1
|
Anastasiadou DP, Quesnel A, Duran CL, Filippou PS, Karagiannis GS. An emerging paradigm of CXCL12 involvement in the metastatic cascade. Cytokine Growth Factor Rev 2024; 75:12-30. [PMID: 37949685 DOI: 10.1016/j.cytogfr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the "metastatic cascade" among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dimitra P Anastasiadou
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Camille L Duran
- Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
McIntosh K, Khalaf YH, Craig R, West C, McCulloch A, Waghmare A, Lawson C, Chan EYW, Mackay S, Paul A, Plevin R. IL-1β stimulates a novel, IKKα -dependent, NIK -independent activation of non-canonical NFκB signalling. Cell Signal 2023; 107:110684. [PMID: 37080443 DOI: 10.1016/j.cellsig.2023.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
In this study, we examined the activation of non-canonical nuclear factor Kappa B (NFκB) signalling in U2OS cells, a cellular metastatic bone cancer model. Whilst Lymphotoxin α1β2 (LTα1β2) stimulated the expected slow, delayed, sustained activation of serine 866/870 p100 phosphorylation and increased cellular expression of p52 NFκB, we found that canonical agonists, Interleukin-1β (IL-1β) and also Tumour necrosis factor-α (TNFα) generated a rapid transient increase in pp100, which was maximal by 15-30 min. This rapid phosphorylation was also observed in other cells types, such as DU145 and HCAECs suggesting the phenomenon is universal. IKKα deletion using CRISPR/Cas9 revealed an IKKα-dependent mechanism for serine 866/870 and additionally serine 872 p100 phosphorylation for both IL-1β and LTα1β2. In contrast, knockdown of IKKβ using siRNA or pharmacological inhibition of IKKβ activity was without effect on p100 phosphorylation. Pre-incubation of cells with the NFκB inducing-kinase (NIK) inhibitor, CW15337, had no effect on IL-1β induced phosphorylation of p100 however, the response to LTα1β2 was virtually abolished. Surprisingly IL-1β also stimulated p52 nuclear translocation as early as 60 min, this response and the concomitant p65 translocation was partially reduced by IKKα deletion. Furthermore, p52 nuclear translocation was unaffected by CW15337. In contrast, the response to LTα1β2 was essentially abolished by both IKKα deletion and CW15337. Taken together, these finding reveal novel forms of NFκB non-canonical signalling stimulated by ligands that activate the canonical NFκB pathway strongly such as IL-1β.
Collapse
Affiliation(s)
- Kathryn McIntosh
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| | - Yousif H Khalaf
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Rachel Craig
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher West
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ajay Waghmare
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Edmond Y W Chan
- Department of Biomedical and Molecular sciences, Queens University, Botterell Hall, Room 563, 18 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Simon Mackay
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| |
Collapse
|
3
|
GLI1 interaction with p300 modulates SDF1 expression in cancer-associated fibroblasts to promote pancreatic cancer cells migration. Biochem J 2023; 480:225-241. [PMID: 36734208 DOI: 10.1042/bcj20220521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.
Collapse
|
4
|
DeVallance ER, Dustin CM, de Jesus DS, Ghouleh IA, Sembrat JC, Cifuentes-Pagano E, Pagano PJ. Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension. Antioxidants (Basel) 2022; 12:71. [PMID: 36670936 PMCID: PMC9854820 DOI: 10.3390/antiox12010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.
Collapse
Affiliation(s)
- Evan R. DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Christopher M. Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Simoes de Jesus
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John C. Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
CXCL12/CXCR4 axis gene variants contribute to an increased vulnerability to HPV infection and cervical oncogenesis. J Cancer Res Clin Oncol 2022; 148:793-802. [PMID: 35083551 DOI: 10.1007/s00432-021-03884-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Every year, more than half a million women are diagnosed with cervical cancer (CC). Individual factors may contribute to the cervical cancer development, such as immunogenetic variation. CXCL12/CXCR4 axis is involved in tumor progression and aggressiveness. In the present study, we aimed to investigate a possible association between two single-nucleotide variants (CXCL12 rs1801157 and CXCR4 rs2228014) with HPV infection and cervical cancer development. METHODS PCR technique was used to test HPV positivity in 424 women, in which the allelic frequency of CXCL12 rs1801157 and CXCR4 rs2228014 was also assessed by PCR-restriction fragment length polymorphism. RESULTS CXCL12 rs1801157 was associated with HPV infection in the allelic distribution as well in the codominant, dominant and recessive genetic models; as well with squamous intraepithelial lesions (SIL) and CC in the codominant and dominant models. CXCR4 rs2228014 was associated to HPV infection in the codominant model and allelic distribution; as well with SIL/CC in the codominant, dominant and allelic models. Independent associations were found for CXCL12 AA genotype and HPV infection, SIL and CC development, as well as, CXCR4 allele T and HPV infection and CC. The variants interaction analysis demonstrated that the presence of both polymorphisms increases the susceptibility of HPV infection in 10.1 times, SIL (2 times) and CC development in 4.2 times. CONCLUSIONS This is the first study demonstrating that the interaction of CXCL12 and CXCR4 variants contributes to the increased susceptibility of HPV infection, squamous intraepithelial lesions and cervical cancer development.
Collapse
|
6
|
Campbell CA, Burdick MD, Strieter RM. Systemic Fibrocyte Levels and Keloid Expression of the Chemoattractant CXCL12 Are Upregulated Compared With Patients With Normal Scar. Ann Plast Surg 2021; 87:150-155. [PMID: 34253698 DOI: 10.1097/sap.0000000000002929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fibrocytes are bone marrow mesenchymal precursors with a surface phenotype compatible with leukocytes, fibroblasts, and hematopoietic progenitors that have been shown to traffic to wound healing sites in response to described chemokine pathways. Keloids are focal fibrotic responses to cutaneous trauma characterized by disordered collagen, which may be associated with elevated systemic fibrocyte levels and/or wound bed chemokine expression. METHODS Blood specimens from patients with longstanding keloids and those who form grossly normal scars were assayed by fluorescence activated cell sorting analysis for fibrocytes (CD45+, Col I+). The expression of the fibrocyte chemotactic cell surface marker CXCR4, intracellular markers of fibroblast differentiation (pSMAD2/3), and plasma levels of the CXCR4 cognate CXCL12 were compared. Keloid specimens and grossly normal scars were excised, and local expression of CXCL12 was assayed. RESULTS Keloid-forming patients demonstrated a significantly greater number of circulating fibrocytes (17.4 × 105 cells/mL) than control patients (1.01 × 105 cells/mL, P = 0.004). The absolute number of fibrocytes expressing CXCR4 was significantly greater (P = 0.012) in keloid-forming patients. Systemic CXCL12 levels were insignificantly greater in keloid-forming patients than controls. Keloid specimens had significantly greater CXCL12 expression (529.3 pg/mL) than normal scar (undetectable). CONCLUSIONS Systemic fibrocyte levels and the CXCR4/CXCL12 biologic axis responsible for fibrocyte trafficking to areas of regional fibrosis were both upregulated in patients who form keloids compared with controls. Keloids persistently expressed CXLC12, which serves both as the main chemoattractant for fibrocytes and a downstream mediator for local inflammation, suggesting a role for this biologic axis in keloid formation and possibly recurrence.
Collapse
Affiliation(s)
| | | | - Robert M Strieter
- Novartis Institutes for BioMedical Research, Cambridge, United Kingdom
| |
Collapse
|
7
|
Antonova DV, Zinovyeva MV, Kondratyeva LG, Sass AV, Alekseenko IV, Pleshkan VV. Possibility for Transcriptional Targeting of Cancer-Associated Fibroblasts-Limitations and Opportunities. Int J Mol Sci 2021; 22:ijms22073298. [PMID: 33804861 PMCID: PMC8038081 DOI: 10.3390/ijms22073298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are attractive therapeutic targets in the tumor microenvironment. The possibility of using CAFs as a source of therapeutic molecules is a challenging approach in gene therapy. This requires transcriptional targeting of transgene expression by cis-regulatory elements (CRE). Little is known about which CREs can provide selective transgene expression in CAFs. We hypothesized that the promoters of FAP, CXCL12, IGFBP2, CTGF, JAG1, SNAI1, and SPARC genes, the expression of whose is increased in CAFs, could be used for transcriptional targeting. Analysis of the transcription of the corresponding genes revealed that unique transcription in model CAFs was characteristic for the CXCL12 and FAP genes. However, none of the promoters in luciferase reporter constructs show selective activity in these fibroblasts. The CTGF, IGFBP2, JAG1, and SPARC promoters can provide higher transgene expression in fibroblasts than in cancer cells, but the nonspecific viral promoters CMV, SV40, and the recently studied universal PCNA promoter have the same features. The patterns of changes in activity of various promoters relative to each other observed for human cell lines were similar to the patterns of activity for the same promoters both in vivo and in vitro in mouse models. Our results reveal restrictions and features for CAF transcriptional targeting.
