1
|
Anker S, Hinderhofer K, Baur J, Haupt C, Röcken C, Beimler J, Zeier M, Weiler M, Wühl E, Kimmich C, Schönland S, Hegenbart U. Lysozyme amyloidosis-a report on a large German cohort and the characterisation of a novel amyloidogenic lysozyme gene variant. Amyloid 2022; 29:245-254. [PMID: 35533055 DOI: 10.1080/13506129.2022.2072198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysozyme-derived (ALys) amyloidosis is a rare type of hereditary amyloidosis. Nine amyloidogenic variants and ∼30 affected families have been described worldwide. The most common manifestations are renal dysfunction, gastrointestinal tract symptoms, and sicca syndrome. We report on the clinical course of ten patients from six families representing one of the largest cohorts published so far. Seven patients carried the W64R variant showing the whole spectrum of ALys-associated symptoms. Two patients-a mother-son pair-carried a novel lysozyme variant, which was associated with nephropathy and peripheral polyneuropathy. In accordance with previous findings, the phenotype resembled within these families but did not correlate with the genotype. To gain insights into the effect of the variants at the molecular level, we analysed the structure of lysozyme and performed comparative computational predictions on aggregation propensity and conformational stability. Our study supports that decreased conformational stability is a key factor for lysozyme variants to be prone to aggregation. In summary, ALys amyloidosis is a very rare, but still heterogeneous disease that can manifest at an early age. Our newly identified lysozyme variant is associated with nephropathy and peripheral polyneuropathy. Further research is needed to understand its pathogenesis and to enable the development of new treatments.
Collapse
Affiliation(s)
- Sophie Anker
- Department of Internal Medicine V (Haematology, Oncology and Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,Department of Internal Medicine I (Endocrinology and Clinical Chemistry), University Hospital Heidelberg, Heidelberg, Germany.,Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Katrin Hinderhofer
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jörg Beimler
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Weiler
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elke Wühl
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Paediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Kimmich
- Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany.,Department of Internal Medicine (Oncology and Hematology), University Clinic Oldenburg, Oldenburg, Germany
| | - Stefan Schönland
- Department of Internal Medicine V (Haematology, Oncology and Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V (Haematology, Oncology and Rheumatology), University Hospital Heidelberg, Heidelberg, Germany.,Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Jesus CSH, Almeida ZL, Vaz DC, Faria TQ, Brito RMM. A New Folding Kinetic Mechanism for Human Transthyretin and the Influence of the Amyloidogenic V30M Mutation. Int J Mol Sci 2016; 17:E1428. [PMID: 27589730 PMCID: PMC5037707 DOI: 10.3390/ijms17091428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/04/2023] Open
Abstract
Protein aggregation into insoluble amyloid fibrils is the hallmark of several neurodegenerative diseases, chief among them Alzheimer's and Parkinson's. Although caused by different proteins, these pathologies share some basic molecular mechanisms with familial amyloidotic polyneuropathy (FAP), a rare hereditary neuropathy caused by amyloid formation and deposition by transthyretin (TTR) in the peripheral and autonomic nervous systems. Among the amyloidogenic TTR mutations known, V30M-TTR is the most common in FAP. TTR amyloidogenesis (ATTR) is triggered by tetramer dissociation, followed by partial unfolding and aggregation of the low conformational stability monomers formed. Thus, tetramer dissociation kinetics, monomer conformational stability and competition between refolding and aggregation pathways do play a critical role in ATTR. Here, we propose a new model to analyze the refolding kinetics of WT-TTR and V30M-TTR, showing that at pH and protein concentrations close to physiological, a two-step mechanism with a unimolecular first step followed by a second-order second step adjusts well to the experimental data. Interestingly, although sharing the same kinetic mechanism, V30M-TTR refolds at a much slower rate than WT-TTR, a feature that may favor the formation of transient species leading to kinetic partition into amyloidogenic pathways and, thus, significantly increasing the probability of amyloid formation in vivo.
Collapse
Affiliation(s)
- Catarina S H Jesus
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Health Research Unit, School of Health Sciences, Leiria 2411-901, Portugal.
