1
|
Sabbagh Q, Ruiz-Pallares N, Rastin C, Puechberty J, Guignard T, Jeandel C, Merklen F, Pujol P, Kerkhof J, Sadikovic B, Barat-Houari M, Geneviève D. Reverse genotyping: unveiling Alu element insertion as a new cause of Kabuki syndrome using DNA methylation signature. Clin Epigenetics 2025; 17:69. [PMID: 40301896 PMCID: PMC12042423 DOI: 10.1186/s13148-025-01879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
Kabuki syndrome type 1 (KS1) is a monogenic disorder arising from pathogenic variants within KMT2D and characterized by syndromic neurodevelopmental delay. We report the retrospective identification of a causative AluY insertion within KMT2D in a genetically unsolved individual with typical KS1 features, after identification of a DNA methylation signature. This is the first documentation of Alu insertion as a molecular mechanism responsible for KS1. This study emphasizes the need for reanalyzing inconclusive sequencing data in individuals with gene-specific phenotypes and reinforces episignature as a reliable diagnostic tool when NGS approaches fail to provide conclusive results in individuals with rare diseases.
Collapse
Affiliation(s)
- Quentin Sabbagh
- Department of Clinical Genetics, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », University Hospital of Montpellier, Inserm UMR1183, Montpellier University, Montpellier, France
- French Society for Predictive and Personalized Medicine (SFMPP), Montpellier, France
| | - Nathalie Ruiz-Pallares
- Department of Molecular Genetics and Cytogenomics, University Hospital of Montpellier, Montpellier University, Montpellier, France
| | - Cassandra Rastin
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jacques Puechberty
- Department of Clinical Genetics, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », University Hospital of Montpellier, Inserm UMR1183, Montpellier University, Montpellier, France
| | - Thomas Guignard
- Department of Molecular Genetics and Cytogenomics, University Hospital of Montpellier, Montpellier University, Montpellier, France
| | - Claire Jeandel
- Department of Paediatric Endocrinology, University Hospital of Montpellier, Montpellier University, Montpellier, France
| | - Fanny Merklen
- Department of Otorhinolaryngology, University Hospital of Montpellier, Montpellier University, Montpellier, France
| | - Pascal Pujol
- French Society for Predictive and Personalized Medicine (SFMPP), Montpellier, France
- Department of Cancer Genetics, University Hospital of Montpellier, UMR IRD 224-CNRS 5290, Montpellier University, Montpellier, France
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Mouna Barat-Houari
- Department of Molecular Genetics and Cytogenomics, University Hospital of Montpellier, Montpellier University, Montpellier, France
| | - David Geneviève
- Department of Clinical Genetics, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », University Hospital of Montpellier, Inserm UMR1183, Montpellier University, Montpellier, France.
- French Society for Predictive and Personalized Medicine (SFMPP), Montpellier, France.
| |
Collapse
|
2
|
Beaman MM, Yin W, Smith AJ, Sears PR, Leigh MW, Ferkol TW, Kearney B, Olivier KN, Kimple AJ, Clarke S, Huggins E, Nading E, Jung SH, Iyengar AK, Zou X, Dang H, Barrera A, Majoros WH, Rehder CW, Reddy TE, Ostrowski LE, Allen AS, Knowles MR, Zariwala MA, Crawford GE. Promoter Deletion Leading to Allele Specific Expression in a Genetically Unsolved Case of Primary Ciliary Dyskinesia. Am J Med Genet A 2025; 197:e63880. [PMID: 39364610 PMCID: PMC11698635 DOI: 10.1002/ajmg.a.63880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Variation in the non-coding genome represents an understudied mechanism of disease and it remains challenging to predict if single nucleotide variants, small insertions and deletions, or structural variants in non-coding genomic regions will be detrimental. Our approach using complementary RNA-seq and targeted long-read DNA sequencing can prioritize identification of non-coding variants that lead to disease via alteration of gene splicing or expression. We have identified a patient with primary ciliary dyskinesia with a pathogenic coding variant on one allele of the SPAG1 gene, while the second allele appears normal by whole exome sequencing despite an autosomal recessive inheritance pattern. RNA sequencing revealed reduced SPAG1 transcript levels and exclusive allele specific expression of the known pathogenic allele, suggesting the presence of a non-coding variant on the second allele that impacts transcription. Targeted long-read DNA sequencing identified a heterozygous 3 kilobase deletion of the 5' untranslated region of SPAG1, overlapping the promoter and first non-coding exon. This non-coding deletion was missed by whole exome sequencing and gene-specific deletion/duplication analysis, highlighting the importance of investigating the non-coding genome in patients with "missing" disease-causing variation. This paradigm demonstrates the utility of both RNA and long-read DNA sequencing in identifying pathogenic non-coding variants in patients with unexplained genetic disease.
Collapse
Affiliation(s)
- M. Makenzie Beaman
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
- Medical Scientist Training Program, Duke University, Durham, NC 27710 USA
- University Program in Genetics & Genomics, Duke University, Durham, NC 27710 USA
| | - Weining Yin
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Amanda J. Smith
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Patrick R. Sears
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Margaret W. Leigh
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Thomas W. Ferkol
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Brendan Kearney
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Kenneth N. Olivier
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Adam J. Kimple
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Shannon Clarke
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Erin Huggins
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
| | - Erica Nading
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
| | - Seung-Hye Jung
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
| | - Apoorva K. Iyengar
- University Program in Genetics & Genomics, Duke University, Durham, NC 27710 USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Xue Zou
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC 27710 USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - William H. Majoros
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | | | - Timothy E. Reddy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Andrew S. Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- These authors contributed equally
| | - Gregory E. Crawford
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
- These authors contributed equally
| |
Collapse
|
3
|
Masson E, Maestri S, Bordeau V, Cooper DN, Férec C, Chen JM. Alu insertion-mediated dsRNA structure formation with pre-existing Alu elements as a disease-causing mechanism. Am J Hum Genet 2024; 111:2176-2189. [PMID: 39265574 PMCID: PMC11480803 DOI: 10.1016/j.ajhg.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Sandrine Maestri
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Valérie Bordeau
- Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, 35043 Rennes, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France.
| |
Collapse
|
4
|
Tang W, Liang P. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition. F1000Res 2024; 12:255. [PMID: 38915770 PMCID: PMC11195612 DOI: 10.12688/f1000research.130043.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Background Mobile elements (MEs) constitute a major portion of the genome in primates and other higher eukaryotes, and they play important role in genome evolution and gene function. MEs can be divided into two fundamentally different classes: DNA transposons which transpose in the genome in a "cut-and-paste" style, and retrotransposons which propagate in a "copy-and-paste" fashion via a process involving transcription and reverse-transcription. In primate genomes, DNA transposons are mostly dead, while many retrotransposons are still highly active. We report here the identification of a unique group of MEs, which we call "retro-DNAs", for their combined characteristics of these two fundamentally different ME classes. Methods A comparative computational genomic approach was used to analyze the reference genome sequences of 10 primate species consisting of five apes, four monkeys, and marmoset. Results From our analysis, we identified a total of 1,750 retro-DNAs, representing 748 unique insertion events in the genomes of ten primate species including human. These retro-DNAs contain sequences of DNA transposons but lack the terminal inverted repeats (TIRs), the hallmark of DNA transposons. Instead, they show characteristics of retrotransposons, such as polyA tails, longer target-site duplications (TSDs), and the "TT/AAAA" insertion site motif, suggesting the use of the L1-based target- primed reverse transcription (TPRT) mechanism. At least 40% of these retro-DNAs locate into genic regions, presenting potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of expression, suggesting that they have the potential to create more retro-DNA copies in the present primate genomes. Conclusions Although small in number, the identification of these retro-DNAs reveals a new mean for propagating DNA transposons in primate genomes without active canonical DNA transposon activity. Our data also suggest that the TPRT machinery may transpose a wider variety of DNA sequences in the genomes.