Collapse
Affiliation(s)
- Dina V. Antonova
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Marina V. Zinovyeva
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Liya G. Kondratyeva
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Alexander V. Sass
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Irina V. Alekseenko
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
- Gene Oncotherapy Sector, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Victor V. Pleshkan
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
- Gene Oncotherapy Sector, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Screening of Hub Genes Associated with Pulmonary Arterial Hypertension by Integrated Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626094. [PMID: 33816621 PMCID: PMC8010527 DOI: 10.1155/2021/6626094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a disease or pathophysiological syndrome which has a low survival rate with abnormally elevated pulmonary artery pressure caused by known or unknown reasons. In addition, the pathogenesis of PAH is not fully understood. Therefore, it has become an urgent matter to search for clinical molecular markers of PAH, study the pathogenesis of PAH, and contribute to the development of new science-based PAH diagnosis and targeted treatment methods. Methods In this study, the Gene Expression Omnibus (GEO) database was used to downloaded a microarray dataset about PAH, and the differentially expressed genes (DEGs) between PAH and normal control were screened out. Moreover, we performed the functional enrichment analyses and protein-protein interaction (PPI) network analyses of the DEGs. In addition, the prediction of miRNA and transcriptional factor (TF) of hub genes and construction miRNA-TF-hub gene network were performed. Besides, the ROC curve was used to evaluate the diagnostic value of hub genes. Finally, the potential drug targets for the 5 identified hub genes were screened out. Results 69 DEGs were identified between PAH samples and normal samples. GO and KEGG pathway analyses revealed that these DEGs were mostly enriched in the inflammatory response and cytokine-cytokine receptor interaction, respectively. The miRNA-hub genes network was conducted subsequently with 131 miRNAs, 7 TFs, and 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) which screened out via constructing the PPI network. 17 drugs interacted with 5 hub genes were identified. Conclusions Through bioinformatic analysis of microarray data sets, 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) were identified from DEGs between control samples and PAH samples. Studies showed that the five hub genes might play an important role in the development of PAH. These 5 hub genes might be potential biomarkers for diagnosis or targets for the treatment of PAH. In addition, our work also indicated that paying more attention on studies based on these 5 hub genes might help to understand the molecular mechanism of the development of PAH.
Collapse
|
9
|
Dubuissez M, Paget S, Abdelfettah S, Spruyt N, Dehennaut V, Boulay G, Loison I, de Schutter C, Rood BR, Duterque-Coquillaud M, Leroy X, Leprince D. HIC1 (Hypermethylated in Cancer 1) modulates the contractile activity of prostate stromal fibroblasts and directly regulates CXCL12 expression. Oncotarget 2020; 11:4138-4154. [PMID: 33227080 PMCID: PMC7665237 DOI: 10.18632/oncotarget.27786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
HIC1 (Hypermethylated In Cancer 1) a tumor suppressor gene located at 17p13.3, is frequently deleted or epigenetically silenced in many human tumors. HIC1 encodes a transcriptional repressor involved in various aspects of the DNA damage response and in complex regulatory loops with P53 and SIRT1. HIC1 expression in normal prostate tissues has not yet been investigated in detail. Here, we demonstrated by immunohistochemistry that detectable HIC1 expression is restricted to the stroma of both normal and tumor prostate tissues. By RT-qPCR, we showed that HIC1 is poorly expressed in all tested prostate epithelial lineage cell types: primary (PrEC), immortalized (RWPE1) or transformed androgen-dependent (LnCAP) or androgen-independent (PC3 and DU145) prostate epithelial cells. By contrast, HIC1 is strongly expressed in primary PrSMC and immortalized (WMPY-1) prostate myofibroblastic cells. HIC1 depletion in WPMY-1 cells induced decreases in α-SMA expression and contractile capability. In addition to SLUG, we identified stromal cell-derived factor 1/C-X-C motif chemokine 12 (SDF1/CXCL12) as a new HIC1 direct target-gene. Thus, our results identify HIC1 as a tumor suppressor gene which is poorly expressed in the epithelial cells targeted by the tumorigenic process. HIC1 is expressed in stromal myofibroblasts and regulates CXCL12/SDF1 expression, thereby highlighting a complex interplay mediating the tumor promoting activity of the tumor microenvironment. Our studies provide new insights into the role of HIC1 in normal prostatic epithelial-stromal interactions through direct repression of CXCL12 and new mechanistic clues on how its loss of function through promoter hypermethylation during aging could contribute to prostatic tumors.
Collapse
Affiliation(s)
- Marion Dubuissez
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Present Address: Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, Canada.,These authors contributed equally to this work
| | - Sonia Paget
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,These authors contributed equally to this work
| | - Souhila Abdelfettah
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,These authors contributed equally to this work
| | - Nathalie Spruyt
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Vanessa Dehennaut
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Gaylor Boulay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ingrid Loison
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Clementine de Schutter
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Brian R Rood
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC, USA
| | - Martine Duterque-Coquillaud
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Xavier Leroy
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Department of Pathology, University Lille, Lille, France
| | - Dominique Leprince
- University Lille, CNRS, INSERM, Institut Pasteur de Lille, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
10
|
Bordenave J, Thuillet R, Tu L, Phan C, Cumont A, Marsol C, Huertas A, Savale L, Hibert M, Galzi JL, Bonnet D, Humbert M, Frossard N, Guignabert C. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovasc Res 2020; 116:686-697. [PMID: 31173066 DOI: 10.1093/cvr/cvz153] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023] Open
Abstract
AIMS The progressive accumulation of cells in pulmonary vascular walls is a key pathological feature of pulmonary arterial hypertension (PAH) that results in narrowing of the vessel lumen, but treatments targeting this mechanism are lacking. The C-X-C motif chemokine 12 (CXCL12) appears to be crucial in these processes. We investigated the activity of two CXCL12 neutraligands on experimental pulmonary hypertension (PH), using two complementary animal models. METHODS AND RESULTS Male Wistar rats were injected with monocrotaline (MCT) or were subjected to SU5416 followed by 3-week hypoxia to induce severe PH. After PH establishment, assessed by pulsed-wave Doppler echocardiography, MCT-injected or SU5416 plus chronic hypoxia (SuHx) rats were randomized to receive CXCL12 neutraligands chalcone 4 or LIT-927 (100 mg/kg/day), the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100 (5 mg/kg/day), or vehicle, for 2 or 3 weeks, respectively. At the end of these treatment periods, echocardiographic and haemodynamic measurements were performed and tissue samples were collected for protein expression and histological analysis. Daily treatment of MCT-injected or SuHx rats with established PH with chalcone 4 or LIT-927 partially reversed established PH, reducing total pulmonary vascular resistance, and remodelling of pulmonary arterioles. Consistent with these observations, we found that neutralization of CXCL12 attenuates right ventricular hypertrophy, pulmonary vascular remodelling, and decreases pulmonary artery smooth muscle cell (PA-SMC) proliferation in lungs of MCT-injected rats and SuHx rats. Importantly, CXCL12 neutralization with either chalcone 4 or LIT-927 inhibited the migration of PA-SMCs and pericytes in vitro with a better efficacy than AMD3100. Finally, we found that CXCL12 neutralization decreases vascular pericyte coverage and macrophage infiltration in lungs of both MCT-injected and SuHx rats. CONCLUSION We report here a greater beneficial effect of CXCL12 neutralization vs. the conventional CXCR4 blockade with AMD3100 in the MCT and SuHx rat models of severe PH, supporting a role for CXCL12 in the progression of vascular complications in PH and opening to new therapeutic options.
Collapse
MESH Headings
- Animals
- Benzylamines
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chalcones/pharmacology
- Chemokine CXCL2/antagonists & inhibitors
- Chemokine CXCL2/metabolism
- Cyclams
- Disease Models, Animal
- Heterocyclic Compounds/pharmacology
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Pyrimidinones/pharmacology
- Rats, Wistar
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vascular Resistance/drug effects
Collapse
Affiliation(s)
- Jennifer Bordenave
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Carole Phan
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Amélie Cumont
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Claire Marsol
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Jean-Luc Galzi
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
- Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242 CNRS/Université de Strasbourg, 67400 Illkirch, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg and LabEx MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Adapala NS, Root S, Lorenzo J, Aguila H, Sanjay A. PI3K activation increases SDF-1 production and number of osteoclast precursors, and enhances SDF-1-mediated osteoclast precursor migration. Bone Rep 2019; 10:100203. [PMID: 30989092 PMCID: PMC6449702 DOI: 10.1016/j.bonr.2019.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 01/07/2023] Open
Abstract
Our previous studies showed that in a mouse model in which PI3K-AKT activation was increased (YF mice), osteoclast numbers and levels of SDF-1, a chemokine, were augmented. The purpose of this study was to delineate the role of PI3K activation in regulating SDF-1 production and examine whether SDF-1 can stimulate differentiation and/or migration of osteoclast precursors. Using flow cytometric analysis, we demonstrated that compared to wild type mice, bone marrow of YF mice had increased numbers of CXCL12 abundant reticular (CAR) cells, that are a major cell type responsible for producing SDF-1. At the molecular level, transcription factor specificity protein 1 (Sp1) induced an increased transcription of SDF-1 that was dependent on PI3K/AKT activation. YF mice also contained an increased number of osteoclast precursors, in which expression of CXCR4, a major receptor for SDF-1, was increased. SDF-1 did not induce differentiation of osteoclast precursors into mature osteoclasts; compared to cells derived from WT mice, cells obtained from YF mice were more responsive to SDF-1. In conclusion, we demonstrate that PI3K activation resulted in increased SDF-1, increased the number of osteoclast precursors, and enhanced osteoclast precursor migration in response to SDF-1. PI3K activation regulates the number of CAR cells in mouse bone marrow. PI3K activation regulates SDF-1/CXCL12 production by CAR cells in bone marrow. PI3K/AKT activation mediates transcription of SDF-1 by regulating transcription factor Sp1. SDF-1 enhances migration of osteoclast precursors via CXCR4.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Orthopaedic Surgery, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Sierra Root
- Department of Immunology, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Joseph Lorenzo
- Department of Endocrinology and Metabolism, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Hector Aguila
- Department of Immunology, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, Farmington, CT, USA.,U Conn Health, Farmington, CT, USA
| |
Collapse
|
12
|
ATF3 and JDP2 deficiency in cancer associated fibroblasts promotes tumor growth via SDF-1 transcription. Oncogene 2019; 38:3812-3823. [PMID: 30670778 PMCID: PMC6756089 DOI: 10.1038/s41388-019-0692-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The activating transcription factor 3 (ATF3) and the c-Jun dimerization protein 2 (JDP2) are members of the basic leucine zipper (bZIP) family of transcription factors. These proteins share a high degree of homology and both can activate or repress transcription. Deficiency of either one of them in the non-cancer host cells was shown to reduce metastases. As ATF3 and JDP2 compensate each other's function, we studied the double deficiency of ATF3 and JDP2 in the stromal tumor microenvironment. Here, we show that mice with ATF3 and JDP2 double deficiency (designated thereafter dKO) developed larger tumors with high vascular perfusion and increased cell proliferation rate compared to wild type (WT) mice. We further identify that the underlying mechanism involves tumor associated fibroblasts which secrete high levels of stromal cell-derived factor 1 (SDF-1) in dKO fibroblasts. SDF-1 depletion in dKO fibroblasts dampened tumor growth and blood vessel perfusion. Furthermore, ATF3 and JDP2 were found to regulate SDF-1 transcription and secretion in fibroblasts, a phenomenon that is potentiated in the presence of cancer cells. Collectively, our results suggest that ATF3 and JDP2 regulate the expression of essential tumor promoting factors expressed by fibroblasts within the tumor microenvironment, and thus restrain tumor growth.
