1
|
Anwar K, Thaller G, Saeed-Zidane M. Sperm-Borne Mitochondrial Activity Influenced by Season and Age of Holstein Bulls. Int J Mol Sci 2024; 25:13064. [PMID: 39684774 DOI: 10.3390/ijms252313064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Sperm mitochondria are vital organelles for energy production and pre- and post-fertilization sperm functions. The potential influence of the age of the bull and season on the sperm-borne mitochondrial copy number and the transcription activity has not yet been investigated. Therefore, the expression patterns of all protein-coding mitochondrial genes were identified throughout the year along with mitochondrial copy numbers in young and old bulls' spermatozoa. For that, high-quality semen samples (n = 32) with more than 80% quality for the morphological parameters, from young (n = 4, aged 18-24 months old) and old (n = 4, aged 40-54 months old) Holstein bulls, were collected during the four seasons (n = 4 samples each animal/season). The DNA and RNA were isolated from sperm cells and subjected to the DNA copy number and expression analyses using qPCR. Furthermore, an in silico analysis using gene ontology online tools for the abundantly expressed genes was utilized. The data were statistically analyzed using Prism10 software. There was a significant reduction in the mitochondria copy number of young bulls' spermatozoa compared to their old counterparts during the summer (29 ± 3 vs. 51 ± 6, p < 0.001) and winter (27 ± 3 vs. 43 ± 7, p < 0.01) seasons. However, sperm-borne mitochondrial protein-coding genes were transcriptionally higher in young bulls throughout the year. Within the same group of bulls, unlike the old bulls, there was a significant (p < 0.05) induction in the transcription activity accompanied by a significant (p < 0.05) reduction in the mitochondrial copy numbers in the summer (29 ± 3) and winter (27 ± 3) compared to the spring (42 ± 9) and autumn (36 ± 5) seasons in young bulls. Additionally, the pathway enrichment of the top six expressed genes differed between age groups and seasons. In conclusion, under the same quality of semen, the early stages of age are associated with mitochondrial biogenesis and transcription activity dysregulation in a season-dependent manner.
Collapse
Affiliation(s)
- Khurshaid Anwar
- Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Georg Thaller
- Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Mohammed Saeed-Zidane
- Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| |
Collapse
|
2
|
Del Dotto V, Musiani F, Baracca A, Solaini G. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Int J Mol Sci 2024; 25:2239. [PMID: 38396915 PMCID: PMC10889682 DOI: 10.3390/ijms25042239] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphorylation and provides most of the energy (ATP) required by human cells. The mitochondrial genes MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes correlate with various clinical phenotypes, which include several neurodegenerative and multisystemic disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote biochemical dysfunctions. We discuss the possible structural changes induced by the most common variants found in patients by considering the recent cryo-electron microscopy structure of human ATP synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature, including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and nuclease-based strategies, and discuss their potential translation into clinical trials.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40127 Bologna, Italy;
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| |
Collapse
|
3
|
Zhang M, Luo X, Zhang B, Luo D, Huang L, Long Q. Unveiling OSCP as the potential therapeutic target for mitochondrial dysfunction-related diseases. Life Sci 2024; 336:122293. [PMID: 38030056 DOI: 10.1016/j.lfs.2023.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Mitochondria are important organelles in cells responsible for energy production and regulation. Mitochondrial dysfunction has been implicated in the pathogenesis of many diseases. Oligomycin sensitivity-conferring protein (OSCP), a component of the inner mitochondrial membrane, has been studied for a long time. OSCP is a component of the F1Fo-ATP synthase in mitochondria and is closely related to the regulation of the mitochondrial permeability transition pore (mPTP). Studies have shown that OSCP plays an important role in cardiovascular disease, neurological disorders, and tumor development. This review summarizes the localization, structure, function, and regulatory mechanisms of OSCP and outlines its role in cardiovascular disease, neurological disease, and tumor development. In addition, this article reviews the research on the interaction between OSCP and mPTP. Finally, the article suggests future research directions, including further exploration of the mechanism of action of OSCP, the interaction between OSCP and other proteins and signaling pathways, and the development of new treatment strategies for mitochondrial dysfunction. In conclusion, in-depth research on OSCP will help to elucidate its importance in cell function and disease and provide new ideas for the treatment and prevention of related diseases.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Galber C, Fabbian S, Gatto C, Grandi M, Carissimi S, Acosta MJ, Sgarbi G, Tiso N, Argenton F, Solaini G, Baracca A, Bellanda M, Giorgio V. The mitochondrial inhibitor IF1 binds to the ATP synthase OSCP subunit and protects cancer cells from apoptosis. Cell Death Dis 2023; 14:54. [PMID: 36690622 PMCID: PMC9870916 DOI: 10.1038/s41419-023-05572-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
The mitochondrial protein IF1 binds to the catalytic domain of the ATP synthase and inhibits ATP hydrolysis in ischemic tissues. Moreover, IF1 is overexpressed in many tumors and has been shown to act as a pro-oncogenic protein, although its mechanism of action is still debated. Here, we show that ATP5IF1 gene disruption in HeLa cells decreases colony formation in soft agar and tumor mass development in xenografts, underlining the role of IF1 in cancer. Notably, the lack of IF1 does not affect proliferation or oligomycin-sensitive mitochondrial respiration, but it sensitizes the cells to the opening of the permeability transition pore (PTP). Immunoprecipitation and proximity ligation analysis show that IF1 binds to the ATP synthase OSCP subunit in HeLa cells under oxidative phosphorylation conditions. The IF1-OSCP interaction is confirmed by NMR spectroscopy analysis of the recombinant soluble proteins. Overall, our results suggest that the IF1-OSCP interaction protects cancer cells from PTP-dependent apoptosis under normoxic conditions.
Collapse
Affiliation(s)
- Chiara Galber
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, I-40126, Italy
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, I-35121, Italy
| | - Simone Fabbian
- Department of Chemical Science, University of Padova, Padova, I-35121, Italy
| | - Cristina Gatto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, I-40126, Italy
| | - Martina Grandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, I-40126, Italy
| | - Stefania Carissimi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, I-35121, Italy
| | - Manuel Jesus Acosta
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, I-35121, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, I-40126, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, I-35131, Italy
| | | | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, I-40126, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, I-40126, Italy
| | - Massimo Bellanda
- Department of Chemical Science, University of Padova, Padova, I-35121, Italy
- Consiglio Nazionale delle Ricerche Institute of Biomolecular Chemistry, Padova, I-35131, Italy
| | - Valentina Giorgio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, I-40126, Italy.