Collapse
Affiliation(s)
- Wangxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
- Centre of Biotechnology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
5
|
Chen YJ, Wang MW, Qiu YS, Yuan RY, Wang N, Lin X, Chen WJ. Alu Retrotransposition Event in SPAST Gene as a Novel Cause of Hereditary Spastic Paraplegia. Mov Disord 2023; 38:1750-1755. [PMID: 37394769 DOI: 10.1002/mds.29522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. METHODS Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. RESULTS A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. CONCLUSIONS We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yi-Jun Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
7
|
A study of transposable element-associated structural variations (TASVs) using a de novo-assembled Korean genome. Exp Mol Med 2021; 53:615-630. [PMID: 33833373 PMCID: PMC8102501 DOI: 10.1038/s12276-021-00586-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes. A novel strategy for genome analysis offers insights into the distribution and impact on genome variation of transposable elements, DNA sequences that can replicate and relocate themselves at different chromosomal regions. These sequences, also known as ‘jumping genes’, comprise up to 50% of the genome, but it has proven challenging to map them with existing techniques. Seyoung Mun of Dankook University, Cheonan, South Korea, and coworkers have developed a sequencing and computational analysis strategy that allowed them to accurately map transposable elements across the genome of a Korean individual. These data revealed hundreds of insertion and deletion events relative to an existing reference map of the genome, showing significant alterations in the chromosomal structure. The authors speculate that such widespread transposition events could potentially contribute to individual differences in gene expression and risk of disease.
Collapse
|
8
|
Morales ME, Kaul T, Walker J, Everett C, White T, Deininger P. Altered DNA repair creates novel Alu/Alu repeat-mediated deletions. Hum Mutat 2021; 42:600-613. [PMID: 33675284 PMCID: PMC8068675 DOI: 10.1002/humu.24193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
Alu elements are the most abundant source of nonallelic homology that influences genetic instability in the human genome. When there is a DNA double-stranded break, the Alu element's high copy number, moderate length and distance and mismatch between elements uniquely influence recombination processes. We utilize a reporter-gene assay to show the complex influence of Alu mismatches on Alu-related repeat-mediated deletions (RMDs). The Alu/Alu heteroduplex intermediate can result in a nonallelic homologous recombination (HR). Alternatively, the heteroduplex can result in various DNA breaks around the Alu elements caused by competing nucleases. These breaks can undergo Alt-nonhomologous end joining to cause deletions focused around the Alu elements. Formation of these heteroduplex intermediates is largely RAD52 dependent. Cells with low ERCC1 levels utilize more of these alternatives resolutions, while cells with MSH2 defects tend to have more RMDs with a specific increase in the HR events. Therefore, Alu elements are expected to create different forms of deletions in various cancers depending on a number of these DNA repair defects.
Collapse
Affiliation(s)
- Maria E Morales
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, USA
| | - JaNiece Walker
- Department of Biology, Xavier University, New Orleans, Louisiana, USA
| | - Chelsea Everett
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, USA
| | - Travis White
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, USA.,Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, USA.,Department of Epidemiology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
9
|
Li L, Jia C, Tang Y, Kong Y, Xia Y, Ma L. Novel Gross Deletion Mutations in NTRK1 Gene Associated With Congenital Insensitivity to Pain With Anhidrosis. Front Pediatr 2021; 9:638190. [PMID: 33748046 PMCID: PMC7969531 DOI: 10.3389/fped.2021.638190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare inherited autosomal recessive disorder characterized by insensitivity to noxious stimuli, anhidrosis, recurrent fever, and intellectual disability. CIPA is mainly caused by mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1). This study aims to identify pathogenic mutations underlying CIPA in two unrelated Chinese families. Methods: DNA was extracted from blood samples of patients and their available family members and subjected to whole exome sequencing (WES). Real-time PCR (qPCR), Gap-PCR, and Sanger sequencing were applied to verify the identified variants. Result: We found novel compound gross deletion mutations [exon1-6 del (g.1-1258_10169del); exon5-7 del (g.6995_11999del)] of NTRK1 (MIM 191315) gene in family 1 and the compound heterozygous mutations [c.851-33T>A; exon5-7 del (g.6995_11999del)] in family 2. Interestingly, we discovered the intragenic novel gross deletion [exon5-7 del (g.6995_11999del)] mediated by recombination between Alu elements. Conclusions: The present study highlights two rare gross deletion mutations in the NTRK1 gene associated with CIPA in two unrelated Chinese families. The deletion of exon1-6 (g.1-1258_10169del) is thought to be the largest NTRK1 deletion reported to date. Our findings expand the mutation spectrum of NTRK1 mutations in the Chinese and could be useful for prenatal interventions and more precise pharmacological treatments to patients. WES conducted in our study is a convenient and useful tool for clinical diagnosis of CIPA and other associated disorders.
Collapse
Affiliation(s)
- Lulu Li
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chao Jia
- Department of Neonatology, Hebei Provincial Children's Hospital, Shijiazhuang, China
| | - Yue Tang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuanyuan Kong
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yaofang Xia
- Department of Neonatology, Hebei Provincial Children's Hospital, Shijiazhuang, China
| | - Li Ma
- Department of Neonatology, Hebei Provincial Children's Hospital, Shijiazhuang, China
| |
Collapse
|
10
|
Tang W, Liang P. Alu master copies serve as the drivers of differential SINE transposition in recent primate genomes. Anal Biochem 2020; 606:113825. [PMID: 32712063 DOI: 10.1016/j.ab.2020.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
Alu elements, averaging ~300bp in length, are a family of primate-specific short intersperse nuclear elements (SINEs) with more than one million copies and contributing to ~11% of primate genomes. Despite mostly being shared among primates, our recent study revealed highly differential recent Alu transposition among the genomes of primates from Hominidae and Cercopithecidae families. To understand the underlying mechanism, we analyzed six primate genomes and revealed species- and lineage-specific Alu profile exclusively defined by AluY composition. Among all Alus from the 6 genomes, we identified 5401 Alu master copies with 99% being from the AluY subfamily. The numbers of Alu master copies are positively correlated to the number of AluY elements in the genomes with the baboon genome having the largest number of most recent Alu master copies at high activities, while the crab-eating macaque genome having a low number of Alu master copies with low activity. Furthermore, the expression level of Alu master copies is positively correlated with their transposition activity. Our results support the concept that Alu transposition in primate genomes is driven by a small number of master copies, the number and relative activity of which contribute to the differential Alu transposition in recent primate genomes.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
11
|
Fields C, Levin M. Scale-Free Biology: Integrating Evolutionary and Developmental Thinking. Bioessays 2020; 42:e1900228. [PMID: 32537770 DOI: 10.1002/bies.201900228] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Indexed: 12/16/2022]
Abstract
When the history of life on earth is viewed as a history of cell division, all of life becomes a single cell lineage. The growth and differentiation of this lineage in reciprocal interaction with its environment can be viewed as a developmental process; hence the evolution of life on earth can also be seen as the development of life on earth. Here, in reviewing this field, some potentially fruitful research directions suggested by this change in perspective are highlighted. Variation and selection become, for example, bidirectional information flows between scales, while the notions of "cooperation" and "competition" become scale relative. The language of communication, inference, and information processing becomes more useful than the language of causation to describe the interactions of both homogeneous and heterogeneous living systems at any scale. Emerging scale-free theoretical frameworks such as predictive coding and active inference provide conceptual tools for reconceptualizing biology as the study of a unified, multiscale dynamical system.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandieres, 11160 Caunes Minervois, France
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
12
|
Hu L, Liang F, Cheng D, Zhang Z, Yu G, Zha J, Wang Y, Xia Q, Yuan D, Tan Y, Wang D, Liang Y, Lin G. Location of Balanced Chromosome-Translocation Breakpoints by Long-Read Sequencing on the Oxford Nanopore Platform. Front Genet 2020; 10:1313. [PMID: 32010185 PMCID: PMC6972507 DOI: 10.3389/fgene.2019.01313] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/29/2019] [Indexed: 02/02/2023] Open
Abstract
