential genes, virulence factors, pathoadaptive traits, and multi-layer gene expression regulatory networks with both genomic and epigenomic complexity levels are being elucidated. Likewise, the unstoppable increasing whole genome sequencing information underpinning H. influenzae great genomic plasticity, mainly when referring to non-capsulated strains, poses major challenges to understand the genomic basis of clinically relevant phenotypes and even more, to clearly highlight potential targets of clinical interest for diagnostic, therapeutic or vaccine development. We review here how genomic, transcriptomic, proteomic and metabolomic-based approaches are great contributors to our current understanding of the interactions between H. influenzae and the human airways, and point possible strategies to maximize their usefulness in the context of biomedical research and clinical needs on this human-adapted bacterial pathogen.
Collapse
Affiliation(s)
- Nahikari López-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | | | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
11
|
Pereira RFC, Theizen TH, Machado D, Guarnieri JPDO, Gomide GP, Hollanda LMD, Lancellotti M. Analysis of potential virulence genes and competence to transformation in Haemophilus influenzae biotype aegyptius associated with Brazilian Purpuric Fever. Genet Mol Biol 2021; 44:e20200029. [PMID: 33395458 PMCID: PMC7816109 DOI: 10.1590/1678-4685-gmb-2020-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022] Open
Abstract
Brazilian Purpuric Fever (BPF) is a hemorrhagic pediatric illness caused by Haemophilus influenzae biogroup aegyptius (Hae), a bacterium that was formerly associated with self-limited purulent conjunctivitis. BPF is assumed to be eradicated. However, the virulence mechanisms inherent to Hae strains associated with BPF is still a mystery and deficient in studies. Here, we aim to analyze the role of the autotransporter genes related to adherence and colonization las, tabA1, and hadA genes through RT-qPCR expression profiling and knockout mutants. Relative quantification by real-time PCR after infection in human cells and infant rat model suggests that las was initially downregulated probably duo to immune evasion, tabA1, and hadA were overexpressed in general, suggesting an active role of TabA1 and HadA1 adhesins in Hae in vitro and in vivo. Transformation attempts were unsuccessful despite the use of multiple technical approaches and in silico analysis revealed that Hae lacks genes related to competence in Haemophilus, which could be part of the elucidation of the difficulty of genetically manipulating Hae strains.
Collapse
Affiliation(s)
| | - Thais Holtz Theizen
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil
| | - Daisy Machado
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil
| | | | - Gabriel Piccirillo Gomide
- Universidade Estadual de Campinas - UNICAMP, Faculdade de Ciências Farmacêuticas - FCF, Campinas, SP, Brazil
| | - Luciana Maria de Hollanda
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil
| | - Marcelo Lancellotti
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil.,Universidade Estadual de Campinas - UNICAMP, Faculdade de Ciências Farmacêuticas - FCF, Campinas, SP, Brazil
| |
Collapse
|
12
|
Kc R, Leong KWC, Harkness NM, Lachowicz J, Gautam SS, Cooley LA, McEwan B, Petrovski S, Karupiah G, O'Toole RF. Whole-genome analyses reveal gene content differences between nontypeable Haemophilus influenzae isolates from chronic obstructive pulmonary disease compared to other clinical phenotypes. Microb Genom 2020; 6. [PMID: 32706329 PMCID: PMC7641420 DOI: 10.1099/mgen.0.000405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) colonizes human upper respiratory airways and plays a key role in the course and pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (COPD). Currently, it is not possible to distinguish COPD isolates of NTHi from other clinical isolates of NTHi using conventional genotyping methods. Here, we analysed the core and accessory genome of 568 NTHi isolates, including 40 newly sequenced isolates, to look for genetic distinctions between NTHi isolates from COPD with respect to other illnesses, including otitis media, meningitis and pneumonia. Phylogenies based on polymorphic sites in the core-genome did not show discrimination between NTHi strains collected from different clinical phenotypes. However, pan-genome-wide association studies identified 79 unique NTHi accessory genes that were significantly associated with COPD. Furthermore, many of the COPD-related NTHi genes have known or predicted roles in virulence, transmembrane transport of metal ions and nutrients, cellular respiration and maintenance of redox homeostasis. This indicates that specific genes may be required by NTHi for its survival or virulence in the COPD lung. These results advance our understanding of the pathogenesis of NTHi infection in COPD lungs.
Collapse
Affiliation(s)
- Rajendra Kc
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Kelvin W C Leong
- Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria, Australia
| | - Nicholas M Harkness
- Department of Respiratory and Sleep Medicine, Royal Hobart Hospital, Tasmania, Australia
| | - Julia Lachowicz
- Department of Respiratory and Sleep Medicine, Royal Hobart Hospital, Tasmania, Australia
| | - Sanjay S Gautam
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Louise A Cooley
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmania, Australia
| | - Belinda McEwan
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmania, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria, Australia
| | - Gunasegaran Karupiah
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Ronan F O'Toole
- Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria, Australia
| |
Collapse
|
13
|
A competence-regulated toxin-antitoxin system in Haemophilus influenzae. PLoS One 2020; 15:e0217255. [PMID: 31931516 PMCID: PMC6957337 DOI: 10.1371/journal.pone.0217255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
Natural competence allows bacteria to respond to environmental and nutritional cues by taking up free DNA from their surroundings, thus gaining both nutrients and genetic information. In the Gram-negative bacterium Haemophilus influenzae, the genes needed for DNA uptake are induced by the CRP and Sxy transcription factors in response to lack of preferred carbon sources and nucleotide precursors. Here we show that one of these genes, HI0659, encodes the antitoxin of a competence-regulated toxin-antitoxin operon (‘toxTA’), likely acquired by horizontal gene transfer from a Streptococcus species. Deletion of the putative toxin (HI0660) restores uptake to the antitoxin mutant. The full toxTA operon was present in only 17 of the 181 strains we examined; complete deletion was seen in 22 strains and deletions removing parts of the toxin gene in 142 others. In addition to the expected Sxy- and CRP-dependent-competence promoter, HI0659/660 transcript analysis using RNA-seq identified an internal antitoxin-repressed promoter whose transcription starts within toxT and will yield nonfunctional protein. We propose that the most likely effect of unopposed toxin expression is non-specific cleavage of mRNAs and arrest or death of competent cells in the culture. Although the high frequency of toxT and toxTA deletions suggests that this competence-regulated toxin-antitoxin system may be mildly deleterious, it could also facilitate downregulation of protein synthesis and recycling of nucleotides under starvation conditions. Although our analyses were focused on the effects of toxTA, the RNA-seq dataset will be a useful resource for further investigations into competence regulation.