Collapse
|
13
|
Okuyama NCM, Cezar-Dos-Santos F, Pereira ÉR, Trugilo KP, Cebinelli GCM, Sena MM, Pereira APL, Aranome AMF, Mangieri LFL, Ferreira RS, Watanabe MAE, de Oliveira KB. Genetic variant in CXCL12 gene raises susceptibility to HPV infection and squamous intraepithelial lesions development: a case-control study. J Biomed Sci 2018; 25:69. [PMID: 30227860 PMCID: PMC6145110 DOI: 10.1186/s12929-018-0472-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Human papillomavirus (HPV) is the most common sexually transmitted virus in women worldwide. The persistence of the virus may cause warts that are considered benign lesions and low or high grade intraepithelial lesions (LSIL/HSIL). Immunological system plays an important role in the resolution of infections. In this context, we highlight the chemokines, which are important regulators in the development of viral infections and inflammation. Among which CXCL12 stands out, due to its pro-inflammatory features, acting as chemoattractant recruiting immune cells. Several polymorphisms were identified in CXCL12 gene including rs1801157 in the 3′-untranslated region, which is characterized by a substitution of a guanine for an adenine. Methods In this study, 195 women were classified as HPV non-infected and 169 as HPV-infected. HPV-DNA was detected by polymerase chain reaction (PCR) and the polymorphism was assessed in blood cells through restriction fragment length polymorphism analysis. Results HPV infection was more incident in women who had more than 4 sexual partners during lifetime (p = 0.007), among those who presented lower number of pregnancies (p = 0.017). HPV was more prevalent among allele A carriers confirmed by logistic regression analysis adjusted for several confounding factors [ORADJ = 4.985; CI95% (2.85–8.72), p < 0.001]. An association between allele A carriers and HSIL development (p = 0.003) was also observed. Conclusions In the present study, we demonstrated that CXCL12 rs1801157 is independently associated with HPV infection and exerts influence in HSIL development, suggesting it as a promising susceptibility biomarker for HPV infection and lesions development.
Collapse
Affiliation(s)
- Nádia Calvo Martins Okuyama
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Fernando Cezar-Dos-Santos
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Érica Romão Pereira
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Kleber Paiva Trugilo
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | | | - Michelle Mota Sena
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Ana Paula Lombardi Pereira
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Adriano Martin Felis Aranome
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Luis Fernando Lasaro Mangieri
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Rodolfo Sanches Ferreira
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Laboratory of study and application of DNA polymorphism, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil
| | - Karen Brajão de Oliveira
- Laboratory of molecular genetics and immunology, Department of Pathological Science, Londrina State University, Londrina, PR, Brazil.
| |
Collapse
|
14
|
|
15
|
Chia K, Mazzolini J, Mione M, Sieger D. Tumor initiating cells induce Cxcr4-mediated infiltration of pro-tumoral macrophages into the brain. eLife 2018; 7:e31918. [PMID: 29465400 PMCID: PMC5821457 DOI: 10.7554/elife.31918] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022] Open
Abstract
It is now clear that microglia and macrophages are present in brain tumors, but whether or how they affect initiation and development of tumors is not known. Exploiting the advantages of the zebrafish (Danio rerio) model, we showed that macrophages and microglia respond immediately upon oncogene activation in the brain. Overexpression of human AKT1 within neural cells of larval zebrafish led to a significant increase in the macrophage and microglia populations. By using a combination of transgenic and mutant zebrafish lines, we showed that this increase was caused by the infiltration of peripheral macrophages into the brain mediated via Sdf1b-Cxcr4b signaling. Intriguingly, confocal live imaging reveals highly dynamic interactions between macrophages/microglia and pre-neoplastic cells, which do not result in phagocytosis of pre-neoplastic cells. Finally, depletion of macrophages and microglia resulted in a significant reduction of oncogenic cell proliferation. Thus, macrophages and microglia show tumor promoting functions already during the earliest stages of the developing tumor microenvironment.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Marina Mione
- Centre for Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
16
|
Grdović N, Rajić J, Petrović SM, Dinić S, Uskoković A, Mihailović M, Jovanović JA, Tolić A, Pucar A, Milašin J, Vidaković M. Association of CXCL12 gene promoter methylation with periodontitis in patients with diabetes mellitus type 2. Arch Oral Biol 2016; 72:124-133. [PMID: 27580404 DOI: 10.1016/j.archoralbio.2016.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES CXCL12 is widely expressed, constitutive chemokine involved in tissue repair and regeneration, while the extent of its expression is important in various chronic inflammatory conditions. Involvement of DNA methylation in CXCL12 gene suppression (CXCL12) has been shown in malignancy and some autoimmune diseases. The aim of this study was to investigate whether the alterations in DNA methylation of CXCL12 are also involved in progression of periodontitis in combination with diabetes, as these chronic inflammatory conditions are strongly interrelated. DESIGN Study included 72 subjects divided in three groups: healthy control (C, n=21), periodontitis (P, n=29) and diabetes/periodontitis group (D/P, n=22). DNA extracted from epithelial cells obtained by sterile cotton swabs from buccal mucosa was subjected to methylation specific polymerase chain reaction (MSP) to obtain DNA methylation pattern of CXCL12 promoter. RESULTS CXCL12 promoter was predominantly unmethylated in all groups. However, increase in the frequency of the methylated form and increase in percent of methylation of CXCL12 promoter in periodontitis and diabetes/periodontitis group compared to control group were found, although without statistical significance. However, statistically significant increase in Tm of MSP products in diabetes/periodontitis group was observed. Correlation analysis revealed statistically significant relationship between the extent of DNA methylation of the CXCL12 promoter and periodontal parameters, as well as between DNA methylation of CXCL12 and glycosylated hemoglobin. CONCLUSION Presented results suggest that chronic inflammation contributes to the change of CXCL12 DNA methylation in buccal cells and that DNA methylation profile of CXCL12 promoter plays important role in development and progression of periodontal disease.
Collapse
Affiliation(s)
- Nevena Grdović
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Jovana Rajić
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Sanja Matić Petrović
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Svetlana Dinić
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandra Uskoković
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Mihailović
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Jelena Arambašić Jovanović
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Anja Tolić
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Ana Pucar
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Jelena Milašin
- Institute of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Melita Vidaković
- Institute for Biological Research "Siniša Stanković", Department of Molecular Biology, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia.
| |
Collapse
|
17
|
Herrero R, Pineda JA, Rivero-Juarez A, Echbarthi M, Real LM, Camacho A, Macias J, Fibla J, Rivero A, Caruz A. Common haplotypes in CD209 promoter and susceptibility to HIV-1 infection in intravenous drug users. INFECTION GENETICS AND EVOLUTION 2016; 45:20-25. [PMID: 27539513 DOI: 10.1016/j.meegid.2016.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 12/30/2022]
Abstract
INTRODUCTION CD209 is a receptor expressed in the dendritic cells involved in recognition of oligosaccharides present in several pathogens with a relevant impact on human health. SNPs located in the promoter region have been associated with HIV-1 susceptibility, although this finding has not been replicated in other populations. The objective of this study is to evaluate the association of CD209 promoter haplotypes with risk of HIV-1 infection in a cohort of Spanish male intravenous drug users (IDU) infected with hepatitis C virus (HCV) and to characterize the phenotypic effects of the associated variants. METHODS We genotyped 4 SNPs of CD209 promoter in 295 HCV males exposed to HIV-1 infection by IDU, 165 HIV-1-infected and 130 exposed uninfected (EUI) and 142 healthy controls (HC). We have cloned the promoter variants in a reporter vector and evaluated the promoter activities in a cell culture model. CD209 mRNAs were measured in PBMC. RESULTS Single-marker analysis revealed no significant allelic association with the risk of HIV-1 infection by parenteral route. Nevertheless, one haplotype was significantly overrepresented in EUI compared with HIV-1 positive patients and was associated with HIV-1 status (P=0.0008; OR: 0.43). Functional experiments suggested that the protective haplotype displayed lower transcriptional activity in vitro (P<0.05) and this was correlated with lower CD209 mRNA expression in PBMC (P=0.014). CONCLUSIONS This study suggests that the promoter haplotypes of CD209 influence the risk of HIV-1 acquisition in IDU and that this association is correlated with the mRNA expression level.