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, I-35121, Italy.
| |
Collapse
|
5
|
An NMR look at an engineered PET depolymerase. Biophys J 2022; 121:2882-2894. [PMID: 35794828 PMCID: PMC9388554 DOI: 10.1016/j.bpj.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Polyethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and have been subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme. Here, we use NMR to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium-binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72°C close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group, and histidine side-chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid. The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain.
Collapse
|
6
|
Devi TS, Vijay K, Vidhyavathi RM, Kumar P, Govarthanan M, Kavitha T. Antifungal activity and molecular docking of phenol, 2,4-bis(1,1-dimethylethyl) produced by plant growth-promoting actinobacterium Kutzneria sp. strain TSII from mangrove sediments. Arch Microbiol 2021; 203:4051-4064. [PMID: 34046705 DOI: 10.1007/s00203-021-02397-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
The present study reveals the plant growth-promoting (PGP) potentials and characterizes the antifungal metabolites of Kutzneria sp. strain TSII isolated from mangrove sediment soil through in vitro and in silico studies. In this study, Kutzneria sp. strain TSII was screened for PGP activities and the antifungal activities against Pithomyces atro-olivaceous, a leaf spot-associated pathogen in groundnut plants. The ethyl acetate extract of Kutzneria sp. strain TSII was purified using column chromatography, and the presence of various antimicrobial compounds was studied by gas chromatography-mass spectrometry (GC-MS) analysis. In silico modeling and docking were carried out to evaluate the antifungal potent of bioactive compound. Kutzneria sp. strain TSII produced proteases, phosphatases, ammonia, siderophores, cellulases, indole acetic acid (IAA), lipases, and amylases, indicating its ability to enhance the growth of plants. The ethyl acetate extract of Kutzneria sp strain TSII was found to be a potent inhibitor of fungal mycelial growth in the potato dextrose agar (PDA) plates. The GC-MS spectral study showed 24 antimicrobial compounds belonging to five chemical groups: phenolics, phthalates, fatty acid methyl esters (FAME), spiro, and fatty alcohols. In silico docking studies showed that phenol, 2,4-bis(1,1-dimethylethyl)-effectively attaches with the active site of mitochondrial F1F0 Adenosine triphosphate synthase enzymes of Pithomyces atro-olivaceous. Hence, it is clear that these antifungal compounds shall be formulated shortly to treat many plant fungal diseases in an eco-friendly manner.
Collapse
Affiliation(s)
- Thangarasu Suganya Devi
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - R M Vidhyavathi
- Department of Bioinformatics Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India.
| |
Collapse
|
7
|
Ho KH, Patrizi A. Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. Sci Rep 2021; 11:3278. [PMID: 33558629 PMCID: PMC7870894 DOI: 10.1038/s41598-021-82800-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Choroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
8
|
Tyagi A, Pramanik R, Vishnubhatla S, Ali S, Bakhshi R, Chopra A, Singh A, Bakhshi S. Pattern of mitochondrial D-loop variations and their relation with mitochondrial encoded genes in pediatric acute myeloid leukemia. Mutat Res 2018; 810:13-18. [PMID: 29883862 DOI: 10.1016/j.mrfmmm.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Role of mitochondrial DNA variations, particularly in D loop region, remains investigational in acute myeloid leukaemia (AML). Consecutive 151 pediatric AML patients were prospectively enrolled from June 2013 to August 2016, for evaluating pattern of variations in mitochondrial D-loop region and to determine their association, if any, with expression of mitochondrial-encoded genes. For each patient, D-loop region was sequenced on baseline bone marrow, buccal swab and mother's blood sample. Real time PCR was used for relative gene expression of four mitochondrial DNA encoded genes viz. Nicotinamide-adenine-dineucleotide-dehydrogenase subunit 3 (ND3), Cytochrome-B (Cyt-B), Cytochrome c oxidase-I (COX1) and ATP-synthetase F0 subunit-6 (ATP6). Total 1490 variations were found at 237 positions in D-Loop; 1206 (80.9%) were germline and 284 (19.1%) were somatic. Positions 73-263 were identified as a probable hotspot region. G bases appeared to be most stable nucleotide (least number of single base substitutions) whereas T appeared to be most susceptible to variations with germline T-C being the commonest. Gene expression of Cyt-B was found to be significantly higher for any variation (somatic or germline) at positions 16,192 and 16,327 while it was significantly lower for variations at positions 16,051 and 207. Any variation at positions 152, 207 and 513 significantly decreased COX1 expression while those at positions 16,051 and 152 attenuated ATP6 expression. This first study evaluated type and overall pattern of D-loop variations in AML, and also showed that some of these variations in D loop region might have an effect on the mitochondrial-encoded genes which is new and valuable information in AML genomics.
Collapse
Affiliation(s)
- Anudishi Tyagi
- Department of Medical Oncology; Dr. B. R. A. Institute Rotary Cancer Hospital; All India Institute of Medical Sciences, New Delhi, India
| | - Raja Pramanik
- Department of Medical Oncology; Dr. B. R. A. Institute Rotary Cancer Hospital; All India Institute of Medical Sciences, New Delhi, India
| | | | - Safdar Ali
- Shaheed Rajguru College of Applied Sciences, India; University of Delhi , New Delhi
| | - Radhika Bakhshi
- Shaheed Rajguru College of Applied Sciences, India; University of Delhi , New Delhi
| | - Anita Chopra
- Dr. B. R. A. Institute Rotary Cancer Hospital; All India Institute of Medical Sciences, New Delhi, India; Department of Lab oncology
| | - Archna Singh
- All India Institute of Medical Sciences, New Delhi, India; Department of Biochemistry
| | - Sameer Bakhshi
- Department of Medical Oncology; Dr. B. R. A. Institute Rotary Cancer Hospital; All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
Kauko A, Lehto K. Eukaryote specific folds: Part of the whole. Proteins 2018; 86:868-881. [PMID: 29675831 DOI: 10.1002/prot.25517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
The origin of eukaryotes is one of the central transitions in the history of life; without eukaryotes there would be no complex multicellular life. The most accepted scenarios suggest the endosymbiosis of a mitochondrial ancestor with a complex archaeon, even though the details regarding the host and the triggering factors are still being discussed. Accordingly, phylogenetic analyses have demonstrated archaeal affiliations with key informational systems, while metabolic genes are often related to bacteria, mostly to the mitochondrial ancestor. Despite of this, there exists a large number of protein families and folds found only in eukaryotes. In this study, we have analyzed structural superfamilies and folds that probably appeared during eukaryogenesis. These folds typically represent relatively small binding domains of larger multidomain proteins. They are commonly involved in biological processes that are particularly complex in eukaryotes, such as signaling, trafficking/cytoskeleton, ubiquitination, transcription and RNA processing, but according to recent studies, these processes also have prokaryotic roots. Thus the folds originating from an eukaryotic stem seem to represent accessory parts that have contributed in the expansion of several prokaryotic processes to a new level of complexity. This might have taken place as a co-evolutionary process where increasing complexity and fold innovations have supported each other.