Collapse
|
14
|
Søndberg E, Sinha AK, Gerdes K, Semsey S. CRP Interacts Specifically With Sxy to Activate Transcription in Escherichia coli. Front Microbiol 2019; 10:2053. [PMID: 31543875 PMCID: PMC6728893 DOI: 10.3389/fmicb.2019.02053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Horizontal gene transfer through natural competence is an important driving force of bacterial evolution and antibiotic resistance development. In several Gram-negative pathogens natural competence is regulated by the concerted action of cAMP receptor protein (CRP) and the transcriptional co-regulator Sxy through a subset of CRP-binding sites (CRP-S sites) at genes encoding competence factors. Despite the wealth of knowledge on CRP’s structure and function it is not known how CRP and Sxy act together to activate transcription. In order to get an insight into the regulatory mechanism by which these two proteins activate gene expression, we performed a series of mutational analyses on CRP and Sxy. We found that CRP contains a previously uncharacterized region necessary for Sxy dependent induction of CRP-S sites, here named “Sxy Interacting Region” (SIR) encompassing residues Q194 and L196. Lost promoter induction in SIR mutants could be restored in the presence of specific complementary Sxy mutants, presenting evidence for a direct interaction of CRP and Sxy proteins in transcriptional activation. Moreover, we identified constitutive mutants of Sxy causing higher levels of CRP-S site promoter activation than wild-type Sxy. Both suppressor and constitutive mutations are located within the same area of Sxy.
Collapse
Affiliation(s)
- Emilie Søndberg
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anurag Kumar Sinha
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Szabolcs Semsey
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Jaskólska M, Stutzmann S, Stoudmann C, Blokesch M. QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res 2019; 46:10619-10634. [PMID: 30102403 PMCID: PMC6237807 DOI: 10.1093/nar/gky717] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
During growth on chitinous surfaces in its natural aquatic environment Vibrio cholerae develops natural competence for transformation and kills neighboring non-immune bacteria using a type VI secretion system (T6SS). Activation of these two phenotypes requires the chitin-induced regulator TfoX, but also integrates signals from quorum sensing via the intermediate regulator QstR, which belongs to the LuxR-type family of regulators. Here, we define the QstR regulon using RNA sequencing. Moreover, by mapping QstR binding sites using chromatin immunoprecipitation coupled with deep sequencing we demonstrate that QstR is a transcription factor that binds upstream of the up- and down-regulated genes. Like other LuxR-type family transcriptional regulators we show that QstR function is dependent on dimerization. However, in contrast to the well-studied LuxR-type biofilm regulator VpsT of V. cholerae, which requires the second messenger c-di-GMP, we show that QstR dimerization and function is c-di-GMP independent. Surprisingly, although ComEA, which is a periplasmic DNA-binding protein essential for transformation, is produced in a QstR-dependent manner, QstR-binding was not detected upstream of comEA suggesting the existence of a further regulatory pathway. Overall, these results provide detailed insights into the function of a key regulator of natural competence and type VI secretion in V. cholerae.
Collapse
Affiliation(s)
- Milena Jaskólska
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Villa TG, Feijoo-Siota L, Sánchez-Pérez A, Rama JLR, Sieiro C. Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved. HORIZONTAL GENE TRANSFER 2019:3-76. [DOI: 10.1007/978-3-030-21862-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Poncin K, Gillet S, De Bolle X. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol Rev 2018; 42:500-513. [PMID: 29733367 DOI: 10.1093/femsre/fuy019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, including the Brucella genus, which is responsible for a worldwide zoonosis. One common feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first described in the model bacterium Caulobacter crescentus, where it controls gene expression at different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-proteobacteria in order to better assess the potential role of CtrA in the infectious context. Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific modules, as well as the acquisition of new factors during evolution. The comparison of CtrA regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these analyses provide an interesting example of the plasticity of a regulation network, subject to the constraints of inherent imperatives such as cell division and the adaptations to diversified environmental niches.
Collapse
Affiliation(s)
- Katy Poncin
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Sébastien Gillet
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Xavier De Bolle
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| |
Collapse
|
18
|
Microevolution in response to transient heme-iron restriction enhances intracellular bacterial community development and persistence. PLoS Pathog 2018; 14:e1007355. [PMID: 30332468 PMCID: PMC6205647 DOI: 10.1371/journal.ppat.1007355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/29/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM. Nontypeable Haemophilus influenzae (NTHI) inhabits diverse niches in the host. The ability to adapt to new microenvironments is consistent with the predominance of NTHI as a causative agent of otitis media (OM) in children. We evaluated the microevolution of NTHI associated with adaptation and persistence in response to nutrient limitation. We identified a naturally occurring mutation that enhances NTHI persistence and formation of intracellular bacterial communities (IBCs) in a pre-clinical model of OM. The presence of IBCs during OM provides the first opportunity to evaluate the role of intracellular populations in chronicity and quiescence as a new paradigm for recurrent OM. This model provides a new platform to identify novel therapeutics for this highly prevalent and costly infectious disease.