Collapse
Affiliation(s)
- Rocio Herrero
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, 23071 Jaén, Spain.
| | - Juan A Pineda
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, 41014 Seville, Spain.
| | - Antonio Rivero-Juarez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, 14004 Cordoba, Spain.
| | - Meriem Echbarthi
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, 23071 Jaén, Spain.
| | - Luis-Miguel Real
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, 41014 Seville, Spain.
| | - Angela Camacho
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, 14004 Cordoba, Spain.
| | - Juan Macias
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, 41014 Seville, Spain.
| | - Joan Fibla
- Human Genetics Unit, Department of Basic Medical Sciences, University of Lleida IRBLleida, 25003, Lleida, Catalonia, Spain.
| | - Antonio Rivero
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, 14004 Cordoba, Spain.
| | - Antonio Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, 23071 Jaén, Spain.
| |
Collapse
|
18
|
Vergori L, Lauret E, Soleti R, Martinez MC, Andriantsitohaina R. Low concentration of ethanol favors progenitor cell differentiation and neovascularization in high-fat diet-fed mice model. Int J Biochem Cell Biol 2016; 78:43-51. [PMID: 27412816 DOI: 10.1016/j.biocel.2016.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/27/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
Abstract
Endothelial progenitor cells (EPCs) and monocytic cells from bone marrow (BM) can be recruited to the injured endothelium and contribute to its regeneration. During metabolic diseases such as obesity and diabetes, progenitor cell function is impaired. Several studies have shown that moderate alcohol consumption prevents the development and progression of atherosclerosis in a variety of animal/mouse models and increases mobilization of progenitor cells. Along with these studies, we identify ethanol at low concentration as therapeutic tool to in vitro expand progenitor cells in order to obtain an adequate number of cells for their use in the treatment of cardiovascular diseases. We evaluated the effects of ethanol on the phenotype of BM-derived cells from mice fed with high-fat diet (HFD). HFD did not induce changes in weight of mice but induced metabolic alterations. HFD feeding increased the differentiation of monocytic progenitors but not EPCs. Whereas ethanol at 0.6% is able to increase monocytic progenitor differentiation, 1% ethanol diminished it. Furthermore, ethanol at 0.6% increased the ability of progenitor cells to promote in vivo angiogenesis as well as secretome of BM-derived cells from mice fed with HFD, but not in mice fed normal diet. In conclusion, ethanol at low concentration is able to increase angiogenic abilities of progenitor cells from animals with early metabolic alterations.
Collapse
Affiliation(s)
- Luisa Vergori
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Emilie Lauret
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Raffaella Soleti
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Maria Carmen Martinez
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Ramaroson Andriantsitohaina
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France; CHU dAngers, 4 rue Larrey, 49933 Angers cedex, France.
| |
Collapse
|
19
|
Huber SM, Butz L, Stegen B, Klumpp L, Klumpp D, Eckert F. Role of ion channels in ionizing radiation-induced cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2657-64. [DOI: 10.1016/j.bbamem.2014.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023]
|
20
|
Wang L, Li X, Zhao Y, Fang C, Lian Y, Gou W, Han T, Zhu X. Insights into the mechanism of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:663-72. [PMID: 26188201 DOI: 10.1093/abbs/gmv064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023] Open
Abstract
The chemokine CXCL12 and its receptor CXCR4 are important signaling components required for human blastocyst implantation and the progression of pregnancy. Growing evidence indicates that the CXCL12/CXCR4 axis can regulate trophoblast function and uterine spiral artery remodeling, which plays a fundamental role in placentation and fetal outcome. The orphan receptor CXCR7 is also believed to partly regulate the function of the CXCL12/CXCR4 axis. Additionally, the CXCL12/CXCR4/CXCR7 axis can enhance the cross-talk between trophoblasts and decidual cells such as uterine natural killer cells and decidual stromal cells which are involved in regulation of trophoblast differentiation and invasion and placental angiogenesis. In addition, recent studies proved that CXCL12 expression is elevated in the placenta and mid-trimester amniotic fluid of pregnant women with preeclampsia, implying that dysregulation of CXCL12 plays a role in the pathogenesis of preeclampsia. Further understanding of the regulatory mechanisms of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis may help to design novel therapeutic approaches for pregnancy-associated diseases.
Collapse
Affiliation(s)
- Liang Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China The First Student Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Xueyi Li
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatism & Immunity, Xi-jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yilin Zhao
- Department of Respiratory Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Chao Fang
- Institute of Neurosciences, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingli Lian
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenli Gou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Xiaoming Zhu
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
21
|
Khurana S, Melacarne A, Yadak R, Schouteden S, Notelaers T, Pistoni M, Maes C, Verfaillie CM. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells 2015; 32:3012-22. [PMID: 25069965 DOI: 10.1002/stem.1794] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022]
Abstract
We recently demonstrated that ex vivo activation of SMAD-independent bone morphogenetic protein 4 (BMP4) signaling in hematopoietic stem/progenitor cells (HSPCs) influences their homing into the bone marrow (BM). Here, we assessed whether alterations in BMP signaling in vivo affects adult hematopoiesis by affecting the BM niche. We demonstrate that systemic inhibition of SMAD-dependent BMP signaling by infusion of the BMP antagonist noggin (NGN) significantly increased CXCL12 levels in BM plasma leading to enhanced homing and engraftment of transplanted HSPCs. Conversely, the infusion of BMP7 but not BMP4, resulted in decreased HSPC homing. Using ST2 cells as an in vitro model of BM niche, we found that incubation with neutralizing anti-BMP4 antibodies, NGN, or dorsomorphin (DM) as well as knockdown of Smad1/5 and Bmp4, all enhanced CXCL12 production. Chromatin immunoprecipitation identified the SMAD-binding element in the CXCL12 promoter to which SMAD4 binds. When deleted, increased CXCL12 promoter activity was observed, and NGN or DM no longer affected Cxcl12 expression. Interestingly, BMP7 infusion resulted in mobilization of only short-term HSCs, likely because BMP7 affected CXCL12 expression only in osteoblasts but not in other niche components. Hence, we describe SMAD-dependent BMP signaling as a novel regulator of CXCL12 production in the BM niche, influencing HSPC homing, engraftment, and mobilization.
Collapse
Affiliation(s)
- Satish Khurana
- Inter-Departmental Stem Cell Institute, KU Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
CXCL12 and CXCR4, but not CXCR7, are primarily expressed by the stroma in head and neck squamous cell carcinoma. Pathology 2015; 47:45-50. [PMID: 25474514 DOI: 10.1097/pat.0000000000000191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CXCL12/CXCR4 axis is involved in numerous models of metastatic dissemination, including head and neck squamous cell carcinoma (HNSCC). We assessed the relative expressions of CXCL12, CXCR4 and CXCR7 in the stroma and the tumour of HNSCC, and evaluated the methylation status of the CXCL12 promoter.Snap-frozen, HPV negative HNSCC samples were micro-dissected to isolate the tumoural and stromal compartments. The expression levels of CXCL12, CXCR4 and CXCR7 were assessed by qRT-PCR, and the methylation level of the CXCL12 promoter was evaluated by pyrosequencing.In total, 23 matched tumour/stroma samples were analysed. Higher expressions of CXCR4 and CXCL12 were observed in the stroma (p = 0.012 and p < 0.0001, respectively). No significant difference in expression was observed for CXCR7. A high methylation level (>40%) of the CXCL12 promoter was observed in only a few tumoural samples (5/23) and was associated with a lower expression of the gene (p = 0.03).Stromal cells, rather than the tumour itself, are mainly responsible for the expression of both CXCL12 and CXCR4 expression in HNSCC. CXCR7 expression did not differ between the two compartments and was not related to CXCL12 or CXCR4 expression. Finally, the methylation of the CXCL12 promoter could only explain the low intra-tumoural expression of this gene in 20% of cases.