Collapse
Affiliation(s)
- Anni Kauko
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Kirsi Lehto
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Niu Y, Moghimyfiroozabad S, Safaie S, Yang Y, Jonas EA, Alavian KN. Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules. J Mol Evol 2017; 85:219-233. [PMID: 29177973 PMCID: PMC5709465 DOI: 10.1007/s00239-017-9819-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/11/2017] [Indexed: 11/26/2022]
Abstract
ATP synthase is a complex universal enzyme responsible for ATP synthesis across all kingdoms of life. The F-type ATP synthase has been suggested to have evolved from two functionally independent, catalytic (F1) and membrane bound (Fo), ancestral modules. While the modular evolution of the synthase is supported by studies indicating independent assembly of the two subunits, the presence of intermediate assembly products suggests a more complex evolutionary process. We analyzed the phylogenetic profiles of the human mitochondrial proteins and bacterial transcription units to gain additional insight into the evolution of the F-type ATP synthase complex. In this study, we report the presence of intermediary modules based on the phylogenetic profiles of the human mitochondrial proteins. The two main intermediary modules comprise the α3β3 hexamer in the F1 and the c-subunit ring in the Fo. A comprehensive analysis of bacterial transcription units of F1Fo ATP synthase revealed that while a long and constant order of F1Fo ATP synthase genes exists in a majority of bacterial genomes, highly conserved combinations of separate transcription units are present among certain bacterial classes and phyla. Based on our findings, we propose a model that includes the involvement of multiple modules in the evolution of F1Fo ATP synthase. The central and peripheral stalk subunits provide a link for the integration of the F1/Fo modules.
Collapse
Affiliation(s)
- Yulong Niu
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | | | - Sepehr Safaie
- Department of Mathematics and Computer Science, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran
| | - Yi Yang
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Elizabeth A Jonas
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK.
- Department of Biology, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran.
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA. Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 2017; 49:13-25. [PMID: 26868013 PMCID: PMC4981558 DOI: 10.1007/s10863-016-9652-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - Gisela Beutner
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Elizabeth A Jonas
- Department Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG. Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 2016; 5. [PMID: 28001127 PMCID: PMC5214741 DOI: 10.7554/elife.21598] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk’s ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates toward the membrane with its helices separating to embrace subunit a from two sides. DOI:http://dx.doi.org/10.7554/eLife.21598.001 ATP synthase is a biological motor that produces a molecule called adenosine tri-phosphate (ATP for short), which acts as the major store of chemical energy in cells. A single molecule of ATP contains three phosphate groups: the cell can remove one of these phosphates to make a molecule called adenosine di-phosphate (ADP) and release energy to drive a variety of biological processes. ATP synthase sits in the membranes that separate cell compartments or form barriers around cells. When cells break down food they transport hydrogen ions across these membranes so that each side of the membrane has a different level (or “concentration”) of hydrogen ions. Movement of hydrogen ions from an area with a high concentration to a low concentration causes ATP synthase to rotate like a turbine. This rotation of the enzyme results in ATP synthase adding a phosphate group to ADP to make a new molecule of ATP. In certain conditions cells need to switch off the ATP synthase and this is done by changing the shape of the central shaft in a process called autoinhibition, which blocks the rotation. The ATP synthase from a bacterium known as E. coli – which is commonly found in the human gut –has been used as a model to study how this biological motor works. However, since the precise details of the three-dimensional structure of ATP synthase have remained unclear it has been difficult to interpret the results of these studies. Sobti et al. used a technique called Cryo-electron microscopy to investigate the structure of ATP synthase from E. coli. This made it possible to develop a three-dimensional model of the ATP synthase in its autoinhibited form. The structural data could also be split into three distinct shapes that relate to dwell points in the rotation of the motor where the rotation has been inhibited. These models further our understanding of ATP synthases and provide a template to understand the findings of previous studies. Further work will be needed to understand this essential biological process at the atomic level in both its inhibited and uninhibited form. This will reveal the inner workings of a marvel of the natural world and may also lead to the discovery of new antibiotics against related bacteria that cause diseases in humans. DOI:http://dx.doi.org/10.7554/eLife.21598.002
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Callum Smits
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Andrew Sw Wong
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Robert Ishmukhametov
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniela Stock
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Sara Sandin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Abstract
Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer's and Parkinson's. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson's disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment.
Collapse
|
14
|
Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:94-102. [DOI: 10.1016/j.pbiomolbio.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
|
15
|
Jonas EA, Porter GA, Beutner G, Mnatsakanyan N, Alavian KN. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F(1)F(O) ATP synthase. Pharmacol Res 2015; 99:382-92. [PMID: 25956324 PMCID: PMC4567435 DOI: 10.1016/j.phrs.2015.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
Ion transport across the mitochondrial inner and outer membranes is central to mitochondrial function, including regulation of oxidative phosphorylation and cell death. Although essential for ATP production by mitochondria, recent findings have confirmed that the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane and cell death. This review will discuss recent advances in understanding the molecular components of mPTP, its regulatory mechanisms and how these contribute directly to its physiological as well as pathological roles.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA.
| | - George A Porter
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Gisela Beutner
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| |
Collapse
|
16
|
The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species. Biochem J 2015; 468:167-75. [PMID: 25759169 PMCID: PMC4422255 DOI: 10.1042/bj20150197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-β-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex. ATP, the fuel of life, is produced in mitochondria of living cells by a molecular machine, the ATP synthase. We have isolated the machines from four fungal species, compared their stabilities and identified the proteins from which they are constructed.