Collapse
|
19
|
Heacock-Kang Y, McMillan IA, Zarzycki-Siek J, Sun Z, Bluhm AP, Cabanas D, Hoang TT. The heritable natural competency trait of Burkholderia pseudomallei in other Burkholderia species through comE and crp. Sci Rep 2018; 8:12422. [PMID: 30127446 PMCID: PMC6102250 DOI: 10.1038/s41598-018-30853-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022] Open
Abstract
Natural competency requires uptake of exogenous DNA from the environment and the integration of that DNA into recipient bacteria can be used for DNA-repair or genetic diversification. The Burkholderia genus is unique in that only some of the species and strains are naturally competent. We identified and characterized two genes, comE and crp, from naturally competent B. pseudomallei 1026b that play a role in DNA uptake and catabolism. Single-copies of rhamnose-inducible comE and crp genes were integrated into a Tn7 attachment-site in non-naturally competent Burkholderia including pathogens B. pseudomallei K96243, B. cenocepacia K56-2, and B. mallei ATCC23344. Strains expressing comE or crp were assayed for their ability to uptake and catabolize DNA. ComE and Crp allowed non-naturally competent Burkholderia species to catabolize DNA, uptake exogenous gfp DNA and express GFP. Furthermore, we used synthetic comE and crp to expand the utility of the λ-red recombineering system for genetic manipulation of non-competent Burkholderia species. A newly constructed vector, pKaKa4, was used to mutate the aspartate semialdehyde dehydrogenase (asd) gene in four B. mallei strains, leading to the complete attenuation of these tier-1 select-agents. These strains have been excluded from select-agent regulations and will be of great interest to the field.
Collapse
Affiliation(s)
- Yun Heacock-Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Ian A McMillan
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Andrew P Bluhm
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Darlene Cabanas
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Tung T Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| |
Collapse
|
20
|
DdrI, a cAMP Receptor Protein Family Member, Acts as a Major Regulator for Adaptation of Deinococcus radiodurans to Various Stresses. J Bacteriol 2018; 200:JB.00129-18. [PMID: 29686138 DOI: 10.1128/jb.00129-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
The DNA damage response ddrI gene encodes a transcription regulator belonging to the cAMP receptor protein (CRP) family. Cells devoid of the DdrI protein exhibit a pleiotropic phenotype, including growth defects and sensitivity to DNA-damaging agents and to oxidative stress. Here, we show that the absence of the DdrI protein also confers sensitivity to heat shock treatment, and several genes involved in heat shock response were shown to be upregulated in a DdrI-dependent manner. Interestingly, expression of the Escherichia coli CRP partially compensates for the absence of the DdrI protein. Microscopic observations of ΔddrI mutant cells revealed an increased proportion of two-tetrad and anucleated cells in the population compared to the wild-type strain, indicating that DdrI is crucial for the completion of cell division and/or chromosome segregation. We show that DdrI is also involved in the megaplasmid MP1 stability and in efficient plasmid transformation by facilitating the maintenance of the incoming plasmid in the cell. The in silico prediction of putative DdrI binding sites in the D. radiodurans genome suggests that hundreds of genes, belonging to several functional groups, may be regulated by DdrI. In addition, the DdrI protein absolutely requires cAMP for in vitro binding to specific target sequences, and it acts as a dimer. All these data underline the major role of DdrI in D. radiodurans physiology under normal and stress conditions by regulating, both directly and indirectly, a cohort of genes involved in various cellular processes, including central metabolism and specific responses to diverse harmful environments.IMPORTANCEDeinococcus radiodurans has been extensively studied to elucidate the molecular mechanisms responsible for its exceptional ability to withstand lethal effects of various DNA-damaging agents. A complex network, including efficient DNA repair, protein protection against oxidation, and diverse metabolic pathways, plays a crucial role for its radioresistance. The regulatory networks orchestrating these various pathways are still missing. Our data provide new insights into the crucial contribution of the transcription factor DdrI for the D. radiodurans ability to withstand harmful conditions, including UV radiation, mitomycin C treatment, heat shock, and oxidative stress. Finally, we highlight that DdrI is also required for accurate cell division, for maintenance of plasmid replicons, and for central metabolism processes responsible for the overall cell physiology.
Collapse
|
21
|
Pettigrew MM, Ahearn CP, Gent JF, Kong Y, Gallo MC, Munro JB, D'Mello A, Sethi S, Tettelin H, Murphy TF. Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 2018; 115:E3256-E3265. [PMID: 29555745 PMCID: PMC5889651 DOI: 10.1073/pnas.1719654115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and infect humans and are critical to the pathogenesis of chronic obstructive pulmonary disease (COPD). In vitro and animal models do not accurately capture the complex environments encountered by NTHi during human infection. We conducted whole-genome sequencing of 269 longitudinally collected cleared and persistent NTHi from a 15-y prospective study of adults with COPD. Genome sequences were used to elucidate the phylogeny of NTHi isolates, identify genomic changes that occur with persistence in the human airways, and evaluate the effect of selective pressure on 12 candidate vaccine antigens. Strains persisted in individuals with COPD for as long as 1,422 d. Slipped-strand mispairing, mediated by changes in simple sequence repeats in multiple genes during persistence, regulates expression of critical virulence functions, including adherence, nutrient uptake, and modification of surface molecules, and is a major mechanism for survival in the hostile environment of the human airways. A subset of strains underwent a large 400-kb inversion during persistence. NTHi does not undergo significant gene gain or loss during persistence, in contrast to other persistent respiratory tract pathogens. Amino acid sequence changes occurred in 8 of 12 candidate vaccine antigens during persistence, an observation with important implications for vaccine development. These results indicate that NTHi alters its genome during persistence by regulation of critical virulence functions primarily by slipped-strand mispairing, advancing our understanding of how a bacterial pathogen that plays a critical role in COPD adapts to survival in the human respiratory tract.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
| | - Christian P Ahearn
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
| | - Janneane F Gent
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510
| | - Mary C Gallo
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Adonis D'Mello
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sanjay Sethi
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Department of Medicine, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Timothy F Murphy
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203;
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203
| |
Collapse
|
22
|
Dai K, He L, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401. Front Cell Infect Microbiol 2018; 8:32. [PMID: 29473023 PMCID: PMC5809987 DOI: 10.3389/fcimb.2018.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.