Collapse
|
23
|
Yang B, Li W, Zheng Q, Qin T, Wang K, Li J, Guo B, Yu Q, Wu Y, Gao Y, Cheng X, Hu S, Kumar SN, Liu S, Song Z. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun 2015; 463:130-6. [DOI: 10.1016/j.bbrc.2015.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
|
24
|
Kiss K, Baghy K, Spisák S, Szanyi S, Tulassay Z, Zalatnai A, Löhr JM, Jesenofsky R, Kovalszky I, Firneisz G. Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells. PLoS One 2015; 10:e0128059. [PMID: 26010611 PMCID: PMC4444240 DOI: 10.1371/journal.pone.0128059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/23/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus is linked to pancreatic cancer. We hypothesized a role for pancreatic stellate cells (PSC) in the hyperglycemia induced deterioration of pancreatic cancer and therefore studied two human cell lines (RLT-PSC, T3M4) in hyperglycemic environment. METHODOLOGY/PRINCIPAL FINDINGS The effect of chronic hyperglycemia (CHG) on PSCs was studied using mRNA expression array with real-time PCR validation and bioinformatic pathway analysis, and confirmatory protein studies. The stress fiber formation (IC: αSMA) indicated that PSCs tend to transdifferentiate to a myofibroblast-like state after exposure to CHG. The phosphorylation of p38 and ERK1/2 was increased with a consecutive upregulation of CDC25, SP1, cFOS and p21, and with downregulation of PPARγ after PSCs were exposed to chronic hyperglycemia. CXCL12 levels increased significantly in PSC supernatant after CHG exposure independently from TGF-β1 treatment (3.09-fold with a 2.73-fold without TGF-β1, p<0.05). The upregualtion of the SP1 transcription factor in PSCs after CHG exposure may be implicated in the increased CXCL12 and IGFBP2 production. In cancer cells, hyperglycemia induced an increased expression of CXCR4, a CXCL12 receptor that was also induced by PSC's conditioned medium. The receptor-ligand interaction increased the phosphorylation of ERK1/2 and p38 resulting in activation of MAP kinase pathway, one of the most powerful stimuli for cell proliferation. Certainly, conditioned medium of PSC increased pancreatic cancer cell proliferation and this effect could be partially inhibited by a CXCR4 inhibitor. As the PSC conditioned medium (normal glucose concentration) increased the ERK1/2 and p38 phosphorylation, we concluded that PSCs produce other factor(s) that influence(s) pancreatic cancer behaviour. CONCLUSIONS Hyperglycemia induces increased CXCL12 production by the PSCs, and its receptor, CXCR4 on cancer cells. The ligand-receptor interaction activates MAP kinase signaling that causes increased cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Katalin Kiss
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Spisák
- Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Szilárd Szanyi
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Zalatnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - J.-Matthias Löhr
- Karolinska Institutet, Gastrocentrum, Karolinska University Hospital, Stockholm, Sweden
| | - Ralf Jesenofsky
- University of Heidelberg, Medical Campus Mannheim, Dept. of Medicine II, Mannheim, Germany
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Firneisz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Marković J, Uskoković A, Grdović N, Dinić S, Mihailović M, Jovanović JA, Poznanović G, Vidaković M. Identification of transcription factors involved in the transcriptional regulation of the CXCL12 gene in rat pancreatic insulinoma Rin-5F cell line. Biochem Cell Biol 2014; 93:54-62. [PMID: 25453873 DOI: 10.1139/bcb-2014-0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes is characterized by a deficit in the number of functional pancreatic β-cells. Understanding the mechanisms that stimulate neogenesis of β-cells should contribute to improved maintenance of β-cell mass. Chemokine CXCL12 has recently become established as a novel β-cell growth factor, however the mechanisms controlling its expression require clarification. We investigated the proteins involved in the transcriptional regulation of the rat β-cell CXCL12 gene (Cxcl12). Using the electrophoretic mobility shift assay and chromatin immunoprecipitation, we established the in vitro and in vivo binding of C/EBPβ, C/EBPα, STAT3, p53, FOXO3a, and HMG I/Y to the Cxcl12 promoter. Co-immunoprecipitation experiments revealed protein-protein interactions between YY1 and PARP-1, FOXO3a and PARP-1, Sp1 and PARP-1, p53 and PARP-1, C/EBPβ and PARP-1, YY1 and p53, YY1 and FOXO3a, p53 and FOXO3a, Sp1 and FOXO3a, C/EBPβ and FOXO3a, C/EBPα and FOXO3a, Sp1 and STAT3. Our data lay the foundation for research into the interplay of signaling pathways that determine the β-cell Cxcl12 expression profile.
Collapse
Affiliation(s)
- Jelena Marković
- a Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wobus M, List C, Dittrich T, Dhawan A, Duryagina R, Arabanian LS, Kast K, Wimberger P, Stiehler M, Hofbauer LC, Jakob F, Ehninger G, Anastassiadis K, Bornhäuser M. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int J Cancer 2014; 136:44-54. [PMID: 24806942 DOI: 10.1002/ijc.28960] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/16/2014] [Indexed: 12/12/2022]
Abstract
We investigated whether breast tumor cells can modulate the function of mesenchymal stromal cells (MSCs) with a special emphasis on their chemoattractive activity towards hematopoietic stem and progenitor cells (HSPCs). Primary MSCs as well as a MSC line (SCP-1) were cocultured with primary breast cancer cells, MCF-7, MDA-MB231 breast carcinoma or MCF-10A non-malignant breast epithelial cells or their conditioned medium. In addition, the frequency of circulating clonogenic hematopoietic progenitors was determined in 78 patients with breast cancer and compared with healthy controls. Gene expression analysis of SCP-1 cells cultured with MCF-7 medium revealed CXCL12 (SDF-1) as one of the most significantly downregulated genes. Supernatant from both MCF-7 and MDA-MB231 reduced the CXCL12 promoter activity in SCP-1 cells to 77% and 47%, respectively. Moreover, the CXCL12 mRNA and protein levels were significantly reduced. As functional consequence of lower CXCL12 levels, we detected a decreased trans-well migration of HSPCs towards MSC/tumor cell cocultures or conditioned medium. The specificity of this effect was confirmed by blocking studies with the CXCR4 antagonist AMD3100. Downregulation of SP1 and increased miR-23a levels in MSCs after contact with tumor cell medium as well as enhanced TGFβ1 expression were identified as potential molecular regulators of CXCL12 activity in MSCs. Moreover, we observed a significantly higher frequency of circulating colony-forming hematopoietic progenitors in patients with breast cancer compared with healthy controls. Our in vitro results propose a potential new mechanism by which disseminated tumor cells in the bone marrow may interfere with hematopoiesis by modulating CXCL12 in protected niches.
Collapse
Affiliation(s)
- Manja Wobus
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universiät Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Petković F, Blaževski J, Momčilović M, Mostarica Stojkovic M, Miljković D. Nitric oxide inhibits CXCL12 expression in neuroinflammation. Immunol Cell Biol 2013; 91:427-34. [PMID: 23732617 DOI: 10.1038/icb.2013.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
Chemokine CXCL12 (C-X-C motif chemokine ligand 12) restricts immune cell invasion of the central nervous system (CNS) and limits neuroinflammation in experimental autoimmune encephalomyelitis (EAE), an animal model of inflammatory and demyelinating disease of the CNS, multiple sclerosis (MS). Nitric oxide (NO), by contrast, predominantly contributes to CNS tissue destruction in MS and EAE. Thus, the influence of NO on CXCL12 in the inflamed CNS was investigated. Excess expression of inducible NO synthase was inversely correlated to CXCL12 gene expression in spinal cord homogenates of rats immunized to develop EAE. NO inhibited gene expression of CXCL12 in astrocytes and endothelial cells in vitro. The inhibition was paralleled with reduction of p38 mitogen-activated protein kinase (MAPK) phosphorylation and it was mimicked with inhibitors of p38 MAPK activation in astrocytes. In vivo suppression of nitric generation recovered CXCL12 expression in the CNS and attenuated EAE in Dark Agouti rats. On the contrary, in vivo NO donation decreased CXCL12 expression in the CNS of EAE-resistant Albino Oxford (AO) rats. However, the effect was not paralleled with induction of EAE in AO rats. It is suggested that NO acting through suppression of p38 MAPK inhibits CXCL12 expression in neuroinflammation. These results imply that downregulation of NO release and protection of CXCL12 expression within the CNS might present the potential approaches in MS therapy.
Collapse
Affiliation(s)
- Filip Petković
- Department of Immunology, Institute for Biological Research, Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
28
|
Huang WS, Chen CN, Sze CI, Teng CC. Visfatin induces stromal cell-derived factor-1 expression by β1 integrin signaling in colorectal cancer cells. J Cell Physiol 2013; 228:1017-24. [PMID: 23042611 DOI: 10.1002/jcp.24248] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/26/2012] [Indexed: 12/11/2022]
Abstract
Obesity has been shown to be associated with the risk of colorectal cancer (CRC). Adipokines produced by the adipose tissue are linked to some malignancies, including CRC. Visfatin is an adipokine shown to be a biomarker of CRC malignant potential. In addition, the stromal cell-derived factor-1 (SDF-1) has been reported to play a role in CRC progression. Although the relationship between visfatin and CRC has been established, the underlying mechanism has not been clarified. We investigated the molecular mechanism governing the interaction between visfatin stimulation and SDF-1 expression in human CRC cell lines. We found that visfatin stimulation led to an increase in the expression and secretion of SDF-1 in CRC DLD-1 and SW48 cells. Experiments involving specific inhibitors and small interfering RNA demonstrated that the activation of ERK and p38 mitogen-activated protein kinase (MAPK) pathways are critical for visfatin-induced SDF-1 expression. Analysis of transcription factor binding using ELISA and luciferase reporter assays revealed that visfatin increased NF-κB- and AP-1-DNA-binding activities in DLD-1 cells. Inhibition of NF-κB and AP-1 activation blocked the visfatin-induced expression and activity of the SDF-1 promoter. The effect of visfatin on DLD-1 signaling and SDF-1 expression was mediated by β1 integrin. In summary, these findings provide novel insights pertaining to the pathophysiological role of visfatin in CRC.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | |
Collapse
|
29
|
Marković J, Grdović N, Dinić S, Karan-Djurašević T, Uskoković A, Arambašić J, Mihailović M, Pavlović S, Poznanović G, Vidaković M. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells. PLoS One 2013; 8:e59679. [PMID: 23555743 PMCID: PMC3608566 DOI: 10.1371/journal.pone.0059679] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/16/2013] [Indexed: 12/20/2022] Open
Abstract
Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12 transcription.