Collapse
|
17
|
Davies KM, Daum B, Gold VAM, Mühleip AW, Brandt T, Blum TB, Mills DJ, Kühlbrandt W. Visualization of ATP synthase dimers in mitochondria by electron cryo-tomography. J Vis Exp 2014:51228. [PMID: 25285856 PMCID: PMC4828066 DOI: 10.3791/51228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron cryo-tomography is a powerful tool in structural biology, capable of visualizing the three-dimensional structure of biological samples, such as cells, organelles, membrane vesicles, or viruses at molecular detail. To achieve this, the aqueous sample is rapidly vitrified in liquid ethane, which preserves it in a close-to-native, frozen-hydrated state. In the electron microscope, tilt series are recorded at liquid nitrogen temperature, from which 3D tomograms are reconstructed. The signal-to-noise ratio of the tomographic volume is inherently low. Recognizable, recurring features are enhanced by subtomogram averaging, by which individual subvolumes are cut out, aligned and averaged to reduce noise. In this way, 3D maps with a resolution of 2 nm or better can be obtained. A fit of available high-resolution structures to the 3D volume then produces atomic models of protein complexes in their native environment. Here we show how we use electron cryo-tomography to study the in situ organization of large membrane protein complexes in mitochondria. We find that ATP synthases are organized in rows of dimers along highly curved apices of the inner membrane cristae, whereas complex I is randomly distributed in the membrane regions on either side of the rows. By subtomogram averaging we obtained a structure of the mitochondrial ATP synthase dimer within the cristae membrane.
Collapse
Affiliation(s)
- Karen M Davies
- Department of Structural Biology, Max Planck Institute of Biophysics
| | - Bertram Daum
- Department of Structural Biology, Max Planck Institute of Biophysics
| | - Vicki A M Gold
- Department of Structural Biology, Max Planck Institute of Biophysics
| | | | - Tobias Brandt
- Department of Structural Biology, Max Planck Institute of Biophysics
| | - Thorsten B Blum
- Department of Structural Biology, Max Planck Institute of Biophysics
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics;
| |
Collapse
|
18
|
Starkenburg SR, Kwon KJ, Jha RK, McKay C, Jacobs M, Chertkov O, Twary S, Rocap G, Cattolico RA. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics 2014; 15:212. [PMID: 24646409 PMCID: PMC3999925 DOI: 10.1186/1471-2164-15-212] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 03/11/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. RESULTS The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). CONCLUSIONS Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.
Collapse
Affiliation(s)
- Shawn R Starkenburg
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Kyungyoon J Kwon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley 94720, CA, USA
| | - Ramesh K Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Cedar McKay
- School of Oceanography, University of Washington, Seattle 98195, WA, USA
| | - Michael Jacobs
- Biology Department, University of Washington, Seattle 98195, WA, USA
| | - Olga Chertkov
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Seattle 98195, WA, USA
| | | |
Collapse
|
19
|
Williamson MP. Using chemical shift perturbation to characterise ligand binding. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 73:1-16. [PMID: 23962882 DOI: 10.1016/j.pnmrs.2013.02.001] [Citation(s) in RCA: 1030] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 05/05/2023]
Abstract
Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by simultaneous fitting of many measured shift changes, or more simply by adding substoichiometric amounts of ligand. The chemical shift changes can be used as restraints for docking ligand onto protein. By use of quantitative calculations of ligand-induced chemical shift changes, it is becoming possible to determine not just the position but also the orientation of ligands.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
20
|
Abstract
The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.
Collapse
|
21
|
Hou WR, Hou YL, Ding X, Wang T. cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1. GENETICS AND MOLECULAR RESEARCH 2012; 11:3164-74. [PMID: 23007995 DOI: 10.4238/2012.september.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ATP5G1 gene is one of the three genes that encode mitochondrial ATP synthase subunit c of the proton channel. We cloned the cDNA and determined the genomic sequence of the ATP5G1 gene from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively. The cloned cDNA fragment contains an open reading frame of 411 bp encoding 136 amino acids; the length of the genomic sequence is of 1838 bp, containing three exons and two introns. Alignment analysis revealed that the nucleotide sequence and the deduced protein sequence are highly conserved compared to Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, and Sus scrofa. The homologies for nucleotide sequences of the giant panda ATP5G1 to those of these species are 93.92, 92.21, 92.46, 93.67, and 92.46%, respectively, and the homologies for amino acid sequences are 90.44, 95.59, 93.38, 94.12, and 91.91%, respectively. Topology prediction showed that there is one protein kinase C phosphorylation site, one casein kinase II phosphorylation site, five N-myristoylation sites, and one ATP synthase c subunit signature in the ATP5G1 protein of the giant panda. The cDNA of ATP5G1 was transfected into Escherichia coli, and the ATP5G1 fused with the N-terminally GST-tagged protein gave rise to accumulation of an expected 40-kDa polypeptide, which had the characteristics of the predicted protein.
Collapse
Affiliation(s)
- W-R Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, College of Life Science, China West Normal University, P.R. China.
| | | | | | | |
Collapse
|
22
|
Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci U S A 2012; 109:13602-7. [PMID: 22864911 DOI: 10.1073/pnas.1204593109] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We used electron cryotomography of mitochondrial membranes from wild-type and mutant Saccharomyces cerevisiae to investigate the structure and organization of ATP synthase dimers in situ. Subtomogram averaging of the dimers to 3.7 nm resolution revealed a V-shaped structure of twofold symmetry, with an angle of 86° between monomers. The central and peripheral stalks are well resolved. The monomers interact within the membrane at the base of the peripheral stalks. In wild-type mitochondria ATP synthase dimers are found in rows along the highly curved cristae ridges, and appear to be crucial for membrane morphology. Strains deficient in the dimer-specific subunits e and g or the first transmembrane helix of subunit 4 lack both dimers and lamellar cristae. Instead, cristae are either absent or balloon-shaped, with ATP synthase monomers distributed randomly in the membrane. Computer simulations indicate that isolated dimers induce a plastic deformation in the lipid bilayer, which is partially relieved by their side-by-side association. We propose that the assembly of ATP synthase dimer rows is driven by the reduction in the membrane elastic energy, rather than by direct protein contacts, and that the dimer rows enable the formation of highly curved ridges in mitochondrial cristae.
Collapse
|
23
|
Liao M, Liu H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:67-80. [PMID: 22465980 DOI: 10.1016/j.etap.2011.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/03/2011] [Accepted: 05/28/2011] [Indexed: 05/31/2023]
Abstract
The goal of this study was to investigate the mechanisms of nanocopper-induced nephrotoxicity by analyzing renal gene expression profiles phenotypically anchored to conventional toxicological outcomes. Male Wistar rats were given nanocopper (50, 100, 200 mg/kg) and microcopper (200 mg/kg) at different doses for 5 days. We found nanocopper can induce widespread renal proximal tubule necrosis in rat kidneys with blood urea nitrogen and creatinine increase. Whole genome transcriptome profiling of rat kidneys revealed significant alterations in the expression of many genes involved in valine, leucine, and isoleucine degradation, complement and coagulation cascades, oxidative phosphorylation, cell cycle, mitogen-activated protein kinase signaling pathway, glutathione metabolism, and others may be involved in the development of these phenotypes. Results from this study provide new insights into the nephrotoxicity of copper nano-particles and illustrate how toxicogenomic approaches are providing an unprecedented amount of mechanistic information on molecular responses to nanocopper and how they are likely to impact hazard and risk assessment.