Genomic structural variants, including translocations, inversions, insertions, deletions, and duplications, are challenging to be reliably detected by traditional genomic technologies. In particular, balanced translocations and inversions can neither be identified by microarrays since they do not alter chromosome copy numbers, nor by short-read sequencing because of the unmappability of short reads against repetitive genomic regions. The precise localization of breakpoints is vital for exploring genetic causes in patients with balanced translocations or inversions. Long-read sequencing techniques may detect these structural variants in a more direct, efficient, and accurate manner. Here, we performed whole-genome, long-read sequencing using the Oxford Nanopore GridION sequencer to detect breakpoints in six balanced chromosome translocation carriers and one inversion carrier. The results showed that all the breakpoints were consistent with the karyotype results with only ~10× coverage. Polymerase chain reaction (PCR) and Sanger sequencing confirmed 8 out of 14 breakpoints; however, other breakpoint loci were slightly missed since they were either in highly repetitive regions or pericentromeric regions. Some of the breakpoints interrupted normal gene structure, and in other cases, micro-deletions/insertions were found just next to the breakpoints. We also detected haplotypes around the breakpoint regions. Our results suggest that long-read, whole-genome sequencing is an ideal strategy for precisely localizing translocation breakpoints and providing haplotype information, which is essential for medical genetics and preimplantation genetic testing.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Department of Genetics, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.,Department of Research, National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing, China
| | - Dehua Cheng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Department of Research, National Engineering Research Center of Human Stem Cells, Changsha, China
| | | | | | | | - Yang Wang
- GrandOmics Biosciences, Beijing, China
| | - Qi Xia
- GrandOmics Biosciences, Beijing, China
| | | | - Yueqiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Department of Genetics, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.,Department of Research, National Engineering Research Center of Human Stem Cells, Changsha, China
| | | | - Yu Liang
- GrandOmics Biosciences, Beijing, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Department of Genetics, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.,Department of Research, National Engineering Research Center of Human Stem Cells, Changsha, China
| |
Collapse
|
13
|
Tang W, Liang P. Comparative Genomics Analysis Reveals High Levels of Differential Retrotransposition among Primates from the Hominidae and the Cercopithecidae Families. Genome Biol Evol 2019; 11:3309-3325. [PMID: 31651947 PMCID: PMC6934888 DOI: 10.1093/gbe/evz234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Mobile elements (MEs), making ∼50% of primate genomes, are known to be responsible for generating inter- and intra-species genomic variations and play important roles in genome evolution and gene function. Using a bioinformatics comparative genomics approach, we performed analyses of species-specific MEs (SS-MEs) in eight primate genomes from the families of Hominidae and Cercopithecidae, focusing on retrotransposons. We identified a total of 230,855 SS-MEs, with which we performed normalization based on evolutionary distances, and we also analyzed the most recent SS-MEs in these genomes. Comparative analysis of SS-MEs reveals striking differences in ME transposition among these primate genomes. Interesting highlights of our results include: 1) the baboon genome has the highest number of SS-MEs with a strong bias for SINEs, while the crab-eating macaque genome has a sustained extremely low transposition for all ME classes, suggesting the existence of a genome-wide mechanism suppressing ME transposition; 2) while SS-SINEs represent the dominant class in general, the orangutan genome stands out by having SS-LINEs as the dominant class; 3) the human genome stands out among the eight genomes by having the largest number of recent highly active ME subfamilies, suggesting a greater impact of ME transposition on its recent evolution; and 4) at least 33% of the SS-MEs locate to genic regions, including protein coding regions, presenting significant potentials for impacting gene function. Our study, as the first of its kind, demonstrates that mobile elements evolve quite differently among these primates, suggesting differential ME transposition as an important mechanism in primate evolution.
Collapse
Affiliation(s)
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
14
|
Kulski JK, Mawart A, Marie K, Tay GK, AlSafar HS. MHC class I polymorphic Alu insertion (POALIN) allele and haplotype frequencies in the Arabs of the United Arab Emirates and other world populations. Int J Immunogenet 2019; 46:247-262. [PMID: 31021060 DOI: 10.1111/iji.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 01/02/2023]
Abstract
Polymorphic Alu insertions (POALINs) are found throughout the human genome and have been used in various studies to infer geographic origin of human populations. The main aim of this study was to determine the allele and haplotype frequencies of five POALINs, AluHF, AluHG, AluHJ, AluTF and AluMICB, within the major histocompatibility complex (MHC) class I region of 95 UAE Arabs, and correlate their frequencies to those of the HLA-A, HLA-C and HLA-B class I allele lineages. Evolutionary relationships between the POALINs of the Arabs and those previously studied in populations of African, Asian and European descent were compared. At each of the five Alu loci (AluHF, AluHG, AluHJ, AluTF and AluMICB), Alu insertion was designated as Alu(locus)*02 and absence was Alu(locus)*01. The AluHG insertion (AluHG*02) had the highest frequency (0.332), followed by AluHF*02 (0.300), AluHJ*02 (0.263), AluMICB*02 (0.111) and AluTF*02 (0.058). Of the 270 Alu-HLA haplotypes pairs in the UAE Arabs, 110 had no Alu insertion, and 54 had an Alu insertion at >50% per haplotype. An Alu insertion >75% per haplotype was found between AluMICB*02 and HLA-B*14, HLA-B*22, HLA-B*44, HLA-B*55, HLA-B*57 and HLA-B*73, and with HLA-C*01 and HLA-C*18; AluHJ*02 with HLA-A*01, HLA-A*19, HLA-A*24 and HLA-A*32; AluHG*02 with HLA-A*02 and HLA-B*18; and AluHF*02 with HLA-A*10. The genotyped allele and haplotype frequencies of the MHC POALINs in UAE Arabs were compared with the results of 30 previously published Asian, European, American and African populations. Phylogenetic and multidimensional scaling (MDS) analysis of the relative MHC POALINs allele and haplotype frequencies revealed that the UAE Arabs have a similar lineage to Caucasians and the most distant genetic relationship to the Waorani native American population of Ecuador. The structure of both the phylogenetic tree and the MDS analysis supports the Out of Africa theory of human evolution. The nature of the clusters suggests the Arabian Middle East represents a crossroads from which human populations migrated towards Asia in the east and Europe to the north-west.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Aurelie Mawart
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kirsten Marie
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guan K Tay
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba S AlSafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Tang W, Mun S, Joshi A, Han K, Liang P. Mobile elements contribute to the uniqueness of human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res 2019; 25:521-533. [PMID: 30052927 PMCID: PMC6191304 DOI: 10.1093/dnares/dsy022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/20/2018] [Indexed: 02/02/2023] Open
Abstract
Mobile elements (MEs) collectively contribute to at least 50% of the human genome. Due to their past incremental accumulation and ongoing DNA transposition, MEs serve as a significant source for both inter- and intra-species genetic and phenotypic diversity during primate and human evolution. By making use of the most recent genome sequences for human and many other closely related primates and robust multi-way comparative genomic approach, we identified a total of 14,870 human-specific MEs (HS-MEs) with more than 8,000 being newly identified. Collectively, these HS-MEs contribute to a total of 14.2 Mbp net genome sequence increase. Several new observations were made based on these HS-MEs, including the finding of Y chromosome as a strikingly hot target for HS-MEs and a strong mutual preference for SINE-R/VNTR/Alu (SVAs). Furthermore, ∼8,000 of these HS-MEs were found to locate in the vicinity of ∼4,900 genes, and collectively they contribute to ∼84 kb sequences in the human reference transcriptome in association with over 300 genes, including protein-coding sequences for 40 genes. In conclusion, our results demonstrate that MEs made a significant contribution to the evolution of human genome by participating in gene function in a human-specific fashion.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Aditya Joshi
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
16
|