Collapse
Affiliation(s)
- Jelena Marković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurašević
- Laboratory for Molecular Hematology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Arambašić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlović
- Laboratory for Molecular Hematology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
30
|
Maddirela DR, Kesanakurti D, Gujrati M, Rao JS. MMP-2 suppression abrogates irradiation-induced microtubule formation in endothelial cells by inhibiting αvβ3-mediated SDF-1/CXCR4 signaling. Int J Oncol 2013; 42:1279-88. [PMID: 23381805 PMCID: PMC3586295 DOI: 10.3892/ijo.2013.1806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/28/2012] [Indexed: 11/24/2022] Open
Abstract
The majority of glioblastoma multiforme (GBM) tumors recur after radiation (IR) treatment due to increased angiogenesis and IR-induced signaling events in endothelial cells (ECs) that are involved in tumor neovascularization; however, these signaling events have yet to be well characterized. In the present study, we observed that IR (8 Gy) significantly elevated MMP-2 expression and gelatinolytic activity in 4910 and 5310 human GBM xenograft cells. In addition, ECs treated with tumor-conditioned media (CM) obtained from IR-treated 4910 and 5310 cells showed increased microtubule formation. In view of this finding, we investigated the possible anti-angiogenic effects of MMP-2 downregulation using siRNA (pM.si) in IR-treated cells. We also determined the effect of CM obtained from mock, pSV (scrambled vector) and pMMP-2.si on endothelial cell growth and vessel formation. pM.si-CM-treated ECs showed inhibited IR-CM-induced SDF-1, CXCR4, phospho-PI3K and phospho-AKT and αvβ3 expression levels. In vitro angiogenesis assays also showed that the pM.si+IR decreased IR-induced vessel formation in ECs. Immunofluorescence and immunoprecipitation experiments indicated the abrogation of αvβ3-SDF-1 interaction in pM.si-CM-treated ECs when compared to mock or pSV treatments. External supplementation of either rhMMP-2 or rhSDF-1 counteracted and noticeably reversed pM.si-inhibited SDF-1, CXCR4, phospho-PI3K and phospho-AKT expression levels and angiogenesis, thereby confirming the role of MMP-2 in the regulation of αvβ3-mediated SDF-1/CXCR4 signaling. In addition to the in vitro results, the in vivo mouse dorsal air sac model also showed reduced angiogenesis after injection of pM.si alone or in combination with IR-treated xenograft cells. In contrast, injection of mock or pSV-treated cells resulted in robust formation of characteristic neovascularization. Collectively, our data demonstrate the role of MMP-2 in the regulation of SDF-1/CXCR4 signaling-mediated angiogenesis in ECs and show the anti-angiogenic efficacy of combining MMP-2 downregulation and IR when treating patients with GBM in the future.
Collapse
Affiliation(s)
- Dilip Rajasekhar Maddirela
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | |
Collapse
|
31
|
Peng Y, Shi J, Du X, Wang L, Klocker H, Mo L, Mo Z, Zhang J. Prostaglandin E2 induces stromal cell-derived factor-1 expression in prostate stromal cells by activating protein kinase A and transcription factor Sp1. Int J Biochem Cell Biol 2012; 45:521-30. [PMID: 23246486 DOI: 10.1016/j.biocel.2012.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/01/2012] [Accepted: 11/25/2012] [Indexed: 12/29/2022]
Abstract
Recent reports indicate prostaglandin E2 (PGE2) can modulate tumor environment and promote angiogenesis through induction of stromal cell-derived factor 1 (SDF-1) production. We investigated the mechanism of PGE2-induced SDF-1 regulation in human prostate stromal cell and analyzed the effects in a stromal-epithelial interaction model. PGE2 stimulation increased SDF-1 expression in the prostate stromal cell lines WPMY-1 and NAF. We revealed signaling through the PGE2 receptor EP3 and activation of protein kinase A (PKA) are required. The EP3 agonist sulprostone and the cAMP analog forskolin mimicked and the EP3 siRNA, antagonist L798106 and the PKA inhibitor H89 abrogated the effect of PGE2 on SDF-1 expression. SDF-1 promoter truncation experiments demonstrated a 254 bp (from nt -219 to nt +34) SDF-1 proximal promoter fragment containing 5 putative transcription factor Sp1 binding motifs is sufficient for PGE2 induction. CHIP assays confirmed binding and PGE2 induced recruitment of Sp1 to the SDF-1 promoter. Sp1 motif mutation identified Sp1 motifs -140/-133 and -9/+1 as the crucial elements responsible for PGE2 induction. Moreover, SDF-1 was up- or down-regulated by Sp1 over-expression or knock-down. We also demonstrate stimulation of migration of prostate cancer cell lines PC3 and DU145 with conditioned media collected from WPMY-1 or NAF cells stimulated with PGE2 and blockade of enhanced migration by a SDF-1 neutralizing antibody. In conclusion, we provide evidence for a paracrine prostate stromal-epithelial interaction induced by upregulation of expression of SDF-1 by PGE2. Our research provides new insights into the mechanism promoting metastasis of prostate carcinoma via stromal-epithelial interaction.
Collapse
Affiliation(s)
- Yanfei Peng
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Laplana M, Caruz A, Pineda JA, Puig T, Fibla J. Association of BST-2 Gene Variants With HIV Disease Progression Underscores the Role of BST-2 in HIV Type 1 Infection. J Infect Dis 2012; 207:411-9. [DOI: 10.1093/infdis/jis685] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Timotijević G, Mostarica Stojković M, Miljković D. CXCL12: Role in neuroinflammation. Int J Biochem Cell Biol 2012; 44:838-41. [DOI: 10.1016/j.biocel.2012.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/14/2012] [Accepted: 03/22/2012] [Indexed: 01/20/2023]
|
34
|
Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. Nat Genet 2012; 44:709-13. [PMID: 22581230 DOI: 10.1038/ng.2259] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/02/2012] [Indexed: 12/18/2022]
Abstract
Using homozygosity mapping and locus resequencing, we found that alterations in the homeodomain of the IRX5 transcription factor cause a recessive congenital disorder affecting face, brain, blood, heart, bone and gonad development. We found through in vivo modeling in Xenopus laevis embryos that Irx5 modulates the migration of progenitor cell populations in branchial arches and gonads by repressing Sdf1. We further found that transcriptional control by Irx5 is modulated by direct protein-protein interaction with two GATA zinc-finger proteins, GATA3 and TRPS1; disruptions of these proteins also cause craniofacial dysmorphisms. Our findings suggest that IRX proteins integrate combinatorial transcriptional inputs to regulate key signaling molecules involved in the ontogeny of multiple organs during embryogenesis and homeostasis.
Collapse
|
35
|
Blaine TA, Cote MA, Proto A, Mulcahey M, Lee FY, Bigliani LU. Interleukin-1β stimulates stromal-derived factor-1α expression in human subacromial bursa. J Orthop Res 2011; 29:1695-9. [PMID: 21484857 DOI: 10.1002/jor.21416] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/28/2011] [Indexed: 02/04/2023]
Abstract
Chemokines produced by synoviocytes of the subacromial bursa are up-regulated in subacromial bursitis and rotator cuff disease. We hypothesized that SDF-1α production in bursal synoviocytes may be induced by local cytokines such as interleukin IL-1β and IL-6. Subacromial bursa specimens were obtained from patients undergoing shoulder surgery. Bursal specimens were stained with anti-human antibodies to IL-1, IL-6, and SDF-1α by immunohistochemistry and compared to normal and rheumatoid controls. Bursal cells were also isolated from specimens and cultured. Early passaged cells were then treated with cytokines (IL-1β and IL-6) and SDF-1α expression was measured by ELISA and RT-PCR. SDF-1α, IL-1β, and IL-6 were expressed at high levels in bursitis specimens from human subacromial bursa compared to normal controls. In cultured bursal synoviocytes, there was a dose-dependent increase in SDF-1α production in the supernatants of cells treated with IL-1β. SDF-1α mRNA expression was also increased in bursal cells treated with IL-1β. IL-6 caused a minimal but not statistically significant increase in SDF-1α expression. SDF-1α, IL-1β, and IL-6 are expressed in the inflamed human subacromial bursal tissues in patients with subacromial bursitis. In cultured bursal synoviocytes, SDF-1α gene expression and protein production are stimulated by IL-1β. IL-1β produced by bursal syvoviocytes and inflammatory cells in the human subacromial bursa is an important signal in the inflammatory response that occurs in subacromial bursitis and rotator cuff disease.
Collapse
Affiliation(s)
- Theodore A Blaine
- Rhode Island Shoulder and Elbow Service, Brown Alpert Medical School, 2 Dudley Street, Suite 200, Providence, Rhode Island 02905, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Karouzakis E, Rengel Y, Jüngel A, Kolling C, Gay RE, Michel BA, Tak PP, Gay S, Neidhart M, Ospelt C. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun 2011; 12:643-52. [PMID: 21753787 DOI: 10.1038/gene.2011.45] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction.
Collapse
Affiliation(s)
- E Karouzakis
- Center of Experimental Rheumatology and Zurich Center of Integrative Human Physiology (ZIHP), University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gil-Bernabe P, Boveda-Ruiz D, D'Alessandro-Gabazza C, Toda M, Miyake Y, Mifuji-Moroka R, Iwasa M, Morser J, Gabazza EC, Takei Y. Atherosclerosis amelioration by moderate alcohol consumption is associated with increased circulating levels of stromal cell-derived factor-1. Circ J 2011; 75:2269-79. [PMID: 21757824 DOI: 10.1253/circj.cj-11-0026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A moderate intake of alcohol is associated with lower cardiovascular mortality, and the role of circulating progenitor cells in the beneficial effect of alcohol on atherosclerosis is unclear. The hypothesis of this study was that alcohol ameliorates atherosclerosis by modulating the circulating levels of stromal cell-derived growth factor (SDF)-1 and vascular progenitor cells. METHODS AND RESULTS Atherosclerosis was induced by infusion of angiotensin II in apolipoprotein-E deficient mice, which were treated with high and low doses of ethanol for 28 days by intraperitoneal injection. Mice treated with low-dose ethanol had significantly less dilatation and fewer atheromatous lesions than mice receiving the high-dose ethanol. The number of circulating fibrocytes was significantly lower in mice treated with high-dose ethanol compared with mice with atherosclerosis untreated with ethanol. The plasma CXCL12/SDF-1 level was significantly increased in mice treated with low-dose ethanol compared with mice treated with a high dose, and the plasma concentration of transforming growth factor-β1 was significantly increased in mice treated with high-dose ethanol compared with control mice. Ethanol regulated the secretion of SDF-1 and vascular endothelial growth factor from fibroblasts in a dose-dependent and bimodal fashion. CONCLUSIONS The circulating level of CXCL12/SDF-1 may be involved, at least in part, in the differential effects of alcohol consumption on atherosclerosis.