Collapse
Affiliation(s)
- Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae. J Bacteriol 2017; 199:JB.00127-17. [PMID: 28461445 DOI: 10.1128/jb.00127-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
In Vibrio cholerae, the genes required for chitin utilization and natural competence are governed by the chitin-responsive two-component system (TCS) sensor kinase ChiS. In the classical TCS paradigm, a sensor kinase specifically phosphorylates a cognate response regulator to activate gene expression. However, our previous genetic study suggested that ChiS stimulates the non-TCS transcriptional regulator TfoS by using mechanisms distinct from classical phosphorylation reactions (S. Yamamoto, J. Mitobe, T. Ishikawa, S. N. Wai, M. Ohnishi, H. Watanabe, and H. Izumiya, Mol Microbiol 91:326-347, 2014, https://doi.org/10.1111/mmi.12462). TfoS specifically activates the transcription of tfoR, encoding a small regulatory RNA essential for competence gene expression. Whether ChiS and TfoS interact directly remains unknown. To determine if other factors mediate the communication between ChiS and TfoS, we isolated transposon mutants that turned off tfoR::lacZ expression but possessed intact chiS and tfoS genes. We demonstrated an unexpected association of chitin-induced signaling pathways with the glucose-specific enzyme IIA (EIIAglc) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses revealed that dephosphorylated EIIAglc inactivated natural competence and tfoR transcription. Chitin-induced expression of the chb operon, which is required for chitin transport and catabolism, was also repressed by dephosphorylated EIIAglc Furthermore, the regulation of tfoR and chb expression by EIIAglc was dependent on ChiS and intracellular levels of ChiS were not affected by disruption of the gene encoding EIIAglc These results define a previously unknown connection between the PTS and chitin signaling pathways in V. cholerae and suggest a strategy whereby this bacterium can physiologically adapt to the existing nutrient status.IMPORTANCE The EIIAglc protein of the PTS coordinates a wide variety of physiological functions with carbon availability. In this report, we describe an unexpected association of chitin-activated signaling pathways in V. cholerae with EIIAglc The signaling pathways are governed by the chitin-responsive TCS sensor kinase ChiS and lead to the induction of chitin utilization and natural competence. We show that dephosphorylated EIIAglc inhibits both signaling pathways in a ChiS-dependent manner. This inhibition is different from classical catabolite repression that is caused by lowered levels of cyclic AMP. This work represents a newly identified connection between the PTS and chitin signaling pathways in V. cholerae and suggests a strategy whereby this bacterium can physiologically adapt to the existing nutrient status.
Collapse
|
24
|
Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Front Microbiol 2017; 8:1390. [PMID: 28798731 PMCID: PMC5527159 DOI: 10.3389/fmicb.2017.01390] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity to release genetic material into the extracellular medium has been reported in cultures of numerous species of bacteria, archaea, and fungi, and also in the context of multicellular microbial communities such as biofilms. Moreover, extracellular DNA (eDNA) of microbial origin is widespread in natural aquatic and terrestrial environments. Different specific mechanisms are involved in eDNA release, such as autolysis and active secretion, as well as through its association with membrane vesicles. It is noteworthy that in microorganisms, in which DNA release has been studied in detail, the production of eDNA is coordinated by the population when it reaches a certain cell density, and is induced in a subpopulation in response to the accumulation of quorum sensing signals. Interestingly, in several bacteria there is also a relationship between eDNA release and the development of natural competence (the ability to take up DNA from the environment), which is also controlled by quorum sensing. Then, what is the biological function of eDNA? A common biological role has not been proposed, since different functions have been reported depending on the microorganism. However, it seems to be important in biofilm formation, can be used as a nutrient source, and could be involved in DNA damage repair and gene transfer. This review covers several aspects of eDNA research: (i) its occurrence and distribution in natural environments, (ii) the mechanisms and regulation of its release in cultured microorganisms, and (iii) its biological roles. In addition, we propose that eDNA release could be considered a social behavior, based on its quorum sensing-dependent regulation and on the described functions of eDNA in the context of microbial communities.
Collapse
Affiliation(s)
- Alejandra L Ibáñez de Aldecoa
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| | - Olga Zafra
- Experimental Sciences Faculty, Francisco de Vitoria UniversityMadrid, Spain
| | - José E González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
25
|
Hovland E, Beyene GT, Frye SA, Homberset H, Balasingham SV, Gómez-Muñoz M, Derrick JP, Tønjum T, Ambur OH. DprA from Neisseria meningitidis: properties and role in natural competence for transformation. MICROBIOLOGY-SGM 2017; 163:1016-1029. [PMID: 28696187 PMCID: PMC5817196 DOI: 10.1099/mic.0.000489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in Neisseriameningitidis (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and ΔdprA mutant were compared. The salient feature of the phenotype of dprA null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and dprA null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprANm was cloned and overexpressed, and the biological activities of DprANm were further investigated. DprANm binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprANm dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBNmwere demonstrated. dprA is co-expressed with smg, a downstream gene of unknown function, and the gene encoding topoisomerase 1, topA.
Collapse
Affiliation(s)
- Eirik Hovland
- Department of Microbiology, University of Oslo, Oslo, Norway.,Present address: Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Jeremy P Derrick
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole H Ambur
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Present address: Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, Norway
| |
Collapse
|
26
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|
27
|
Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange. Curr Genet 2016; 63:451-455. [DOI: 10.1007/s00294-016-0663-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
28
|
Krol E, Klaner C, Gnau P, Kaever V, Essen LO, Becker A. Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2016; 162:1840-1856. [PMID: 27535558 DOI: 10.1099/mic.0.000356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.
Collapse
Affiliation(s)
- Elizaveta Krol
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Christina Klaner
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Petra Gnau
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Lars-Oliver Essen
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Anke Becker
- Faculty of Biology and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
29
|
Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A 2016; 113:8813-8. [PMID: 27432973 DOI: 10.1073/pnas.1601626113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.
Collapse
|
30
|
Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans. Appl Environ Microbiol 2016; 82:4821-4834. [PMID: 27260355 DOI: 10.1128/aem.01205-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability.