Collapse
Affiliation(s)
- MingYang Liao
- GuangXi Medical University, Nanning, Guangxi, PR China
| | | |
Collapse
|
24
|
BAKER LINDSAYA, RUBINSTEIN JOHNL. SINGLE PARTICLE ELECTRON MICROSCOPY OF THE MITOCHONDRIAL ATP SYNTHASE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial ATP synthase is a large, membrane-bound protein complex that plays a central role in cellular metabolism. Since the identification of this assembly in micrographs of mitochondrial membranes, electron microscopy has been crucial in elucidating the structure and mechanism of the enzyme. This review addresses the recent use of single particle electron microscopy for structure determination of ATP synthase, including subunit localization, the challenges posed by the protein, and areas in which further work is needed.
Collapse
Affiliation(s)
- LINDSAY A. BAKER
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | - JOHN L. RUBINSTEIN
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
25
|
Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ. Structure of dimeric F1F0-ATP synthase. J Biol Chem 2010; 285:36447-55. [PMID: 20833715 DOI: 10.1074/jbc.m110.144907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c(10) ring and the other stator subunits at the F(0)-F(0) dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356-12358). In the ATP synthase dimer, the two peripheral stalks are located near the F(1)-F(1) interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.
Collapse
Affiliation(s)
- Sergio J Couoh-Cardel
- Department of Biology, Chemistry Faculty, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
26
|
Nguyen TT, Ogbi M, Yu Q, Fishman JB, Thomas W, Harvey BJ, Fulton D, Johnson JA. Modulation of the protein kinase Cdelta interaction with the "d" subunit of F1F0-ATP synthase in neonatal cardiac myocytes: development of cell-permeable, mitochondrially targeted inhibitor and facilitator peptides. J Biol Chem 2010; 285:22164-73. [PMID: 20460381 PMCID: PMC2903377 DOI: 10.1074/jbc.m109.077578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 05/10/2010] [Indexed: 11/06/2022] Open
Abstract
The F(1)F(0)-ATP synthase provides approximately 90% of cardiac ATP, yet little is known regarding its regulation under normal or pathological conditions. Previously, we demonstrated that protein kinase Cdelta (PKCdelta) inhibits F(1)F(0) activity via an interaction with the "d" subunit of F(1)F(0)-ATP synthase (dF(1)F(0)) in neonatal cardiac myocytes (NCMs) (Nguyen, T., Ogbi, M., and Johnson, J. A. (2008) J. Biol. Chem. 283, 29831-29840). We have now identified a dF(1)F(0)-derived peptide (NH(2)-(2)AGRKLALKTIDWVSF(16)-COOH) that inhibits PKCdelta binding to dF(1)F(0) in overlay assays. We have also identified a second dF(1)F(0)-derived peptide (NH(2)-(111)RVREYEKQLEKIKNMI(126)-COOH) that facilitates PKCdelta binding to dF(1)F(0). Incubation of NCMs with versions of these peptides containing HIV-Tat protein transduction and mammalian mitochondrial targeting sequences resulted in their delivery into mitochondria. Preincubation of NCMs, with 10 nm extracellular concentrations of the mitochondrially targeted PKCdelta-dF(1)F(0) interaction inhibitor, decreased 100 nm 4beta-phorbol 12-myristate 13-acetate (4beta-PMA)-induced co-immunoprecipitation of PKCdelta with dF(1)F(0) by 50 +/- 15% and abolished the 30 nm 4beta-PMA-induced inhibition of F(1)F(0)-ATPase activity. A scrambled sequence (inactive) peptide, which contained HIV-Tat and mitochondrial targeting sequences, was without effect. In contrast, the cell-permeable, mitochondrially targeted PKCdelta-dF(1)F(0) facilitator peptide by itself induced the PKCdelta-dF(1)F(0) co-immunoprecipitation and inhibited F(1)F(0)-ATPase activity. In in vitro PKC add-back experiments, the PKCdelta-F(1)F(0) inhibitor blocked PKCdelta-mediated inhibition of F(1)F(0)-ATPase activity, whereas the facilitator induced inhibition. We have developed the first cell-permeable, mitochondrially targeted modulators of the PKCdelta-dF(1)F(0) interaction in NCMs. These novel peptides will improve our understanding of cardiac F(1)F(0) regulation and may have potential as therapeutics to attenuate cardiac injury.
Collapse
Affiliation(s)
- Tiffany T. Nguyen
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| | - Mourad Ogbi
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| | - Qilin Yu
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| | | | - Warren Thomas
- the Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J. Harvey
- the Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - David Fulton
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
- The Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2300
| | - John A. Johnson
- From the Department of Pharmacology and Toxicology, School of Medicine, and Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, and
| |
Collapse
|
27
|
Attenuation of the hypoxia-induced protein kinase Cdelta interaction with the 'd' subunit of F1Fo-ATP synthase in neonatal cardiac myocytes: implications for energy preservation and survival. Biochem J 2010; 429:335-45. [PMID: 20578995 DOI: 10.1042/bj20091927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The F1Fo-ATP synthase provides most of the heart's energy, yet events that alter its function during injury are poorly understood. Recently, we described a potent inhibitory effect on F1Fo-ATP synthase function mediated by the interaction of PKCdelta (protein kinase Cdelta) with dF1Fo ('d' subunit of the F1Fo-ATPase/ATP synthase). We have now developed novel peptide modulators which facilitate or inhibit the PKCdelta-dF1Fo interaction. These peptides include HIV-Tat (transactivator of transcription) protein transduction and mammalian mitochondrial-targeting sequences. Pre-incubation of NCMs (neonatal cardiac myocyte) with 10 nM extracellular concentrations of the mitochondrial-targeted PKCdelta-dF1Fo interaction inhibitor decreased Hx (hypoxia)-induced co-IP (co-immunoprecipitation) of PKCdelta with dF1Fo by 40+/-9%, abolished Hx-induced inhibition of F1Fo-ATPase activity, attenuated Hx-induced losses in F1Fo-derived ATP and protected against Hx- and reperfusion-induced cell death. A scrambled-sequence (inactive) peptide, which contained HIV-Tat and mitochondrial-targeting sequences, was without effect. In contrast, the cell-permeant mitochondrial-targeted PKCdelta-dF1Fo facilitator peptide, which we have shown previously to induce the PKCdelta-dF1Fo co-IP, was found to inhibit F1Fo-ATPase activity to an extent similar to that caused by Hx alone. The PKCdelta-dF1Fo facilitator peptide also decreased ATP levels by 72+/-18% under hypoxic conditions in the presence of glycolytic inhibition. None of the PKCdelta-dF1Fo modulatory peptides altered the inner mitochondrial membrane potential. Our studies provide the first evidence that disruption of the PKCdelta-dF1Fo interaction using cell-permeant mitochondrial-targeted peptides attenuates cardiac injury resulting from prolonged oxygen deprivation.