Krestel H, Meier JC. RNA Editing and Retrotransposons in Neurology. Front Mol Neurosci 2018; 11:163. [PMID: 29875629 PMCID: PMC5974252 DOI: 10.3389/fnmol.2018.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Compared to sites in protein-coding sequences many more targets undergoing adenosine to inosine (A-to-I) RNA editing were discovered in non-coding regions of human cerebral transcripts, particularly in genetic transposable elements called retrotransposons. We review here the interaction mechanisms of RNA editing and retrotransposons and their impact on normal function and human neurological diseases. Exemplarily, A-to-I editing of retrotransposons embedded in protein-coding mRNAs can contribute to protein abundance and function via circular RNA formation, alternative splicing, and exonization or silencing of retrotransposons. Interactions leading to disease are not very well understood. We describe human diseases with involvement of the central nervous system including inborn errors of metabolism, neurodevelopmental disorders, neuroinflammatory and neurodegenerative and paroxysmal diseases, in which retrotransposons (Alu and/or L1 elements) appear to be causally involved in genetic rearrangements. Sole binding of single-stranded retrotransposon transcripts by RNA editing enzymes rather than enzymatic deamination may have a homeostatic effect on retrotransposon turnover. We also review evidence in support of the emerging pathophysiological function of A-to-I editing of retrotransposons in inflammation and its implication for different neurological diseases including amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's and Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
17
|
Geng X, Liu Y, Ren X, Guan Y, Wang Y, Mao B, Zhao X, Zhang X. Novel NTRK1 mutations in Chinese patients with congenital insensitivity to pain with anhidrosis. Mol Pain 2018; 14:1744806918781140. [PMID: 29770739 PMCID: PMC6009080 DOI: 10.1177/1744806918781140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive disorder, characterized by loss of algesthesis and inability to sweat. CIPA is known to be caused by mutations in the neurotrophic tyrosine kinase receptor type 1 gene ( NTRK1). However, the details of NTRK1 mutations in Chinese CIPA patients remain unclear. In the present study, we recruited 36 CIPA patients from 34 unrelated families in mainland China. Blood samples from these patients and their available familial members were collected and subjected to genetic analysis. We identified 27 mutations in NTRK1 from this cohort, including 15 novel mutations. Interestingly, we discovered two forms of novel recurrent mutations: the first was a large intragenic deletion c.429-374_717 + 485del mediated by recombination between Alu elements, and the second was a deep intronic substitutions c.[851-798C > T;851-794C > G]. All probands were homozygotes or compound heterozygotes of these mutations. Current findings expand our knowledge about the mutation spectrum of NTRK1 in Chinese CIPA patients and provide more evidence for precise diagnosis of the clinically suspected patients with CIPA.
Collapse
Affiliation(s)
- Xingzhu Geng
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yanshan Liu
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - XiuZhi Ren
- 2 The People's Hospital of Wuqing District, Tianjin, China
| | - Yun Guan
- 3 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Yanzhou Wang
- 4 Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bin Mao
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiuli Zhao
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Zhang
- 1 McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Identification of mutations in HEXA and HEXB in Sandhoff and Tay-Sachs diseases: a new large deletion caused by Alu elements in HEXA. Hum Genome Var 2018; 5:18003. [PMID: 31428437 PMCID: PMC6694291 DOI: 10.1038/hgv.2018.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
GM2 gangliosides are a group of lysosomal lipid storage disorders that are due to mutations in HEXA, HEXB and GM2A. In our study, 10 patients with these diseases were enrolled, and Sanger sequencing was performed for the HEXA and HEXB genes. The results revealed one known splice site mutation (c.346+1G>A, IVS2+1G>A) and three novel mutations (a large deletion involving exons 6–10; one nucleotide deletion, c.622delG [p.D208Ifsx15]; and a missense mutation, c.919G>A [p.E307K]) in HEXA. In HEXB, one known mutation (c.1597C>T [p.R533C]) and one variant of uncertain significance (c.619A>G [p.I207V]) were identified. Five patients had c.1597C>T in HEXB, indicating a common mutation in south Iran. In this study, a unique large deletion in HEXA was identified as a homozygous state. To predict the cause of the large deletion in HEXA, RepeatMasker was used to investigate the Alu elements. In addition, to identify the breakpoint of this deletion, PCR was performed around these elements. Using Repeat masker, different Alu elements were identified across HEXA, mainly in intron 5 and intron 10 adjacent to the deleted exons. PCR around the Alu elements and Sanger sequencing revealed the start point of a large deletion in AluSz6 in the intron 6 and the end of its breakpoint 73 nucleotides downstream of AluJo in intron 10. Our study showed that HEXA is an Alu-rich gene that predisposes individuals to disease-associated large deletions due to these elements.
Collapse
|
19
|
Kryatova MS, Steranka JP, Burns KH, Payer LM. Insertion and deletion polymorphisms of the ancient AluS family in the human genome. Mob DNA 2017; 8:6. [PMID: 28450901 PMCID: PMC5402677 DOI: 10.1186/s13100-017-0089-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Results Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3′ intact with 3′ poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Conclusions Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion, thus suggesting that some AluS elements have been more active recently than previously thought, or that fixation of AluS insertion alleles remains incomplete. These data expand the potential significance of polymorphic AluS elements in contributing to structural variation in the human genome. Future discovery efforts focusing on polymorphic AluS elements are likely to identify more such polymorphisms, and approaches tailored to identify deletion alleles may be warranted. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria S Kryatova
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Miller Research Building (MRB) Room 447, 733 North Broadway, Baltimore, MD 21205 USA
| |
Collapse
|
20
|
Chicken ( Gallus gallus) endogenous retrovirus generates genomic variations in the chicken genome. Mob DNA 2017; 8:2. [PMID: 28138342 PMCID: PMC5260121 DOI: 10.1186/s13100-016-0085-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023] Open
Abstract
Background Transposable elements (TEs) comprise ~10% of the chicken (Gallus gallus) genome. The content of TEs is much lower than that of mammalian genomes, where TEs comprise around half of the genome. Endogenous retroviruses are responsible for ~1.3% of the chicken genome. Among them is Gallus gallus endogenous retrovirus 10 (GGERV10), one of the youngest endogenous retrovirus families, which emerged in the chicken genome around 3 million years ago. Results We identified a total of 593 GGERV10 elements in the chicken reference genome using UCSC genome database and RepeatMasker. While most of the elements were truncated, 49 GGERV10 elements were full-length retaining 5′ and 3′ LTRs. We examined in detail their structural features, chromosomal distribution, genomic environment, and phylogenetic relationships. We compared LTR sequence among five different GGERV10 subfamilies and found sequence variations among the LTRs. Using a traditional PCR assay, we examined a polymorphism rate of the 49 full-length GGERV10 elements in three different chicken populations of the Korean domestic chicken, Leghorn, and Araucana. The result found a breed-specific GGERV10B insertion locus in the Korean domestic chicken, which could be used as a Korean domestic chicken-specific marker. Conclusions GGERV10 family is the youngest ERV family and thus might have contributed to recent genomic variations in different chicken populations. The result of this study showed that one of GGERV10 elements integrated into the chicken genome after the divergence of Korean domestic chicken from other closely related chicken populations, suggesting that GGERV10 could be served as a molecular marker for chicken breed identification. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0085-5) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Kim S, Cho CS, Han K, Lee J. Structural Variation of Alu Element and Human Disease. Genomics Inform 2016; 14:70-77. [PMID: 27729835 PMCID: PMC5056899 DOI: 10.5808/gi.2016.14.3.70] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023] Open
Abstract
Transposable elements are one of major sources to cause genomic instability through various mechanisms including de novo insertion, insertion-mediated genomic deletion, and recombination-associated genomic deletion. Among them is Alu element which is the most abundant element, composing ~10% of the human genome. The element emerged in the primate genome 65 million years ago and has since propagated successfully in the human and non-human primate genomes. Alu element is a non-autonomous retrotransposon and therefore retrotransposed using L1-enzyme machinery. The 'master gene' model has been generally accepted to explain Alu element amplification in primate genomes. According to the model, different subfamilies of Alu elements are created by mutations on the master gene and most Alu elements are amplified from the hyperactive master genes. Alu element is frequently involved in genomic rearrangements in the human genome due to its abundance and sequence identity between them. The genomic rearrangements caused by Alu elements could lead to genetic disorders such as hereditary disease, blood disorder, and neurological disorder. In fact, Alu elements are associated with approximately 0.1% of human genetic disorders. The first part of this review discusses mechanisms of Alu amplification and diversity among different Alu subfamilies. The second part discusses the particular role of Alu elements in generating genomic rearrangements as well as human genetic disorders.