Collapse
|
31
|
Krüger NJ, Knüver MT, Zawilak-Pawlik A, Appel B, Stingl K. Genetic Diversity as Consequence of a Microaerobic and Neutrophilic Lifestyle. PLoS Pathog 2016; 12:e1005626. [PMID: 27166672 PMCID: PMC4864210 DOI: 10.1371/journal.ppat.1005626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023] Open
Abstract
As a neutrophilic bacterium, Helicobacter pylori is growth deficient under extreme acidic conditions. The gastric pathogen is equipped with an acid survival kit, regulating urease activity by a pH-gated urea channel, opening below pH 6.5. After overcoming acid stress, the bacterium’s multiplication site is situated at the gastric mucosa with near neutral pH. The pathogen exhibits exceptional genetic variability, mainly due to its capability of natural transformation, termed competence. Using single cell analysis, we show here that competence is highly regulated in H. pylori. DNA uptake complex activity was reversibly shut down below pH 6.5. pH values above 6.5 opened a competence window, in which competence development was triggered by the combination of pH increase and oxidative stress. In contrast, addition of sublethal concentrations of the DNA-damaging agents ciprofloxacin or mitomycin C did not trigger competence development under our conditions. An oxygen-sensitive mutant lacking superoxide dismutase (sodB) displayed a higher competent fraction of cells than the wild type under comparable conditions. In addition, the sodB mutant was dependent on adenine for growth in broth and turned into non-cultivable coccoid forms in its absence, indicating that adenine had radical quenching capacity. Quantification of periplasmically located DNA in competent wild type cells revealed outstanding median imported DNA amounts of around 350 kb per cell within 10 min of import, with maximally a chromosomal equivalent (1.6 Mb) in individual cells, far exceeding previous amounts detected in other Gram-negative bacteria. We conclude that the pathogen’s high genetic diversity is a consequence of its enormous DNA uptake capacity, triggered by intrinsic and extrinsic oxidative stress once a neutral pH at the site of chronic host colonization allows competence development. Natural transformation, i.e. the capacity to take up DNA from the environment, is one of the crucial means for horizontal gene transfer and genetic diversity in bacteria. The human gastric pathogen Helicobacter pylori is confronted with acid stress before entering its multiplication site, the gastric mucosa. The bacterium causes lifelong chronic gastritis and is perfectly adapted to the human host, crucially by displaying unusual genetic diversity. Using a single cell approach and well-controlled conditions, we show here that the amount of imported DNA in competent H. pylori is outstanding, far exceeding previous measurement with other Gram-negative bacteria. Furthermore, DNA uptake activity was tightly regulated and limited to pH above 6.5, conditions thought to be met in close contact with the gastric mucosa. In addition, we show that within this pH competence window, competence development was triggered by an increase in pH in combination with the level of oxidative stress. Our data provide explanations for the extraordinary high genetic diversity, often referred to as genome plasticity of this unusual microaerobic pathogen.
Collapse
Affiliation(s)
- Nora-Johanna Krüger
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Marie-Theres Knüver
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Wroclaw, Poland
| | - Bernd Appel
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Kerstin Stingl
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
- * E-mail:
| |
Collapse
|
32
|
Vorkapic D, Pressler K, Schild S. Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet 2016; 62:71-9. [PMID: 26328805 PMCID: PMC4723616 DOI: 10.1007/s00294-015-0514-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Abstract
In textbooks, DNA is generally defined as the universal storage material for genetic information in all branches of life. Beyond this important intracellular role, DNA can also be present outside of living cells and is an abundant biopolymer in aquatic and terrestrial ecosystems. The origin of extracellular DNA in such ecological niches is diverse: it can be actively secreted or released by prokaryotic and eukaryotic cells by means of autolysis, apoptosis, necrosis, bacterial secretion systems or found in association with extracellular bacterial membrane vesicles. Especially for bacteria, extracellular DNA represents a significant and convenient element that can be enzymatically modulated and utilized for multiple purposes. Herein, we discuss briefly the main origins of extracellular DNA and the most relevant roles for the bacterial physiology, such as biofilm formation, nutrient source, antimicrobial means and horizontal gene transfer.
Collapse
Affiliation(s)
- Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Katharina Pressler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
| |
Collapse
|
33
|
Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 2015; 30:1-7. [PMID: 26615332 DOI: 10.1016/j.mib.2015.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The human pathogen Vibrio cholerae is an autochthonous inhabitant of aquatic environments where it often interacts with zooplankton and their chitinous molts. Chitin induces natural competence for transformation in V. cholerae, a key mode of horizontal gene transfer (HGT). Recent comparative genomic analyses were indicative of extensive HGT in this species. However, we can still expand our understanding of the complex regulatory network that drives competence in V. cholerae. Here, we present recent advances, including the elucidation of bipartite competence regulation mediated by QstR, the inclusion of the type VI secretion system in the competence regulon of pandemic O1 El Tor strains, and the identification of TfoS as a transcriptional regulator that links chitin to competence induction in V. cholerae.
Collapse
Affiliation(s)
- Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
34
|
Juan PA, Attaiech L, Charpentier X. Natural transformation occurs independently of the essential actin-like MreB cytoskeleton in Legionella pneumophila. Sci Rep 2015; 5:16033. [PMID: 26526572 PMCID: PMC4630621 DOI: 10.1038/srep16033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
Natural transformation is the process by which bacteria can actively take up and integrate exogenous DNA thereby providing a source of genetic diversity. Under specific growth conditions the coordinated expression of several genes – a situation referred to as “competence” – allows bacteria to assemble a highly processive and dedicated system that can import high molecular weight DNA. Within the cell these large imported DNA molecules are protected from degradation and brought to the chromosome for recombination. Here, we report elevated expression of mreB during competence in the Gram-negative pathogen Legionella pneumophila. Interestingly a similar observation had previously been reported in the distantly-related Gram-positive organism Bacillus subtilis. MreB is often viewed as the bacterial actin homolog contributing to bacterial morphogenesis by coordinating peptidoglycan-synthesising complexes. In addition MreB is increasingly found to be involved in a growing number of processes including chromosome segregation and motor-driven motility. Using genetic and pharmacological approaches, we examined the possible role of MreB during natural transformation in L. pneumophila. Our data show that natural transformation does not require MreB dynamics and exclude a direct role of MreB filaments in the transport of foreign DNA and its recombination in the chromosome.