Collapse
|
28
|
Stelzer AC, Frazee RW, Van Huis C, Cleary J, Opipari AW, Glick GD, Al-Hashimi HM. NMR studies of an immunomodulatory benzodiazepine binding to its molecular target on the mitochondrial F1F0-ATPase. Biopolymers 2010; 93:85-92. [DOI: 10.1002/bip.21306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
De-novo modeling and ESR validation of a cyanobacterial FoF1–ATP synthase subunit bb′ left-handed coiled coil. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:183-90. [DOI: 10.1016/j.bbabio.2008.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/12/2008] [Accepted: 12/15/2008] [Indexed: 11/19/2022]
|
30
|
Nguyen T, Ogbi M, Johnson JA. Delta protein kinase C interacts with the d subunit of the F1F0 ATPase in neonatal cardiac myocytes exposed to hypoxia or phorbol ester. Implications for F1F0 ATPase regulation. J Biol Chem 2008; 283:29831-40. [PMID: 18725417 PMCID: PMC2573058 DOI: 10.1074/jbc.m801642200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/06/2008] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial protein kinase C isozymes have been reported to mediate both cardiac ischemic preconditioning and ischemia/reperfusion injury. In addition, cardiac preconditioning improves the recovery of ATP levels after ischemia/reperfusion injury. We have, therefore, evaluated protein kinase C modulation of the F(1)F(0) ATPase in neonatal cardiac myocytes. Exposure of cells to 3 or 100 nM 4beta-phorbol 12-myristate-13-acetate induced co-immunoprecipitation of delta protein kinase C (but not alpha, epsilon, or zeta protein kinase C) with the d subunit of the F(1)F(0) ATPase. This co-immunoprecipitation correlated with 40+/-3% and 72+/-9% inhibitions of oligomycin-sensitive F(1)F(0) ATPase activity, respectively. We observed prominent expression of delta protein kinase C in cardiac myocyte mitochondria, which was enhanced following a 4-h hypoxia exposure. In contrast, hypoxia decreased mitochondrial zetaPKC levels by 85+/-1%. Following 4 h of hypoxia, F(1)F(0) ATPase activity was inhibited by 75+/-9% and delta protein kinase C co-immunoprecipitated with the d subunit of F(1)F(0) ATPase. In vitro incubation of protein kinase C with F(1)F(0) ATPase enhanced F(1)F(0) activity in the absence of protein kinase C activators and inhibited it in the presence of activators. Recombinant delta protein kinase C also inhibited F(1)F(0) ATPase activity. Protein kinase C overlay assays revealed delta protein kinase C binding to the d subunit of F(1)F(0) ATPase, which was modulated by diacylglycerol, phosphatidylserine, and cardiolipin. Our results suggest a novel regulation of the F(1)F(0) ATPase by the delta protein kinase C isozyme.
Collapse
Affiliation(s)
- Tiffany Nguyen
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912-2300, USA
| | | | | |
Collapse
|
31
|
Bueler SA, Rubinstein JL. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae. Biochemistry 2008; 47:11804-10. [PMID: 18937496 DOI: 10.1021/bi801665x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP synthase from Saccharomyces cerevisiae is an approximately 600 kDa membrane protein complex. The enzyme couples the proton motive force across the mitochondrial inner membrane to the synthesis of ATP from ADP and inorganic phosphate. The peripheral stalk subcomplex acts as a stator, preventing the rotation of the soluble F 1 region relative to the membrane-bound F O region during ATP synthesis. Component subunits of the peripheral stalk are Atp5p (OSCP), Atp4p (subunit b), Atp7p (subunit d), and Atp14p (subunit h). X-ray crystallography has defined the structure of a large fragment of the bovine peripheral stalk, including 75% of subunit d (residues 3-123). Docking the peripheral stalk structure into a cryo-EM map of intact yeast ATP synthase showed that residue 123 of subunit d lies close to the bottom edge of F 1. The 37 missing C-terminal residues are predicted to either fold back toward the apex of F 1 or extend toward the membrane. To locate the C terminus of subunit d within the peripheral stalk of ATP synthase from S. cerevisiae, a biotinylation signal was fused to the protein. The biotin acceptor domain became biotinylated in vivo and was subsequently labeled with avidin in vitro. Electron microscopy of the avidin-labeled complex showed the label tethered close to the membrane surface. We propose that the C-terminal region of subunit d spans the gap from F 1 to F O, reinforcing this section of the peripheral stalk.
Collapse
Affiliation(s)
- Stephanie A Bueler
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute
| | | |
Collapse
|
32
|
Lau WC, Baker LA, Rubinstein JL. Cryo-EM Structure of the Yeast ATP Synthase. J Mol Biol 2008; 382:1256-64. [DOI: 10.1016/j.jmb.2008.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/28/2008] [Accepted: 08/07/2008] [Indexed: 11/17/2022]
|
33
|
Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. The rotary mechanism of the ATP synthase. Arch Biochem Biophys 2008; 476:43-50. [PMID: 18515057 DOI: 10.1016/j.abb.2008.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/06/2008] [Accepted: 05/13/2008] [Indexed: 11/29/2022]
Abstract
The F0F1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous F0 sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium.
Collapse
Affiliation(s)
- Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, P.O. Box 800736, Charlottesville, VA 22908-0736, USA.
| | | | | |
Collapse
|
34
|
Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev 2008; 129:304-12. [PMID: 18400259 DOI: 10.1016/j.mad.2008.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 02/09/2008] [Accepted: 02/15/2008] [Indexed: 01/15/2023]
Abstract
Aging is associated with progressive decline in energetic reserves compromising cardiac performance and tolerance to injury. Although deviations in mitochondrial functions have been documented in senescent heart, the molecular bases for the decline in energy metabolism are only partially understood. Here, high-throughput transcription profiles of genes coding for mitochondrial proteins in ventricles from adult (6-months) and aged (24-months) rats were compared using microarrays. Out of 614 genes encoding for mitochondrial proteins, 94 were differentially expressed with 95% downregulated in the aged. The majority of changes affected genes coding for proteins involved in oxidative phosphorylation (39), substrate metabolism (14) and tricarboxylic acid cycle (6). Compared to adult, gene expression changes in aged hearts translated into a reduced mitochondrial functional capacity, with decreased NADH-dehydrogenase and F(0)F(1) ATPase complex activities and capacity for oxygen-utilization and ATP synthesis. Expression of genes coding for transcription co-activator factors involved in the regulation of mitochondrial metabolism and biogenesis were downregulated in aged ventricles without reduction in mitochondrial density. Thus, aging induces a selective decline in activities of oxidative phosphorylation complexes I and V within a broader transcriptional downregulation of mitochondrial genes, providing a substrate for reduced energetic efficiency associated with senescence.