Collapse
Affiliation(s)
- Songmi Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea.; BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Chun-Sung Cho
- Department of Neurosurgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea.; BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Vandewege MW, Platt RN, Ray DA, Hoffmann FG. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories. Genome Biol Evol 2016; 8:1327-37. [PMID: 27060702 PMCID: PMC4898795 DOI: 10.1093/gbe/evw078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest “ping-pong” response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation.
Collapse
Affiliation(s)
- Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| |
Collapse
|
23
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
24
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
25
|
Jahic A, Erichsen AK, Deufel T, Tallaksen CM, Beetz C. A polymorphic Alu insertion that mediates distinct disease-associated deletions. Eur J Hum Genet 2016; 24:1371-4. [PMID: 26932189 DOI: 10.1038/ejhg.2016.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Large deletions that are associated with insertions of Alu-derived sequence represent a rare, but potentially unique class of alterations. Whether they form by a one-step mechanism or by a primary insertion step followed by an independent secondary deletion step is not clear. We resolved two disease-associated SPAST deletions, which involve distinct exons by long range PCR. Alu-derived sequence was observed between the breakpoints in both cases. The intronic regions that represent the targets of potentially involved Alu retrotransposition events overlapped. Microsatellite- and SNP-based haplotyping indicated that both deletions originated on one and the same founder allele. Our data suggest that the deletions are best explained by two-step insertion-deletion scenarios for which a single Alu retrotransposition event represents the shared primary step. This Alu then mediated one of the deletions by non-homologous end joining and the other by non-allelic homologous recombination. Our findings thus strongly argue for temporal separation of insertion and deletion in Alu insertion-associated deletions. They also suggest that certain Alu integrations confer a general increase in local genomic instability, and that this explains why they are usually not detected during the probably short time that precedes the rearrangements they mediate.
Collapse
Affiliation(s)
- Amir Jahic
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Anne K Erichsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Thomas Deufel
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Chantal M Tallaksen
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
26
|
Nazaryan-Petersen L, Bertelsen B, Bak M, Jønson L, Tommerup N, Hancks DC, Tümer Z. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination. Hum Mutat 2016; 37:385-95. [PMID: 26929209 DOI: 10.1002/humu.22953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022]
Abstract
Chromothripsis (CTH) is a phenomenon where multiple localized double-stranded DNA breaks result in complex genomic rearrangements. Although the DNA-repair mechanisms involved in CTH have been described, the mechanisms driving the localized "shattering" process remain unclear. High-throughput sequence analysis of a familial germline CTH revealed an inserted SVAE retrotransposon associated with a 110-kb deletion displaying hallmarks of L1-mediated retrotransposition. Our analysis suggests that the SVAE insertion did not occur prior to or after, but concurrent with the CTH event. We also observed L1-endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110-kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity facilitating DNA cleavage by catalytically active L1-endonuclease. Our data provide the first evidence that active and inactive human retrotransposons can serve as endogenous mutagens driving CTH in the germline.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, 2600, Denmark.,Department of Cellular and Molecular Medicine (ICMM), Faculty of Health Science, University of Copenhagen, Copenhagen, N. 2200, Denmark
| | - Birgitte Bertelsen
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, 2600, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, N. 2200, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, O. 2100, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, N. 2200, Denmark
| | - Dustin C Hancks
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, 84112
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, 2600, Denmark
| |
Collapse
|
27
|
Wildschutte JH, Baron A, Diroff NM, Kidd JM. Discovery and characterization of Alu repeat sequences via precise local read assembly. Nucleic Acids Res 2015; 43:10292-307. [PMID: 26503250 PMCID: PMC4666360 DOI: 10.1093/nar/gkv1089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/08/2015] [Indexed: 12/03/2022] Open
Abstract
Alu insertions have contributed to >11% of the human genome and ∼30–35 Alu subfamilies remain actively mobile, yet the characterization of polymorphic Alu insertions from short-read data remains a challenge. We build on existing computational methods to combine Alu detection and de novo assembly of WGS data as a means to reconstruct the full sequence of insertion events from Illumina paired end reads. Comparison with published calls obtained using PacBio long-reads indicates a false discovery rate below 5%, at the cost of reduced sensitivity due to the colocation of reference and non-reference repeats. We generate a highly accurate call set of 1614 completely assembled Alu variants from 53 samples from the Human Genome Diversity Project (HGDP) panel. We utilize the reconstructed alternative insertion haplotypes to genotype 1010 fully assembled insertions, obtaining >99% agreement with genotypes obtained by PCR. In our assembled sequences, we find evidence of premature insertion mechanisms and observe 5′ truncation in 16% of AluYa5 and AluYb8 insertions. The sites of truncation coincide with stem-loop structures and SRP9/14 binding sites in the Alu RNA, implicating L1 ORF2p pausing in the generation of 5′ truncations. Additionally, we identified variable AluJ and AluS elements that likely arose due to non-retrotransposition mechanisms.
Collapse
Affiliation(s)
- Julia H Wildschutte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alayna Baron
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicolette M Diroff
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Hor H, Francescatto L, Bartesaghi L, Ortega-Cubero S, Kousi M, Lorenzo-Betancor O, Jiménez-Jiménez FJ, Gironell A, Clarimón J, Drechsel O, Agúndez JAG, Kenzelmann Broz D, Chiquet-Ehrismann R, Lleó A, Coria F, García-Martin E, Alonso-Navarro H, Martí MJ, Kulisevsky J, Hor CN, Ossowski S, Chrast R, Katsanis N, Pastor P, Estivill X. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor. Hum Mol Genet 2015; 24:5677-86. [PMID: 26188006 DOI: 10.1093/hmg/ddv281] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022] Open
Abstract
Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.