| | - Tiago Q Faria
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra 3004-535, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
3
|
De Genst E, Chan PH, Pardon E, Hsu STD, Kumita JR, Christodoulou J, Menzer L, Chirgadze DY, Robinson CV, Muyldermans S, Matagne A, Wyns L, Dobson CM, Dumoulin M. A nanobody binding to non-amyloidogenic regions of the protein human lysozyme enhances partial unfolding but inhibits amyloid fibril formation. J Phys Chem B 2013; 117:13245-13258. [PMID: 23919586 PMCID: PMC4612432 DOI: 10.1021/jp403425z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the effects of the interaction of two camelid antibody fragments, generally called nanobodies, namely cAb-HuL5 and a stabilized and more aggregation-resistant variant cAb-HuL5G obtained by protein engineering, on the properties of two amyloidogenic variants of human lysozyme, I56T and D67H, whose deposition in vital organs including the liver, kidney, and spleen is associated with a familial non-neuropathic systemic amyloidosis. Both NMR spectroscopy and X-ray crystallographic studies reveal that cAb-HuL5 binds to the α-domain, one of the two lobes of the native lysozyme structure. The binding of cAb-HuL5/cAb-HuL5G strongly inhibits fibril formation by the amyloidogenic variants; it does not, however, suppress the locally transient cooperative unfolding transitions, characteristic of these variants, in which the β-domain and the C-helix unfold and which represents key early intermediate species in the formation of amyloid fibrils. Therefore, unlike two other nanobodies previously described, cAb-HuL5/cAb-HuL5G does not inhibit fibril formation via the restoration of the global cooperativity of the native structure of the lysozyme variants to that characteristic of the wild-type protein. Instead, it inhibits a subsequent step in the assembly of the fibrils, involving the unfolding and structural reorganization of the α-domain. These results show that nanobodies can protect against the formation of pathogenic aggregates at different stages in the structural transition of a protein from the soluble native state into amyloid fibrils, illustrating their value as structural probes to study the molecular mechanisms of amyloid fibril formation. Combined with their amenability to protein engineering techniques to improve their stability and solubility, these findings support the suggestion that nanobodies can potentially be developed as therapeutics to combat protein misfolding diseases.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Pak-Ho Chan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
| | - Els Pardon
- Department of Structural Biology, Vlaams Interuniversitair Instituut voor Biotechnologie VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Laboratory of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Shang-Te D. Hsu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
- Institute of Biological Chemistry, Academia Sinica, No 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Gower Street, London WC1E 6BT, U.K
| | - Linda Menzer
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liege, B-4000 Liege (Sart Tilman), Belgium
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Serge Muyldermans
- Department of Structural Biology, Vlaams Interuniversitair Instituut voor Biotechnologie VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liege, B-4000 Liege (Sart Tilman), Belgium
| | - Lode Wyns
- Department of Structural Biology, Vlaams Interuniversitair Instituut voor Biotechnologie VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Laboratory of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, Institute of Chemistry, University of Liege, B-4000 Liege (Sart Tilman), Belgium
| |
Collapse
|
4
|
Gavrin LK, Denny RA, Saiah E. Small Molecules That Target Protein Misfolding. J Med Chem 2012; 55:10823-43. [DOI: 10.1021/jm301182j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lori Krim Gavrin
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| | - Rajiah Aldrin Denny
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| | - Eddine Saiah
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| |
Collapse
|
5
|
Kumita JR, Helmfors L, Williams J, Luheshi LM, Menzer L, Dumoulin M, Lomas DA, Crowther DC, Dobson CM, Brorsson AC. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster. FASEB J 2011; 26:192-202. [PMID: 21965601 PMCID: PMC3250245 DOI: 10.1096/fj.11-185983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.
Collapse
Affiliation(s)
- Janet R Kumita
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Whyteside G, Alcocer MJC, Kumita JR, Dobson CM, Lazarou M, Pleass RJ, Archer DB. Native-state stability determines the extent of degradation relative to secretion of protein variants from Pichia pastoris. PLoS One 2011; 6:e22692. [PMID: 21818368 PMCID: PMC3144928 DOI: 10.1371/journal.pone.0022692] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022] Open
Abstract
We have investigated the relationship between the stability and secreted yield of a series of mutational variants of human lysozyme (HuL) in Pichia pastoris. We show that genes directly involved in the unfolded protein response (UPR), ER-associated degradation (ERAD) and ER-phagy are transcriptionally up-regulated more quickly and to higher levels in response to expression of more highly-destabilised HuL variants and those variants are secreted to lower yield. We also show that the less stable variants are retained within the cell and may also be targeted for degradation. To explore the relationship between stability and secretion further, two different single-chain-variable-fragment (scFv) antibodies were also expressed in P. pastoris, but only one of the scFvs gave rise to secreted protein. The non-secreted scFv was detected within the cell and the UPR indicators were pronounced, as they were for the poorly-secreted HuL variants. The non-secreted scFv was modified by changing either the framework regions or the linker to improve the predicted stability of the scFv and secretion was then achieved and the levels of UPR indicators were lowered Our data support the hypothesis that less stable proteins are targeted for degradation over secretion and that this accounts for the decrease in the yields observed. We discuss the secretion of proteins in relation to lysozyme amyloidosis, in particular, and optimised protein secretion, in general.