Collapse
|
35
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
36
|
Kramarova TV, Shabalina IG, Andersson U, Westerberg R, Carlberg I, Houstek J, Nedergaard J, Cannon B. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J 2007; 22:55-63. [PMID: 17666453 DOI: 10.1096/fj.07-8581com] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the significance of mitochondrial ATP synthase for mammalian metabolism, the regulation of the amount of ATP synthase in mammalian systems is not understood. As brown adipose tissue mitochondria contain very low amounts of ATP synthase, relative to respiratory chain components, they constitute a physiological system that allows for examination of the control of ATP synthase assembly. To examine the role of the expression of the P1-isoform of the c-Fo subunit in the biogenesis of ATP synthase, we made transgenic mice that express the P1-c subunit isoform under the promoter of the brown adipose tissue-specific protein UCP1. In the resulting UCP1p1 transgenic mice, total P1-c subunit mRNA levels were increased; mRNA levels of other F1Fo-ATPase subunits were unchanged. In isolated brown-fat mitochondria, protein levels of the total c-Fo subunit were increased. Remarkably, protein levels of ATP synthase subunits that are part of the F1-ATPase complex were also increased, as was the entire Complex V. Increased ATPase and ATP synthase activities demonstrated an increased functional activity of the F1Fo-ATPase. Thus, the levels of the c-Fo subunit P1-isoform are crucial for defining the final content of the ATP synthase in brown adipose tissue. The level of c-Fo subunit may be a determining factor for F1Fo-ATPase assembly in all higher eukaryotes.
Collapse
Affiliation(s)
- Tatiana V Kramarova
- The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Carbajo RJ, Kellas FA, Yang JC, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. How the N-terminal Domain of the OSCP Subunit of Bovine F1Fo-ATP Synthase Interacts with the N-terminal Region of an Alpha Subunit. J Mol Biol 2007; 368:310-8. [PMID: 17355883 DOI: 10.1016/j.jmb.2007.02.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/23/2022]
Abstract
The peripheral stalk of ATP synthase acts as a stator holding the alpha(3)beta(3) catalytic subcomplex and the membrane subunit a against the torque of the rotating central stalk and attached c ring. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha subunits of the F(1) subcomplex. Here, we present an NMR characterisation of the interaction between OSCP-NT and a peptide corresponding to residues 1-25 of the alpha-subunit of bovine F(1)-ATPase. The interaction site contains adjoining hydrophobic surfaces of helices 1 and 5 of OSCP-NT binding to hydrophobic side-chains of the alpha-peptide.
Collapse
|
38
|
Weber J. ATP synthase--the structure of the stator stalk. Trends Biochem Sci 2007; 32:53-6. [PMID: 17208001 PMCID: PMC2570231 DOI: 10.1016/j.tibs.2006.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/22/2006] [Accepted: 12/20/2006] [Indexed: 11/22/2022]
Abstract
ATP synthase synthesizes ATP from ADP and inorganic phosphate using a unique rotary mechanism whereby two subcomplexes move relative to each other, powered by a proton or sodium gradient. The non-rotating parts of the machinery are held together by the "stator stalk". The recent resolution of the structure of a major portion of the stator stalk of mitochondrial ATP synthase represents an important step towards a structural model for the ATP synthase holoenzyme.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
39
|
Senior AE, Muharemagić A, Wilke-Mounts S. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. Biochemistry 2006; 45:15893-902. [PMID: 17176112 PMCID: PMC2548287 DOI: 10.1021/bi0619730] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.
Collapse
Affiliation(s)
- Alan E Senior
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA. alan_senior@ urmc.rochester.edu
| | | | | |
Collapse
|
40
|
Domínguez-Ramírez L, Gómez-Puyou A, de Gómez-Puyou MT. A hinge of the endogeneous ATP synthase inhibitor protein: the link between inhibitory and anchoring domains. Proteins 2006; 65:999-1007. [PMID: 17019684 DOI: 10.1002/prot.21189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ATP synthase of bovine heart mitochondria possesses a regulatory subunit called the endogenous inhibitory protein (IF(1)). This subunit regulates the catalytic activity of the F(1) sector in the mitochondrial inner membrane. When DeltamuH(+) falls, IF(1) binds to the enzyme and inhibits ATP hydrolysis. On the other hand, the establishment of a DeltamuH(+) induces the release of the inhibitory action of IF(1), allowing ATP synthesis to proceed. IF(1) is also involved in the dimerization of soluble F(1). Dynamic domain analysis and normal mode analysis of the reported crystallographic structure of IF(1) revealed that it has an effective hinge formed by residues 46-52. Molecular dynamics data of a 27 residue fragment confirmed the existence of the hinge. The hinge may act as a regulatory region that links the inhibitory and anchoring domains of IF(1). The residues assigned to the hinge are conserved between mammals, but not in other species, such as yeasts. Likewise, unlike the heart inhibitor, the yeast protein does not have the residues that allow it to form stable dimers through coiled-coil interactions. Collectively, the data suggest that the hinge and the dimerization domain of the inhibitor protein from bovine heart are related to its ability to form stable dimers and to interact with other subunits of the ATP synthase.