Collapse
Affiliation(s)
- Hyun Hor
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain,
| | - Ludmila Francescatto
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Luca Bartesaghi
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland, Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Sara Ortega-Cubero
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Oswaldo Lorenzo-Betancor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain
| | - Felix J Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Madrid 28030, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain, Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Jordi Clarimón
- Sant Pau Biomedical Research Institute, Barcelona, Spain, Universitat Autònoma de Barcelona and CIBERNED, Barcelona, Catalonia 08026, Spain
| | - Oliver Drechsel
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Daniela Kenzelmann Broz
- Faculty of Sciences and Department of Biomedicine, Friedrich Miescher Institute of Biomedical Research, Novartis Research Foundation and University of Basel, Basel 4058, Switzerland
| | - Ruth Chiquet-Ehrismann
- Faculty of Sciences and Department of Biomedicine, Friedrich Miescher Institute of Biomedical Research, Novartis Research Foundation and University of Basel, Basel 4058, Switzerland
| | - Alberto Lleó
- Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Francisco Coria
- Clinic for Nervous Disorders, Service of Neurology, Son Espases University Hospital, Palma de Mallorca 07120, Spain
| | - Elena García-Martin
- Department of Biochemistry and Molecular Biology, University of Extremadura, Cáceres 10071, Spain
| | | | - Maria J Martí
- Movement Disorders Unit, Neurology Service, Hospital Clinic, CIBERNED and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia 08036, Spain and
| | - Jaume Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain, Universitat Autònoma de Barcelona and CIBERNED, Barcelona, Catalonia 08026, Spain
| | - Charlotte N Hor
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain
| | - Stephan Ossowski
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland, Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Pau Pastor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain,
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain, Dexeus Women's Health, University Hospital Quiron-Dexeus, Barcelona, Catalonia 08028, Spain
| |
Collapse
|
29
|
Abyzov A, Li S, Kim DR, Mohiyuddin M, Stütz AM, Parrish NF, Mu XJ, Clark W, Chen K, Hurles M, Korbel JO, Lam HYK, Lee C, Gerstein MB. Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms. Nat Commun 2015; 6:7256. [PMID: 26028266 PMCID: PMC4451611 DOI: 10.1038/ncomms8256] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/21/2015] [Indexed: 02/07/2023] Open
Abstract
Investigating genomic structural variants at basepair resolution is crucial for understanding their formation mechanisms. We identify and analyze 8,943 deletion breakpoints in 1,092 samples from the 1000 Genomes Project. We find breakpoints have more nearby SNPs and indels than the genomic average, likely a consequence of relaxed selection. By investigating the correlation of breakpoints with DNA methylation, Hi-C interactions, and histone marks and the substitution patterns of nucleotides near them, we find that breakpoints with the signature of non-allelic homologous recombination (NAHR) are associated with open chromatin. We hypothesize that some NAHR deletions occur without DNA replication and cell division, in embryonic and germline cells. In contrast, breakpoints associated with non-homologous (NH) mechanisms often have sequence micro-insertions, templated from later replicating genomic sites, spaced at two characteristic distances from the breakpoint. These micro-insertions are consistent with template-switching events and suggest a particular spatiotemporal configuration for DNA during the events.
Collapse
Affiliation(s)
- Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905, USA
| | - Shantao Li
- 1] Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| | - Daniel Rhee Kim
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| | | | - Adrian M Stütz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | | | - Xinmeng Jasmine Mu
- 1] Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | - Wyatt Clark
- 1] Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | - Ken Chen
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Matthew Hurles
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jan O Korbel
- 1] European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany [2] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Hugo Y K Lam
- Bina Technologies, Roche Sequencing, Redwood City, California 94065, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030, USA
| | - Mark B Gerstein
- 1] Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06520, USA [3] Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
30
|
Lee W, Mun S, Kang K, Hennighausen L, Han K. Genome-wide target site triplication of Alu elements in the human genome. Gene 2015; 561:283-91. [PMID: 25701601 DOI: 10.1016/j.gene.2015.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 02/15/2015] [Indexed: 01/18/2023]
Abstract
Alu elements are the most successful short interspersed elements in primate genomes and their retrotransposition is a major source of genomic expansion. Alu elements integrate into genomic regions through target-site primed reverse transcription, which generates target site duplications (TSDs). Unexpectedly, we have identified target site triplications (TSTs) at some loci, where two Alu elements in tandem share one direct repeat. Thus, the three copies of the repeat are present. We located 212 TST loci in the human genome and examined 25 putative human-specific TST loci using PCR validation. As a result, 12 human-specific TST loci were identified. These findings suggest that unequal homologous recombination between TSDs can lead to TST. Through this mechanism, the copy number of Alu elements could have increased in primate genomes without new Alu retrotransposition events. This study provides new insight into the augmentation of Alu elements in the primate genome.
Collapse
Affiliation(s)
- Wooseok Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen institute for NGS analysis (DTiNa), Cheonan 330-714, Republic of Korea.
| |
Collapse
|
31
|
Lee J, Kim YJ, Mun S, Kim HS, Han K. Identification of human-specific AluS elements through comparative genomics. Gene 2014; 555:208-16. [PMID: 25447892 DOI: 10.1016/j.gene.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 01/08/2023]
Abstract
Mobile elements are responsible for ~45% of the human genome. Among them is the Alu element, accounting for 10% of the human genome (>1.1million copies). Several studies of Alu elements have reported that they are frequently involved in human genetic diseases and genomic rearrangements. In this study, we investigated the AluS subfamily, which is a relatively old Alu subfamily and has the highest copy number in primate genomes. Previously, a set of 263 human-specific AluS insertions was identified in the human genome. To validate these, we compared each of the human-specific AluS loci with its pre-insertion site in other primate genomes, including chimpanzee, gorilla, and orangutan. We obtained 24 putative human-specific AluS candidates via the in silico analysis and manual inspection, and then tried to verify them using PCR amplification and DNA sequencing. Through the PCR product sequencing, we were able to detect two instances of near-parallel Alu insertions in nearby sites that led to computational false negatives. Finally, we computationally and experimentally verified 23 human-specific AluS elements. We reported three alternative Alu insertion events, which are accompanied by filler DNA and/or Alu retrotransposition mediated-deletion. Bisulfite sequencing was carried out to examine DNA methylation levels of human-specific AluS elements. The results showed that fixed AluS elements are hypermethylated compared with polymorphic elements, indicating a possible relation between DNA methylation and Alu fixation in the human genome.
Collapse
Affiliation(s)
- Jae Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Yun-Ji Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea.
| |
Collapse
|
32
|
Mun S, Lee J, Kim YJ, Kim HS, Han K. Chimpanzee-specific endogenous retrovirus generates genomic variations in the chimpanzee genome. PLoS One 2014; 9:e101195. [PMID: 24987855 PMCID: PMC4079660 DOI: 10.1371/journal.pone.0101195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs), eukaryotic transposable elements, exist as proviruses in vertebrates including primates and contribute to genomic changes during the evolution of their host genomes. Many studies about ERVs have focused on the elements residing in the human genome but only a few studies have focused on the elements which exist in non-human primate genomes. In this study, we identified 256 chimpanzee-specific endogenous retrovirus copies (PtERVs: Pan troglodyte endogenous retroviruses) from the chimpanzee reference genome sequence through comparative genomics. Among the chimpanzee-specific ERV copies, 121 were full-length chimpanzee-specific ERV elements while 110 were chimpanzee-specific solitary LTR copies. In addition, we found eight potential retrotransposition-competent full-length chimpanzee-specific ERV copies containing an intact env gene, and two of them were polymorphic in chimpanzee individuals. Through computational analysis and manual inspection, we found that some of the chimpanzee-specific ERVs have propagated via non-classical PtERV insertion (NCPI), and at least one of the PtERVs may have played a role in creating an alternative transcript of a chimpanzee gene. Based on our findings in this study, we state that the chimpanzee-specific ERV element is one of the sources of chimpanzee genomic variations, some of which might be related to the alternative transcripts in the chimpanzee population.