Collapse
Affiliation(s)
- Paloma Gil-Bernabe
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kiskowski MA, Jackson RS, Banerjee J, Li X, Kang M, Iturregui JM, Franco OE, Hayward SW, Bhowmick NA. Role for stromal heterogeneity in prostate tumorigenesis. Cancer Res 2011; 71:3459-70. [PMID: 21444670 DOI: 10.1158/0008-5472.can-10-2999] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer develops through a stochastic mechanism whereby precancerous lesions on occasion progress to multifocal adenocarcinoma. Analysis of human benign and cancer prostate tissues revealed heterogeneous loss of TGF-β signaling in the cancer-associated stromal fibroblastic cell compartment. To test the hypothesis that prostate cancer progression is dependent on the heterogeneous TGF-β responsive microenvironment, a tissue recombination experiment was designed in which the ratio of TGF-β responsive and nonresponsive stromal cells was varied. Although 100% TGF-β responsive stromal cells supported benign prostate growth and 100% TGF-β nonresponsive stromal cells resulted in precancerous lesions, only the mixture of TGF-β responsive and nonresponsive stromal cells resulted in adenocarcinoma. A computational model was used to resolve a mechanism of tumorigenic progression in which proliferation and invasion occur in two independent steps mediated by distinct stromally derived paracrine signals produced by TGF-β nonresponsive and responsive stromal cells. Complex spatial relationships of stromal and epithelial cells were incorporated into the model on the basis of experimental data. Informed by incorporation of experimentally derived spatial parameters for complex stromal-epithelial relationships, the computational model indicated ranges for the relative production of paracrine factors by each cell type and provided bounds for the diffusive range of the molecules. Because SDF-1 satisfied model predictions for an invasion-promoting paracrine factor, a more focused computational model was subsequently used to investigate whether SDF-1 was the invasion signal. Simulations replicating SDF-1 expression data revealed the requirement for cooperative SDF-1 expression, a prediction supported biologically by heterotypic stromal interleukin-1β signaling between fibroblastic cell populations. The cancer stromal field effect supports a functional role for the unaltered fibroblasts as a cooperative mediator of cancer progression.
Collapse
Affiliation(s)
- Maria A Kiskowski
- Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schajnovitz A, Itkin T, D'Uva G, Kalinkovich A, Golan K, Ludin A, Cohen D, Shulman Z, Avigdor A, Nagler A, Kollet O, Seger R, Lapidot T. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat Immunol 2011; 12:391-8. [PMID: 21441933 DOI: 10.1038/ni.2017] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/04/2011] [Indexed: 12/13/2022]
Abstract
The chemokine CXCL12 is essential for the function of hematopoietic stem and progenitor cells. Here we report that secretion of functional CXCL12 from human bone marrow stromal cells (BMSCs) was a cell contact-dependent event mediated by connexin-43 (Cx43) and Cx45 gap junctions. Inhibition of connexin gap junctions impaired the secretion of CXCL12 and homing of leukocytes to mouse bone marrow. Purified human CD34(+) progenitor cells did not adhere to noncontacting BMSCs, which led to a much smaller pool of immature cells. Calcium conduction activated signaling by cAMP-protein kinase A (PKA) and induced CXCL12 secretion mediated by the GTPase RalA. Cx43 and Cx45 additionally controlled Cxcl12 transcription by regulating the nuclear localization of the transcription factor Sp1. We suggest that BMSCs form a dynamic syncytium via connexin gap junctions that regulates CXC12 secretion and the homeostasis of hematopoietic stem cells.
Collapse
Affiliation(s)
- Amir Schajnovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Slug contributes to the regulation of CXCL12 expression in human osteoblasts. Exp Cell Res 2010; 317:1159-68. [PMID: 21182836 DOI: 10.1016/j.yexcr.2010.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 12/12/2022]
Abstract
CXCL12/CXCR4 chemokine/receptor axis signaling has recently been found to play an important role in the remodeling of bone tissue, but little is known about the molecular mechanisms that are involved. The present study shows that CXCL12 is present at high levels both in human mesenchymal stem cells (hMSCs) and primary osteoblasts (hOBs). When osteogenesis was induced, CXCL12 expression was strictly confined to mineralized nodules. To investigate what mechanisms contribute to the maintenance of a correct expression of CXCL12 in bone cellular context, we analyzed the relationship between CXCL12 and Slug, a transcription factor recently associated with osteoblast maturation. By gene silencing and chromatin immunoprecipitation assay, we showed that both proteins are required for the mineralization process and CXCL12 is transcriptionally and functionally regulated by Slug, which is recruited at specific sites to its gene promoter in vivo. These findings showed for the first time a positive correlation between CXCL12 signaling and Slug activity, thus corroborating the role of these two proteins in bone cellular context and suggesting a new potential target for bone tissue repair and regeneration.
Collapse
|
41
|
MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS One 2010; 5:e14304. [PMID: 21179442 PMCID: PMC3001477 DOI: 10.1371/journal.pone.0014304] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 11/23/2010] [Indexed: 01/22/2023] Open
Abstract
Stromal Derived Factor 1 (SDF1 or CXCL12), is a chemokine known to be critical for the migration of cells in several tissue systems including the homing of the hematopoietic stem cell (HSC) to its niche in the bone marrow. A comparative analysis of miRNA expression profiles of two stromal cell lines, distinguishable by function and by CXCL12 expression (CXCL12+ and CXCL12−), revealed that the CXCL12− cells expressed >40 fold more miR-886-3p than the CXCL12+ cells. Screening studies showed that when miR-886-3p was transfected into the CXCL12+ stromal cells, the expression of CXCL12 was down-regulated by as much as 85% when compared to appropriate controls, and results in the loss of CXCL12-directed chemotaxis. Similar reductions in CXCL12 were obtained with the transfection of miR-886-3p into primary stromal cell cultures. Additional studies showed that miR-886-3p specifically targeted the 3′ untranslated region (UTR) of CXCL12 mRNA. These data suggest a role for miRNA in modulating the expression of CXCL12, a gene product with a critical role in hematopoietic regulation.
Collapse
|
42
|
Komori R, Ozawa S, Kato Y, Shinji H, Kimoto S, Hata RI. Functional characterization of proximal promoter of gene for human BRAK/CXCL14, a tumor-suppressing chemokine. ACTA ACUST UNITED AC 2010; 31:123-31. [PMID: 20460740 DOI: 10.2220/biomedres.31.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BRAK/CXCL14 is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues including head and neck squamous cell carcinoma (HNSCC). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC cells decreased the rate of tumor formation and size of tumor xenografts in athymic nude mice and SCID mice, suggesting that expression level of the gene is important for tumor suppression. In order to study the regulatory mechanisms governing the expression of this gene, we determined the transcriptional start site and promoter motifs of the gene. The major transcriptional start site determined by 5'rapid amplification of cDNA end method was located 283 bp downstream of the first proposed site of the gene. Determination of luciferase activities of reporter gene constructs with various deletions or mutations showed that an atypical TATA-like sequence, TATTAA was essential for the transcription of the gene and that the AP-1 binding sequence and tandem GC box were necessary for stimulating the expression of the gene in human squamous epithelial cells. The human DNA region was highly homologous (95% base identity) to the mouse gene. In addition, okadaic acid, an inhibitor of serine/threonine phosphatases 1, 2A and 2B, stimulated TATTAA sequence and AP-1 binding-sequence dependent promoter activity as well as increased the level of BRAK/CXCL14 mRNA, indicating that these sequences are essential for the regulation of BRAK/CXCL14 gene expression in the cells.
Collapse
Affiliation(s)
- Reika Komori
- Oral Health Science Research Center, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Chen LC, Wu JL, Shiau CY, Chen JY. Organization and promoter analysis of the zebrafish (Danio rerio) chemokine gene (CXC-64) promoter. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:511-521. [PMID: 19381848 DOI: 10.1007/s10695-009-9321-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/24/2009] [Indexed: 05/27/2023]
Abstract
Zebrafish CXC-64, a chemokine representing a superfamily of chemotactic cytokines present in fish, is involved in recruitment, activation, and response to inflammatory stimulation. We cloned and sequenced the genomic DNA of the zebrafish CXC-64 chemokine; it was most similar to CXCL11 from humans and CXCL10 from a catfish. The zebrafish CXC-64 gene is approximately 4.0 kb long and has a four-exon, three-intron structure common to the human CXCL11 gene. However, the promoter region includes a typical TATA box and multi-transcription factor-binding sequences. To understand the roles of lipopolysaccharide (LPS), poly I:poly C, and tumor necrosis factor (TNF)-alpha in regulating zebrafish CXC-64 expression, serial deletions were made in the promoter region of this clone. Different fragments of the zebrafish CXC-64 5'-flanking region were transfected into RAW264.7 (mouse macrophage; Abelson murine leukemia virus transformed) and zfl (zebrafish liver) cells and then treated with 0, 10, 50, 100, and 200 ng/ml LPS, poly I:poly C, or TNF-alpha. The results showed that the promoter activity presented dose-dependent effects in LPS-treated RAW264.7 cells, TNF-alpha-treated RAW264.7 cells, and LPS-treated zfl cells. These results reveal that the zebrafish CXC-64 chemokine gene promoter region can be induced by LPS in both human and fish cell lines, which suggests that it plays an important role in regulating LPS.