Collapse
Affiliation(s)
- L Domínguez-Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México D.F., Mexico.
| | | | | |
Collapse
|
41
|
Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev 2006; 5:402-33. [PMID: 16831573 DOI: 10.1016/j.arr.2006.04.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
This review addresses the data that support the presence and contribution of decreased mitochondrial oxidative phosphorylation during aging to impaired cellular metabolism. Aging impairs substrate oxidation, decreases cellular energy production and increases the production of reactive intermediates that are toxic to the cell. First, the basic principles of mitochondrial oxidative physiology are briefly reviewed. Second, the focus on the relationship of altered mitochondrial respiration to the increased production of reactive oxygen species that are employed by the "rate of living" and the "uncoupling to survive" theories of aging are discussed. Third, the impairment of function of respiration in aging is reviewed using an organ-based approach in mammalian systems. Fourth, the current state of knowledge regarding aging-induced alterations in the composition and function of key mitochondrial constituents is addressed. Model organisms, including C. elegans and D. melanogaster are included where pertinent. Fifth, these defects are related to knowledge regarding the production of reactive oxygen species from specific sites of the electron transport chain.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
42
|
Ohira M, Smardon AM, Charsky CMH, Liu J, Tarsio M, Kane PM. The E and G Subunits of the Yeast V-ATPase Interact Tightly and Are Both Present at More Than One Copy per V1 Complex. J Biol Chem 2006; 281:22752-60. [PMID: 16774922 DOI: 10.1074/jbc.m601441200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E and G subunits of the yeast V-ATPase are believed to be part of the peripheral or stator stalk(s) responsible for physically and functionally linking the peripheral V1 sector, responsible for ATP hydrolysis, to the membrane V0 sector, containing the proton pore. The E and G subunits interact tightly and specifically, both on a far Western blot of yeast vacuolar proteins and in the yeast two-hybrid assay. Amino acids 13-79 of the E subunit are critical for the E-G two-hybrid interaction. Different tagged versions of the G subunit were expressed in a diploid cell, and affinity purification of cytosolic V1 sectors via a FLAG-tagged G subunit resulted in copurification of a Myc-tagged G subunit, implying more than one G subunit was present in each V1 complex. Similarly, hemagglutinin-tagged E subunit was able to affinity-purify V1 sectors containing an untagged version of the E subunit from heterozygous diploid cells, suggesting that more than one E subunit is present. Overexpression of the subunit G results in a destabilization of subunit E similar to that seen in the complete absence of subunit G (Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H., and Klionsky, D. J. (1997) J. Biol. Chem. 272, 26787-26793). These results are consistent with recent models showing at least two peripheral stalks connecting the V1 and V0 sectors of the V-ATPase and would allow both stalks to be based on an EG dimer.
Collapse
Affiliation(s)
- Masashi Ohira
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | |
Collapse
|
43
|
Müller V, Lemker T, Lingl A, Weidner C, Coskun U, Grüber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol 2006; 10:167-80. [PMID: 16645313 DOI: 10.1159/000091563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Archaea are a heterogeneous group of microorganisms that often thrive under harsh environmental conditions such as high temperatures, extreme pHs and high salinity. As other living cells, they use chemiosmotic mechanisms along with substrate level phosphorylation to conserve energy in form of ATP. Because some archaea are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent first energy-conserving mechanisms. A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A1A0 ATP synthases. They are composed of two domains that function as a pair of rotary motors connected by a central and peripheral stalk(s). The structure of the chemically-driven motor (A1) was solved by small-angle X-ray scattering in solution, and the structure of the first A1A0 ATP synthases was obtained recently by single particle analyses. These studies revealed novel structural features such as a second peripheral stalk and a collar-like structure. In addition, the membrane-embedded electrically-driven motor (A0) is very different in archaea with sometimes novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C.
Collapse
Affiliation(s)
- V Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Campus Riedberg, Frankfurt a. Main, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Johnson KM, Cleary J, Fierke CA, Opipari AW, Glick GD. Mechanistic basis for therapeutic targeting of the mitochondrial F1F0-ATPase. ACS Chem Biol 2006; 1:304-8. [PMID: 17163759 DOI: 10.1021/cb600143j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Altered cellular bioenergetics are implicated in many disease processes, and modulating the F 1 F o -ATPase, the enzyme responsible for producing the majority of ATP in eukaryotic cells, has been proposed to have therapeutic utility. Bz-423 is a 1,4-benzodiazepine that binds to the oligomycin sensitivity-conferring protein subunit of the mitochondrial F 1 F o -ATPase and inhibits the enzyme. In response to Bz-423, cells moderately decrease ATP synthesis and significantly increase superoxide, resulting in redox-regulated apoptosis. Administering Bz-423 to autoimmune mice leads to apoptosis of pathogenic cells and potent attenuation of disease progression. To determine if a mechanism of action distinguishes Bz-423 from toxic F 1 F o -ATPase inhibitors like oligomycin, we studied how both compounds inhibit the enzyme. Oligomycin is a high-affinity mixed inhibitor, displaying time-dependent inhibition, resulting in severe depletion of ATP. In contrast, Bz-423 is an allosteric inhibitor with lower affinity that rapidly dissociates from the enzyme. Our data support a model in which the interplay of these features underlies the favorable properties of Bz-423. They also represent key criteria for the development of therapeutic F 1 F o -ATPase inhibitors, which should have utility across a range of areas.
Collapse
|
45
|
Dickson VK, Silvester JA, Fearnley IM, Leslie AGW, Walker JE. On the structure of the stator of the mitochondrial ATP synthase. EMBO J 2006; 25:2911-8. [PMID: 16791136 PMCID: PMC1500866 DOI: 10.1038/sj.emboj.7601177] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 11/08/2022] Open
Abstract
The structure of most of the peripheral stalk, or stator, of the F-ATPase from bovine mitochondria, determined at 2.8 A resolution, contains residues 79-183, 3-123 and 5-70 of subunits b, d and F6, respectively. It consists of a continuous curved alpha-helix about 160 A long in the single b-subunit, augmented by the predominantly alpha-helical d- and F6-subunits. The structure occupies most of the peripheral stalk in a low-resolution structure of the F-ATPase. The long helix in subunit b extends from near to the top of the F1 domain to the surface of the membrane domain, and it probably continues unbroken across the membrane. Its uppermost region interacts with the oligomycin sensitivity conferral protein, bound to the N-terminal region of one alpha-subunit in the F1 domain. Various features suggest that the peripheral stalk is probably rigid rather than resembling a flexible rope. It remains unclear whether the transient storage of energy required by the rotary mechanism takes place in the central stalk or in the peripheral stalk or in both domains.
Collapse
Affiliation(s)
| | | | - Ian M Fearnley
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 248011; Fax: +44 1223 213556; E-mail:
| | - John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
- Dunn Human Nutrition Unit, Medical Research Council, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK. Tel.: +44 1223 252701; Fax: +44 1223 252705; E-mail:
| |
Collapse
|
46
|
Walker JE, Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:286-96. [PMID: 16697972 DOI: 10.1016/j.bbabio.2006.01.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/04/2006] [Indexed: 12/23/2022]
Abstract
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete.
Collapse
Affiliation(s)
- John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, The Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | |
Collapse
|
47
|
Weber J. ATP synthase: subunit-subunit interactions in the stator stalk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1162-70. [PMID: 16730323 PMCID: PMC1785291 DOI: 10.1016/j.bbabio.2006.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/20/2006] [Accepted: 04/05/2006] [Indexed: 11/20/2022]
Abstract
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral "stator stalk", which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2delta; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit delta (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|