Collapse
Affiliation(s)
- Pierre-Alexandre Juan
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laetitia Attaiech
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Xavier Charpentier
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
35
|
Direct regulation of the natural competence regulator gene tfoX by cyclic AMP (cAMP) and cAMP receptor protein (CRP) in Vibrios. Sci Rep 2015; 5:14921. [PMID: 26442598 PMCID: PMC4595672 DOI: 10.1038/srep14921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
TfoX (Sxy) and CRP are two important competence activators. The link between tfoX and CRP has been shown in H. influenza but lacking evidence of direct interaction. Recently a Sxy-dependent CRP (CRP-S) site autoregulating Sxy was reported in E. coli. Here, we show that the cAMP-CRP complex transcriptionally regulates tfoX expression through multiple canonical CRP (CRP-N) sites in Vibrios. This conclusion is supported by an analysis of the tfoX mRNA levels and tfoX transcriptional reporter fusions. The reduced expression of tfoXVC was restored by trans-complementation of crp in ∆crp and by exogenous cAMP in ∆cya. A promoter deletion analysis and the site-directed mutagenesis of the putative CRP-N sites revealed the presence of two functional CRP-N sites. The direct binding of cAMP-CRP to the tfoXVCpromoter was demonstrated by EMSA assays. Additionally, the transcriptional start site (TSS) of tfoXVF in V. fluvialis was determined, and −10/−35 regions were predicted. Further comparison of the tfoX promoter in Vibrios revealed the existence of similar −10 motifs and putative CRP-N sites, indicating the conserved mechanism of CRP regulation on tfoX. Our study demonstrates the direct binding of the cAMP-CRP complex to tfoX promoter, and broadens the understanding of the molecular mechanism regulating tfoX in Vibrios.
Collapse
|
36
|
Abstract
ABSTRACT
Many Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of “transformation.” Recent studies have identified multiple environmental cues sufficient to induce natural transformation in
Vibrio cholerae
and several other
Vibrio
species. In
V. cholerae
, nutrient limitation activates the cAMP receptor protein regulator, quorum-sensing signals promote synthesis of HapR-controlled QstR, chitin stimulates production of TfoX, and low extracellular nucleosides allow CytR to serve as an additional positive regulator. The network of signaling systems that trigger expression of each of these required regulators is well described, but the mechanisms by which each in turn controls competence apparatus genes is poorly understood. Recent work has defined a minimal set of genes that encode apparatus components and begun to characterize the architecture of the machinery by fluorescence microscopy. While studies with a small set of
V. cholerae
reference isolates have identified regulatory and competence genes required for DNA uptake, future studies may identify additional genes and regulatory connections, as well as revealing how common natural competence is among diverse
V. cholerae
isolates and other
Vibrio
species.
Collapse
|
37
|
Jaskólska M, Gerdes K. CRP-dependent positive autoregulation and proteolytic degradation regulate competence activator Sxy of Escherichia coli. Mol Microbiol 2015; 95:833-45. [PMID: 25491382 DOI: 10.1111/mmi.12901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
Abstract
Natural competence, the ability of bacteria to take up exogenous DNA and incorporate it into their chromosomes, is in most bacteria a transient phenomenon under complex genetic and environmental control. In the Gram-negative bacteria Haemophilus influenzae and Vibrio cholerae, the master regulator Sxy/TfoX controls competence development. Although not known to be naturally competent, Escherichia coli possesses a Sxy homologue and a competence regulon containing the genes required for DNA uptake. Here, we show that in contrast to other characterised Gamma-proteobacteria, E. coli Sxy is positively autoregulated at the level of transcription by a mechanism that requires cAMP receptor protein (CRP), cyclic AMP (cAMP) and a CRP-S site in the sxy promoter. Similarly, we found no evidence that Sxy expression in E. coli was regulated at the translational level. However, our analysis revealed that Sxy is an unstable protein and that its cellular level is negatively regulated at the post-translational level via degradation by Lon protease. Interestingly, in the Gram-positive model organism Bacillus subtilis, the competence master regulator ComK is also positively autoregulated at the level of transcription and negatively regulated by proteolysis. Together, these findings reveal striking similarities between the competence regulons of a Gram-positive and a Gram-negative bacterium.
Collapse
Affiliation(s)
- Milena Jaskólska
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | | |
Collapse
|
38
|
Lo Scrudato M, Borgeaud S, Blokesch M. Regulatory elements involved in the expression of competence genes in naturally transformable Vibrio cholerae. BMC Microbiol 2014; 14:327. [PMID: 25539806 PMCID: PMC4299799 DOI: 10.1186/s12866-014-0327-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Background The human pathogen Vibrio cholerae normally enters the developmental program of natural competence for transformation after colonizing chitinous surfaces. Natural competence is regulated by at least three pathways in this organism: chitin sensing/degradation, quorum sensing and carbon catabolite repression (CCR). The cyclic adenosine monophosphate (cAMP) receptor protein CRP, which is the global regulator of CCR, binds to regulatory DNA elements called CRP sites when in complex with cAMP. Previous studies in Haemophilus influenzae suggested that the CRP protein binds competence-specific CRP-S sites under competence-inducing conditions, most likely in concert with the master regulator of transformation Sxy/TfoX. Results In this study, we investigated the regulation of the competence genes qstR and comEA as an example of the complex process that controls competence gene activation in V. cholerae. We identified previously unrecognized putative CRP-S sites upstream of both genes. Deletion of these motifs significantly impaired natural transformability. Moreover, site-directed mutagenesis of these sites resulted in altered gene expression. This altered gene expression also correlated directly with protein levels, bacterial capacity for DNA uptake, and natural transformability. Conclusions Based on the data provided in this study we suggest that the identified sites are important for the expression of the competence genes qstR and comEA and therefore for natural transformability of V. cholerae even though the motifs might not reflect bona fide CRP-S sites.