Collapse
Affiliation(s)
- Li-Chen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, 202, Taiwan
- Department of Food Science, National I-Lan University, Ilan, 260, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chyuan-Yuan Shiau
- Department of Food Science, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan.
| |
Collapse
|
44
|
Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood 2010; 116:3669-76. [PMID: 20631377 DOI: 10.1182/blood-2009-03-213629] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inflammatory response to ionizing radiation (IR) includes a proangiogenic effect that could be counterproductive in cancer but can be exploited for treating impaired wound healing. We demonstrate for the first time that IR stimulates hypoxia-inducible factor-1α (HIF-1α) up-regulation in endothelial cells (ECs), a HIF-1α-independent up-regulation of stromal cell-derived factor-1 (SDF-1), as well as endothelial migration, all of which are essential for angiogenesis. 5 Gray IR-induced EC HIF-1α and SDF-1 expression was greater when combined with hypoxia suggesting an additive effect. While small interfering RNA silencing of HIF-1α mRNA and abolition of HIF-1α protein induction down-regulated SDF-1 induction by hypoxia alone, it had little effect on SDF-1 induction by IR, demonstrating an independent pathway. SDF-1-mediated EC migration in hypoxic and/or radiation-treated media showed IR induced strong SDF-1-dependent migration of ECs, augmented by hypoxia. IR activates a novel pathway stimulating EC migration directly through the expression of SDF-1 independent of HIF-1α induction. These observations might be exploited for stimulation of wound healing or controlling tumor angiogenesis.
Collapse
|
45
|
Wang Z, Trope CG, Flørenes VA, Suo Z, Nesland JM, Holm R. Overexpression of CDC25B, CDC25C and phospho-CDC25C (Ser216) in vulvar squamous cell carcinomas are associated with malignant features and aggressive cancer phenotypes. BMC Cancer 2010; 10:23. [PMID: 20109227 PMCID: PMC2834618 DOI: 10.1186/1471-2407-10-23] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 01/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CDC25 phosphatases are important regulators of the cell cycle. Their abnormal expression detected in a number of tumors implies that their dysregulation is involved in malignant transformation. However, the role of CDC25s in vulvar cancer is still unknown. To shed light on their roles in the pathogenesis and to clarify their prognostic values, expression of CDC25A, CDC25B and CDC25C in a large series of vulvar squamous cell carcinomas were examined. METHODS Expression of CDC25A, CDC25B, CDC25C and phosphorylated (phospho)-CDC25C (Ser216) were examined in 300 vulvar carcinomas using immunohistochemistry. Western blot analysis was utilized to demonstrate CDC25s expression in vulvar cancer cell lines. Kinase and phosphatase assays were performed to exclude cross reactivity among CDC25s isoform antibodies. RESULTS High nuclear CDC25A and CDC25B expression were observed in 51% and 16% of the vulvar carcinomas, respectively, whereas high cytoplasmic CDC25C expression was seen in 63% of the cases. In cytoplasm, nucleus and cytoplasm/nucleus high phospho-CDC25C (Ser216) expression was identified in 50%, 70% and 77% of the carcinomas, respectively. High expression of CDC25s correlated significantly with malignant features, including poor differentiation and infiltration of vessel for CDC25B, high FIGO stage, presence of lymph node metastases, large tumor diameter, poor differentiation for CDC25C and high FIGO stage, large tumor diameter, deep invasion and poor differentiation for phospho-CDC25C (Ser216). In univariate analysis, high expression of phospho-CDC25C (Ser216) was correlated with poor disease-specific survival (p = 0.04). However, such an association was annulled in multivariate analysis. CONCLUSIONS Our results suggest that CDC25C and phospho-CDC25C (Ser216) play a crucial role and CDC25B a minor role in the pathogenesis and/or progression of vulvar carcinomas. CDC25B, CDC25C and phospho-CDC25C (Ser216) were associated with malignant features and aggressive cancer phenotypes. However, the CDC25s isoforms were not independently correlated to prognosis.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, Oslo University Hospital and University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
46
|
Giudice A, Caraglia M, Marra M, Montella M, Maurea N, Abbruzzese A, Arra C. Circadian rhythms, adrenergic hormones and trafficking of hematopoietic stem cells. Expert Opin Ther Targets 2010; 14:567-75. [DOI: 10.1517/14728221003769887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Chen L, Xu S, Zeng X, Li J, Yin W, Chen Y, Shao Z, Jin W. c-myb activates CXCL12 transcription in T47D and MCF7 breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:1-7. [PMID: 20043041 DOI: 10.1093/abbs/gmp108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokine C-X-C motif ligand 12 (CXCL12) is a potent chemotactic and angiogenic factor that has been proposed to play a role in organ-specific metastasis and angiogenic activity in several malignancies. In this study, we found that the overexpression of c-myb could elevate CXCL12 mRNA level and CXCL12 promoter activity in human T47D and MCF-7 breast cancer cells. Chromatin immunoprecipitation assay demonstrated that c-myb could bind to the CXCL12 promoter in the cells transfected with cmyb expression vector. c-myb siRNA attenuated CXCL12 promoter activity and the binding of c-myb to the CXCL12 promoter in T47D and MCF-7 cells. These results indicated that c-myb could activate CXCL12 promoter transcription.
Collapse
Affiliation(s)
- Li Chen
- Department of Breast Surgery, Breast Cancer Institute, Cancer Hospital/Cancer Institute, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2:ra81. [PMID: 19996457 DOI: 10.1126/scisignal.2000610] [Citation(s) in RCA: 1046] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptosis is a pivotal process in embryogenesis and postnatal cell homeostasis and involves the shedding of membranous microvesicles termed apoptotic bodies. In response to tissue damage, the CXC chemokine CXCL12 and its receptor CXCR4 counteract apoptosis and recruit progenitor cells. Here, we show that endothelial cell-derived apoptotic bodies are generated during atherosclerosis and convey paracrine alarm signals to recipient vascular cells that trigger the production of CXCL12. CXCL12 production was mediated by microRNA-126 (miR-126), which was enriched in apoptotic bodies and repressed the function of regulator of G protein (heterotrimeric guanosine triphosphate-binding protein) signaling 16, an inhibitor of G protein-coupled receptor (GPCR) signaling. This enabled CXCR4, a GPCR, to trigger an autoregulatory feedback loop that increased the production of CXCL12. Administration of apoptotic bodies or miR-126 limited atherosclerosis, promoted the incorporation of Sca-1+ progenitor cells, and conferred features of plaque stability on different mouse models of atherosclerosis. This study highlights functions of microRNAs in health and disease that may extend to the recruitment of progenitor cells during other forms of tissue repair or homeostasis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Calonge E, Alonso-Lobo JM, Escandón C, González N, Bermejo M, Santiago B, Mestre L, Pablos JL, Caruz A, Alcamí J. c/EBPbeta is a major regulatory element driving transcriptional activation of the CXCL12 promoter. J Mol Biol 2009; 396:463-72. [PMID: 19962993 DOI: 10.1016/j.jmb.2009.11.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/30/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
Abstract
CXCL12 is considered a constitutively expressed chemokine with homeostatic functions. However, induction of CXCL12 expression and its potential role in several pathologic conditions have been reported, suggesting that CXCL12 gene expression can be induced by different stimuli. To elucidate the molecular mechanisms involved in the regulation of CXCL12 gene expression, we aim to define the molecular factors that operate at the transcriptional level. Basal, constitutive expression of CXCL12 was dependent on basic helix-loop-helix factors. Transcriptional up-regulation of the CXCL12 gene was induced by cellular confluence or inflammatory stimuli such as interleukin-1 and interleukin-6, in a CCAAT/enhancer binding protein beta (c/EBPbeta)-dependent manner. Chromatin immunoprecipitation assays confirmed c/EBPbeta binding to a specific response element located at -1171 of the promoter region of CXCL12. Our data show that c/EBPbeta is a major regulatory element driving transcription of the CXCL12 gene in response to cytokines and cell confluence.
Collapse
Affiliation(s)
- E Calonge
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Hematopoiesis is tightly regulated in the bone marrow through the microenvironment, soluble factors from the circulation, and neural inputs from the autonomic nervous system. Most physiological processes are not uniform but rather vary according to the time of day. There is increasing evidence showing the impact of biological rhythms on the traffic of hematopoietic stem cells (HSCs) and their proliferation and differentiation capacities. RECENT FINDINGS Recent evidence supports the role of the sympathetic nervous system in the regulation of HSC behavior, both directly and through supporting stromal cells. In addition, the sympathetic nervous system transduces circadian information from the central pacemaker in the brain, the suprachiasmatic nucleus, to the bone marrow microenvironment, directing circadian oscillations in hematopoiesis and HSC migration. SUMMARY HSC traffic and hematopoiesis do not escape the circadian regulation that controls most physiological processes. Clinically, the timing of stem cell harvest or infusion may impact the yield or engraftment, respectively, and may result in better therapeutic outcomes.
Collapse
|