Collapse
Affiliation(s)
- Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
| | - Jungnam Lee
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- Departments of Periodontology & Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Yun-Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
33
|
Walters-Conte KB, Johnson DLE, Johnson WE, O’Brien SJ, Pecon-Slattery J. The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms. BMC Evol Biol 2014; 14:137. [PMID: 24947429 PMCID: PMC4084570 DOI: 10.1186/1471-2148-14-137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/11/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. RESULTS We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. CONCLUSIONS We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement.
Collapse
Affiliation(s)
- Kathryn B Walters-Conte
- Department of Biology, American University, 101 Hurst Hall 4440 Massachusetts Ave, Washington, DC 20016, USA
| | - Diana LE Johnson
- Department of Biological Sciences, The George Washington University, 2036 G St, Washington, DC 20009, USA
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Stephen J O’Brien
- Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 41 A, Sredniy Avenue St., Petersburg 199034, Russia
| | - Jill Pecon-Slattery
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| |
Collapse
|
34
|
Ade C, Roy-Engel AM, Deininger PL. Alu elements: an intrinsic source of human genome instability. Curr Opin Virol 2013; 3:639-45. [PMID: 24080407 PMCID: PMC3982648 DOI: 10.1016/j.coviro.2013.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
Abstract
Alu elements are ∼300bp sequences that have amplified via an RNA intermediate leading to the accumulation of over 1 million copies in the human genome. Although a few of the copies are active, Alu germline activity is the highest of all human retrotransposons and does significantly contribute to genetic disease and population diversity. There are two basic mechanisms by which Alu elements contribute to disease: through insertional mutagenesis and as a large source of repetitive sequences that contribute to nonallelic homologous recombination (NAHR) that cause genetic deletions and duplications.
Collapse
Affiliation(s)
- Catherine Ade
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, Consortium Of Mobile Elements at Tulane)
| | - Astrid M. Roy-Engel
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, Consortium Of Mobile Elements at Tulane)
| | - Prescott L. Deininger
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, Consortium Of Mobile Elements at Tulane)
| |
Collapse
|
35
|
McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH. Mosaic copy number variation in human neurons. Science 2013; 342:632-7. [PMID: 24179226 DOI: 10.1126/science.1243472] [Citation(s) in RCA: 416] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.
Collapse
Affiliation(s)
- Michael J McConnell
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Guo M, Wu Y. Fighting an old war with a new weapon-silencing transposons by Piwi-interacting RNA. IUBMB Life 2013; 65:739-47. [DOI: 10.1002/iub.1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Manhong Guo
- Department of Biochemistry; University of Saskatchewan; Saskatoon; Saskatchewan; Canada
| | - Yuliang Wu
- Department of Biochemistry; University of Saskatchewan; Saskatoon; Saskatchewan; Canada
| |
Collapse
|
37
|
Kim YJ, Lee J, Han K. Transposable Elements: No More 'Junk DNA'. Genomics Inform 2012; 10:226-33. [PMID: 23346034 PMCID: PMC3543922 DOI: 10.5808/gi.2012.10.4.226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 01/03/2023] Open
Abstract
Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.
Collapse
Affiliation(s)
- Yun-Ji Kim
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Korea
| | | | | |
Collapse
|
38
|
Wagstaff BJ, Hedges DJ, Derbes RS, Campos Sanchez R, Chiaromonte F, Makova KD, Roy-Engel AM. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion. PLoS Genet 2012; 8:e1002842. [PMID: 22912586 PMCID: PMC3415434 DOI: 10.1371/journal.pgen.1002842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 05/30/2012] [Indexed: 12/15/2022] Open
Abstract
Alu elements are trans-mobilized by the autonomous non-LTR retroelement, LINE-1 (L1). Alu-induced insertion mutagenesis contributes to about 0.1% human genetic disease and is responsible for the majority of the documented instances of human retroelement insertion-induced disease. Here we introduce a SINE recovery method that provides a complementary approach for comprehensive analysis of the impact and biological mechanisms of Alu retrotransposition. Using this approach, we recovered 226 de novo tagged Alu inserts in HeLa cells. Our analysis reveals that in human cells marked Alu inserts driven by either exogenously supplied full length L1 or ORF2 protein are indistinguishable. Four percent of de novo Alu inserts were associated with genomic deletions and rearrangements and lacked the hallmarks of retrotransposition. In contrast to L1 inserts, 5′ truncations of Alu inserts are rare, as most of the recovered inserts (96.5%) are full length. De novo Alus show a random pattern of insertion across chromosomes, but further characterization revealed an Alu insertion bias exists favoring insertion near other SINEs, highly conserved elements, with almost 60% landing within genes. De novo Alu inserts show no evidence of RNA editing. Priming for reverse transcription rarely occurred within the first 20 bp (most 5′) of the A-tail. The A-tails of recovered inserts show significant expansion, with many at least doubling in length. Sequence manipulation of the construct led to the demonstration that the A-tail expansion likely occurs during insertion due to slippage by the L1 ORF2 protein. We postulate that the A-tail expansion directly impacts Alu evolution by reintroducing new active source elements to counteract the natural loss of active Alus and minimizing Alu extinction. SINEs are mobile elements that are found ubiquitously throughout a large diversity of genomes from plants to mammals. The human SINE, Alu, is among the most successful mobile elements, with more than one million copies in the genome. Due to its high activity and ability to insert throughout the genome, Alu retrotransposition is responsible for the majority of diseases reported to be caused by mobile element activity. To further evaluate the genomic impact of SINEs, we recovered and characterized over 200 de novo Alu inserts under controlled conditions. Our data reinforce observations on the mutagenic potential of Alu, with newly retrotransposed Alu elements favoring insertion into genic and highly conserved elements. Alu-mediated deletions and rearrangements are infrequent and lack the typical hallmarks of TPRT retrotransposition, suggesting the use of an alternate method for resolving retrotransposition intermediates or an atypical insertion mechanism. Our data also provide novel insights into SINE retrotransposition biology. We found that slippage of L1 ORF2 protein during reverse transcription expands the A-tails of de novo insertions. We propose that the L1 ORF2 protein plays a major role in minimizing Alu extinction by reintroducing active Alu elements to counter the natural loss of Alu source elements.
Collapse
Affiliation(s)
- Bradley J. Wagstaff
- Tulane Cancer Center, Department of Epidemiology, Tulane University, New Orleans, Louisiana, United States of America
| | - Dale J. Hedges
- Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Rebecca S. Derbes
- Tulane Cancer Center, Department of Epidemiology, Tulane University, New Orleans, Louisiana, United States of America
| | - Rebeca Campos Sanchez
- Department of Biology, Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca Chiaromonte
- Department of Biology, Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Department of Biology, Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Astrid M. Roy-Engel
- Tulane Cancer Center, Department of Epidemiology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
39
|
Human Genomic Deletions Generated by SVA-Associated Events. Comp Funct Genomics 2012; 2012:807270. [PMID: 22666087 PMCID: PMC3362811 DOI: 10.1155/2012/807270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 11/28/2022] Open
Abstract
Mobile elements are responsible for half of the human genome. Among the elements, L1 and Alu are most ubiquitous. They use L1 enzymatic machinery to move in their host genomes. A significant amount of research has been conducted about these two elements. The results showed that these two elements have played important roles in generating genomic variations between human and chimpanzee lineages and even within a species, through various mechanisms. SVA elements are a third type of mobile element which uses the L1 enzymatic machinery to propagate in the human genome but has not been studied much relative to the other elements. Here, we attempt the first identification of the human genomic deletions caused by SVA elements, through the comparison of human and chimpanzee genome sequences. We identified 13 SVA recombination-associated deletions (SRADs) and 13 SVA insertion-mediated deletions (SIMDs) in the human genome and characterized them, focusing on deletion size and the mechanisms causing the events. The results showed that the SRADs and SIMDs have deleted 15,752 and 30,785 bp, respectively, in the human genome since the divergence of human and chimpanzee and that SRADs were caused by two different mechanisms, nonhomologous end joining and nonallelic homologous recombination.