Collapse
|
39
|
Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. Microbiology (Reading) 2014; 160:2136-2147. [DOI: 10.1099/mic.0.079236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial natural genetic competence – well studied in Bacillus subtilis – enables cells to take up and integrate extracellularly supplied DNA into their own genome. However, little is known about competence development and its regulation in other members of the genus, although DNA uptake machineries are routinely encoded. Auxotrophic Bacillus licheniformis 9945A derivatives, obtained from repeated rounds of random mutagenesis, were long known to develop natural competence. Inspection of the colony morphology and extracellular enzyme secretion of two of these derivatives, M28 and M18, suggested that regulator genes are collaterally hit. M28 emerged as a 14 bp deletion mutant concomitantly displaying a shift in the reading frame of degS that encodes the sensor histidine kinase, which is part of the molecular switch that directs cells to genetic competence, the synthesis of extracellular enzymes or biofilm formation, while for M18, sequencing of the suspected gene revealed a 375 bp deletion in abrB, encoding the major transition state regulator. With respect to colony morphology, enzyme secretion and competence development, both of the mutations, when newly generated on the wild-type B. licheniformis 9945A genetic background, resulted in phenotypes resembling M28 and M18, respectively. All of the known naturally competent B. licheniformis representatives, hitherto thoroughly investigated in this regard, carry mutations in regulator genes, and hence genetic competence observed in domesticated strains supposedly results from deregulation.
Collapse
|
40
|
Natural competence in Histophilus somni strain 2336. Vet Microbiol 2014; 173:371-8. [PMID: 25218867 DOI: 10.1016/j.vetmic.2014.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 07/09/2014] [Accepted: 07/26/2014] [Indexed: 01/03/2023]
Abstract
Histophilus somni is an etiologic agent of shipping fever pneumonia, myocarditis, and other systemic diseases of bovines. Virulence factors that have been identified in H. somni include biofilm formation, lipooligosaccharide phase variation, immunoglobulin binding proteins, survival in phagocytic cells, and many others. However, to identify the genes responsible for virulence, an efficient mutagenesis system is needed. Mutagenesis of H. somni using allelic exchange is difficult, likely due to its tight restriction modification system. Mutagenesis by natural transformation in Haemophilus influenzae is well established and shows a strong bias for fragments containing specific uptake signal sequences (USS) within the genome. We hypothesized that natural transformation may also be possible in H. somni strain 2336 because its genome is over-represented with H. influenzae USS (5'-AAGTGCGGT-3') and contains most of the genes necessary for competence. H. somni strain 2336 was successfully transformed and mutated with genomic linear DNA from an H. somni mutant (738Δlob2a), which contains a kanamycin-resistance (Kan(R)) gene and the USS within lob2A. Although most of the competence genes found in H. influenzae were present in H. somni, comD and the 5' portion of comE were absent, which may account for the low transformation efficiency. The transformation efficiency of strain 2336 was greatest during mid-log growth phase and when cyclic adenosine monophosphate was added to the transformation medium. However, mutants were not isolated when strain 2336 was transformed with genomic DNA containing the same Kan(R) gene from H. somni luxS or uspE mutants, which lack the USS in these specific genes. Shuttle vector pNS3K was also naturally transformed into strain 2336, though at a lower efficiency. However, natural transformation with either H. somni linear DNA (2336Δlob2A) or pNS3K was unsuccessful with H. somni commensal strain 129Pt and several other disease isolates.
Collapse
|
41
|
Zaccaria E, van Baarlen P, de Greeff A, Morrison DA, Smith H, Wells JM. Control of competence for DNA transformation in streptococcus suis by genetically transferable pherotypes. PLoS One 2014; 9:e99394. [PMID: 24968201 PMCID: PMC4072589 DOI: 10.1371/journal.pone.0099394] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Here we show that S. suis, a major bacterial pathogen of pigs and emerging pathogen in humans responds to a peptide pheromone by developing competence for DNA transformation. This species does not fall within any of the phylogenetic clusters of streptococci previously shown to regulate competence via peptide pheromones suggesting that more species of streptococci may be naturally competent. Induction of competence was dependent on ComX, a sigma factor that controls the streptococcal late competence regulon, extracellular addition of a comX-inducing peptide (XIP), and ComR, a regulator of comX. XIP was identified as an N-terminally truncated variant of ComS. Different comS alleles are present among strains of S. suis. These comS alleles are not functionally equivalent and appear to operate in conjuction with a cognate ComR to regulate comX through a conserved comR-box promoter. We demonstrate that these ‘pherotypes’ can be genetically transferred between strains, suggesting that similar approaches might be used to control competence induction in other lactic acid bacteria that lack ComR/ComS homologues but possess comX and the late competence regulon. The approaches described in this paper to identify and optimize peptide-induced competence may also assist other researchers wishing to identify natural competence in other bacteria. Harnessing natural competence is expected to accelerate genetic research on this and other important streptococcal pathogens and to allow high-throughput mutation approaches to be implemented, opening up new avenues for research.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Astrid de Greeff
- Central Veterinary Institute, Animal Sciences, Wageningen University, Lelystad, The Netherlands
| | - Donald A. Morrison
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hilde Smith
- Central Veterinary Institute, Animal Sciences, Wageningen University, Lelystad, The Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Joshi RV, Schindler BD, McPherson NR, Tiwari K, Vieille C. Development of a markerless knockout method for Actinobacillus succinogenes. Appl Environ Microbiol 2014; 80:3053-61. [PMID: 24610845 PMCID: PMC4018899 DOI: 10.1128/aem.00492-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/02/2014] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus succinogenes is one of the best natural succinate-producing organisms, but it still needs engineering to further increase succinate yield and productivity. In this study, we developed a markerless knockout method for A. succinogenes using natural transformation or electroporation. The Escherichia coli isocitrate dehydrogenase gene with flanking flippase recognition target sites was used as the positive selection marker, making use of A. succinogenes's auxotrophy for glutamate to select for growth on isocitrate. The Saccharomyces cerevisiae flippase recombinase (Flp) was used to remove the selection marker, allowing its reuse. Finally, the plasmid expressing flp was cured using acridine orange. We demonstrate that at least two consecutive deletions can be introduced into the same strain using this approach, that no more than a total of 1 kb of DNA is needed on each side of the selection cassette to protect from exonuclease activity during transformation, and that no more than 200 bp of homologous DNA is needed on each side for efficient recombination. We also demonstrate that electroporation can be used as an alternative transformation method to obtain knockout mutants and that an enriched defined medium can be used for direct selection of knockout mutants on agar plates with high efficiency. Single-knockout mutants of the fumarate reductase and of the pyruvate formate lyase-encoding genes were obtained using this knockout strategy. Double-knockout mutants were also obtained by deleting the citrate lyase-, β-galactosidase-, and aconitase-encoding genes in the pyruvate formate lyase knockout mutant strain.