Collapse
|
40
|
High Levels of Sequence Diversity in the 5' UTRs of Human-Specific L1 Elements. Comp Funct Genomics 2012; 2012:129416. [PMID: 22400009 PMCID: PMC3286893 DOI: 10.1155/2012/129416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 01/26/2023] Open
Abstract
Approximately 80 long interspersed element (LINE-1 or L1) copies are able to retrotranspose actively in the human genome, and these are termed retrotransposition-competent L1s. The 5′ untranslated region (UTR) of the human-specific L1 contains an internal promoter and several transcription factor binding sites. To better understand the effect of the L1 5′ UTR on the evolution of human-specific L1s, we examined this population of elements, focusing on the sequence diversity and accumulated substitutions within their 5′ UTRs. Using network analysis, we estimated the age of each L1 component (the 5′ UTR, ORF1, ORF2, and 3′ UTR). Through the comparison of the L1 components based on their estimated ages, we found that the 5′ UTR of human-specific L1s accumulates mutations at a faster rate than the other components. To further investigate the L1 5′ UTR, we examined the substitution frequency per nucleotide position among them. The results showed that the L1 5′ UTRs shared relatively conserved transcription factor binding sites, despite their high sequence diversity. Thus, we suggest that the high level of sequence diversity in the 5′ UTRs could be one of the factors controlling the number of retrotransposition-competent L1s in the human genome during the evolutionary battle between L1s and their host genomes.
Collapse
|
41
|
Walters-Conte KB, Johnson DLE, Allard MW, Pecon-Slattery J. Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact. J Hered 2011; 102 Suppl 1:S2-10. [PMID: 21846743 DOI: 10.1093/jhered/esr051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.
Collapse
|
42
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|
43
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
44
|
Dobrovolny R, Nazarenko I, Kim J, Doheny D, Desnick RJ. Detection of large gene rearrangements in X-linked genes by dosage analysis: identification of novel α-galactosidase A (GLA) deletions causing Fabry disease. Hum Mutat 2011; 32:688-95. [PMID: 21305660 DOI: 10.1002/humu.21474] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/31/2011] [Indexed: 01/29/2023]
Abstract
For most Mendelian disorders, targeted genome sequencing is an effective method to detect causative mutations. However, sequencing PCR-amplified exonic regions and their intronic boundaries can miss large deletions or duplications and mutations that lead to PCR failures in autosomal dominant disorders and in heterozygote detection for X-linked diseases. Here, a method is described for detecting large (>50 bp) deletions/duplications in the X-linked α-galactosidase A (GLA) gene, which cause Fabry disease. Briefly, multiplex PCR mixtures were designed to amplify each GLA exon and an unrelated internal control exon to normalize GLA exonic amplicon peak heights. For each normalized GLA amplicon, the normal control female to male peak-height ratios were 1.8 to 2.2 (expected 2.0), whereas the expected ratios for deletions or duplications would be ∼1.0 or 3.0, respectively. Using this method, three novel deletions, c.369+3_547+954del4096insT, c.194+2049_369+773del2619insCG, and c.207_369+651del814ins231, were detected in unrelated women with signs and/or symptoms suggestive of Fabry disease, but no "sequencing-detectable" mutations. The deletions were confirmed by sequencing their respective GLA RT-PCR products. This method can identify gene rearrangements that may be cryptic to genomic DNA sequencing and can be readily adapted to other X-linked or autosomal dominant genes.
Collapse
Affiliation(s)
- Robert Dobrovolny
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
45
|
Zhang W, Edwards A, Fan W, Deininger P, Zhang K. Alu distribution and mutation types of cancer genes. BMC Genomics 2011; 12:157. [PMID: 21429208 PMCID: PMC3074553 DOI: 10.1186/1471-2164-12-157] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/23/2011] [Indexed: 12/24/2022] Open
Abstract
Background Alu elements are the most abundant retrotransposable elements comprising ~11% of the human genome. Many studies have highlighted the role that Alu elements have in genetic instability and how their contribution to the assortment of mutagenic events can lead to cancer. As of yet, little has been done to quantitatively assess the association between Alu distribution and genes that are causally implicated in oncogenesis. Results We have investigated the effect of various Alu densities on the mutation type based classifications of cancer genes. In order to establish the direct relationship between Alus and the cancer genes of interest, genome wide Alu-related densities were measured using genes rather than the sliding windows of fixed length as the units. Several novel genomic features, such as the density of the adjacent Alu pairs and the number of Alu-Exon-Alu triplets, were developed in order to extend the investigation via the multivariate statistical analysis toward more advanced biological insight. In addition, we characterized the genome-wide intron Alu distribution with a mixture model that distinguished genes containing Alu elements from those with no Alus, and evaluated the gene-level effect of the 5'-TTAAAA motif associated with Alu insertion sites using a two-step regression analysis method. Conclusions The study resulted in several novel findings worthy of further investigation. They include: (1) Recessive cancer genes (tumor suppressor genes) are enriched with Alu elements (p < 0.01) compared to dominant cancer genes (oncogenes) and the entire set of genes in the human genome; (2) Alu-related genomic features can be used to cluster cancer genes into biological meaningful groups; (3) The retention of exon Alus has been restricted in the human genome development, and an upper limit to the chromosome-level exon Alu densities is suggested by the distribution profile; (4) For the genes with at least one intron Alu repeat in individual chromosomes, the intron Alu densities can be well fitted by a Gamma distribution; (5) The effect of the 5'-TTAAAA motif on Alu densities varies across different chromosomes.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
47
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
48
|
Singh V, Mishra RK. RISCI--Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes. BMC Bioinformatics 2010; 11:609. [PMID: 21184688 PMCID: PMC3024322 DOI: 10.1186/1471-2105-11-609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background - The availability of multiple whole genome sequences has facilitated in silico identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects. Results - We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of Mycobacterium tuberculosis for IS 6100 insertion polymorphism. Conclusions - RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.
Collapse
Affiliation(s)
- Vipin Singh
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | |
Collapse
|
49
|
Konkel MK, Batzer MA. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 2010; 20:211-21. [PMID: 20307669 PMCID: PMC2925057 DOI: 10.1016/j.semcancer.2010.03.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/04/2010] [Accepted: 03/16/2010] [Indexed: 02/06/2023]
Abstract
It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families - long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements - mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development.
Collapse
Affiliation(s)
- Miriam K. Konkel
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
50
|
Abstract
Mobile elements represent a unique and powerful set of tools for understanding the variation in a genome. Methods exist not only to utilize the polymorphisms among and within taxa to various ends but also to investigate the mechanism through which mobilization occurs. The number of methods to accomplish these ends is ever growing. Here, we present several protocols designed to assay mobile element-based variation within and among individual genomes.
Collapse
Affiliation(s)
- David A Ray
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | | | | | | |
Collapse
|