Collapse
Affiliation(s)
- Rajasi V. Joshi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Bryan D. Schindler
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | | | - Kanupriya Tiwari
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire Vieille
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
43
|
Extensive cotransformation of natural variation into chromosomes of naturally competent Haemophilus influenzae. G3-GENES GENOMES GENETICS 2014; 4:717-31. [PMID: 24569039 PMCID: PMC4059242 DOI: 10.1534/g3.113.009597] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Naturally competent bacterial species actively take up environmental DNA and can incorporate it into their chromosomes by homologous recombination. This can bring genetic variation from environmental DNA to recipient chromosomes, often in multiple long “donor” segments. Here, we report the results of genome sequencing 96 colonies of a laboratory Haemophilus influenzae strain, which had been experimentally transformed by DNA from a diverged clinical isolate. Donor segments averaged 6.9 kb (spanning several genes) and were clustered into recombination tracts of ~19.5 kb. Individual colonies had replaced from 0.1 to 3.2% of their chromosomes, and ~1/3 of all donor-specific single-nucleotide variants were present in at least one recombinant. We found that nucleotide divergence did not obviously limit the locations of recombination tracts, although there were small but significant reductions in divergence at recombination breakpoints. Although indels occasionally transformed as parts of longer recombination tracts, they were common at breakpoints, suggesting that indels typically block progression of strand exchange. Some colonies had recombination tracts in which variant positions contained mixtures of both donor and recipient alleles. These tracts were clustered around the origin of replication and were interpreted as the result of heteroduplex segregation in the original transformed cell. Finally, a pilot experiment demonstrated the utility of natural transformation for genetically dissecting natural phenotypic variation. We discuss our results in the context of the potential to merge experimental and population genetic approaches, giving a more holistic understanding of bacterial gene transfer.
Collapse
|
44
|
Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 2014; 12:181-96. [DOI: 10.1038/nrmicro3199] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Abstract
Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple "dialects," with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.
Collapse
|
46
|
Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M, Watanabe H, Izumiya H. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 2013; 91:326-47. [PMID: 24236404 DOI: 10.1111/mmi.12462] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 11/27/2022]
Abstract
In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Sun Y, Bernardy EE, Hammer BK, Miyashiro T. Competence and natural transformation in vibrios. Mol Microbiol 2013; 89:583-95. [PMID: 23803158 DOI: 10.1111/mmi.12307] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| | - Eryn E Bernardy
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Brian K Hammer
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| |
Collapse
|
48
|
Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance. Antibiotics (Basel) 2013; 2:288-315. [PMID: 27029305 PMCID: PMC4790341 DOI: 10.3390/antibiotics2020288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023] Open
Abstract
The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT), mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.
Collapse
|
49
|
Sinha S, Mell J, Redfield R. The availability of purine nucleotides regulates natural competence by controlling translation of the competence activator Sxy. Mol Microbiol 2013; 88:1106-19. [PMID: 23663205 PMCID: PMC3739930 DOI: 10.1111/mmi.12245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Many bacteria are naturally competent, able to bind and take up DNA from their extracellular environment. This DNA can serve as a significant source of nutrients, in addition to providing genetic material for recombination. The regulation of competence in several model organisms highlights the importance of this nutritional function, although it has often been overlooked. Natural competence is induced by starvation in Haemophilus influenzae, the model for competence regulation in the gamma-proteobacteria. This induction depends on the activation of the global metabolic regulator CRP, which occurs upon depletion of phosphotransferase sugars. In this work, we show that the depletion of purine nucleotides under competence-inducing conditions activates the CRP-dependent competence-specific regulator Sxy. Depletion of extra- or intra-cellular purine nucleotides activates Sxy translation, while high levels inhibit it. This is modulated by the stem structure formed by sxy mRNA. The exact mechanism by which the nucleotide depletion signal is transduced is unclear, but it does not involve direct binding of purine intermediates to the sxy stem, and does not require Hfq or competence proteins. Similar regulation occurs in the relatives of H. influenzae, Actinobacillus pneumoniae and A. suis, confirming the importance of processes enabling competent bacteria to exploit the abundant DNA in their environments.
Collapse
Affiliation(s)
- Sunita Sinha
- Department of Zoology, University of British Columbia, Vancouver, V6T 3Z4, Canada.
| | | | | |
Collapse
|
50
|
Antonova ES, Bernardy EE, Hammer BK. Natural competence in Vibrio cholerae is controlled by a nucleoside scavenging response that requires CytR-dependent anti-activation. Mol Microbiol 2012; 86:1215-31. [PMID: 23016895 DOI: 10.1111/mmi.12054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 01/10/2023]
Abstract
Competence for genetic transformation in Vibrio cholerae is triggered by chitin-induced transcription factor TfoX and quorum sensing (QS) regulator HapR. Transformation requires expression of ComEA, described as a DNA receptor in other competent bacteria. A screen for mutants that poorly expressed a comEA-luciferase fusion identified cytR, encoding the nucleoside scavenging cytidine repressor, previously shown in V. cholerae to be a biofilm repressor and positively regulated by TfoX, but not linked to transformation. A ΔcytR mutant was non-transformable and defective in expression of comEA and additional TfoX-induced genes, including pilA (transformation pseudopilus) and chiA-1 (chitinase). In Escherichia coli, 'anti-activation' of nucleoside metabolism genes, via protein-protein interactions between critical residues in CytR and CRP (cAMP receptor protein), is disrupted by exogenous cytidine. Amino acid substitutions of the corresponding V. cholerae CytR residues impaired expression of comEA, pilA and chiA-1, and halted DNA uptake; while exogenous cytidine hampered comEA expression levels and prevented transformation. Our results support a speculative model that when V. cholerae reaches high density on chitin, CytR-CRP interactions 'anti-activate' multiple genes, including a possible factor that negatively controls DNA uptake. Thus, a nucleoside scavenging mechanism couples nutrient stress and cell-cell signalling to natural transformation in V. cholerae as described in other bacterial pathogens.
Collapse
Affiliation(s)
- Elena S Antonova
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | |
Collapse
|