Collapse
Affiliation(s)
- Graham Whyteside
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Marcos J. C. Alcocer
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Maria Lazarou
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Richard J. Pleass
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David B. Archer
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
7
|
Mechanism of Gemini Disulfide Detergent Mediated Oxidative Refolding of Lysozyme in a New Artificial Chaperone System. Protein J 2010; 29:457-65. [DOI: 10.1007/s10930-010-9279-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Lu D, Liu Z. Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation. J Phys Chem B 2009; 112:15127-33. [PMID: 18959394 DOI: 10.1021/jp804649g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One challenge in protein refolding is to dissociate the non-native disulfide bonds and promote the formation of native ones. In this study, we present a coarse-grained off-lattice model protein containing disulfide bonds and simulate disulfide bond shuffling during the folding of this model protein. Introduction of disulfide bonds in the model protein led to enhanced conformational stability but reduced foldability in comparison to counterpart protein without disulfide bonds. The folding trajectory suggested that the model protein retained the two-step folding mechanism in terms of hydrophobic collapse and structural rearrangement. The disulfide bonds located in the hydrophobic core were formed before the collapsing step, while the bonds located on the protein surface were formed during the rearrangement step. While a reductive environment at the initial stage of folding favored the formation of native disulfide bonds in the hydrophobic core, an oxidative environment at a later stage of folding was required for the formation of disulfide bonds at protein surface. Appling a dynamic redox environment, that is, one that changes from reductive to oxidative, intensified disulfide bond shuffling and thus resulted in improved recovery of the native conformation. The above-mentioned simulation was experimentally validated by refolding hen-egg lysozyme at different urea concentrations and oxidized glutathione/reduced glutathione (GSSG/GSH) ratios, and an optimal redox environment, in terms of the GSSG to GSH ratio, was identified. The implementation of a dynamic redox environment by tuning the GSSG/GSH ratio further improved the refolding yield of lysozyme, as predicted by molecular simulation.
Collapse
Affiliation(s)
- Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 10084, China.
| | | |
Collapse
|
9
|
Ramadan D, Rancy PC, Nagarkar RP, Schneider JP, Thorpe C. Arsenic(III) species inhibit oxidative protein folding in vitro. Biochemistry 2009; 48:424-32. [PMID: 19102631 PMCID: PMC2898741 DOI: 10.1021/bi801988x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The success of arsenic trioxide in the treatment of acute promyelocytic leukemia has renewed interest in the cellular targets of As(III) species. The effects of arsenicals are usually attributed to their ability to bind vicinal thiols or thiol selenols in prefolded proteins thereby compromising cellular function. The present studies suggest an additional, more pleiotropic, contribution to the biological effects of arsenicals. As(III) species, by avid coordination to the cysteine residues of unfolded reduced proteins, can compromise protein folding pathways. Three representative As(III) compounds (arsenite, monomethylarsenous acid (MMA), and an aryl arsenical (PSAO)) have been tested with three reduced secreted proteins (lysozyme, ribonuclease A, and riboflavin binding protein (RfBP)). Using absorbance, fluorescence, and pre-steady-state methods, we show that arsenicals bind tightly to low micromolar concentrations of these unfolded proteins with stoichiometries of 1 As(III) per 2 thiols for MMA and PSAO and 1 As(III) for every 3 thiols with arsenite. Arsenicals, at 10 microM, strongly disrupt the oxidative folding of RfBP even in the presence of 5 mM reduced glutathione, a competing ligand for As(III) species. MMA catalyzes the formation of amyloid-like monodisperse fibrils using reduced RNase. These in vitro data show that As(III) species can slow, or even derail, protein folding pathways. In vivo, the propensity of As(III) species to bind to unfolded cysteine-containing proteins may contribute to oxidative and protein folding stresses that are prominent features of the cellular response to arsenic exposure.
Collapse
Affiliation(s)
- Danny Ramadan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Pumtiwitt C. Rancy
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Radhika P. Nagarkar
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Joel P. Schneider
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Colin Thorpe
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
10
|
Dumoulin M, Kumita JR, Dobson CM. Normal and aberrant biological self-assembly: Insights from studies of human lysozyme and its amyloidogenic variants. Acc Chem Res 2006; 39:603-10. [PMID: 16981676 DOI: 10.1021/ar050070g] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies of lysozyme have played a major role over several decades in defining the general principles underlying protein structure, folding, and stability. Following the discovery some 10 years ago that two mutational variants of lysozyme are associated with systemic amyloidosis, these studies have been extended to investigate the mechanism of amyloid fibril formation. This Account describes our present knowledge of lysozyme folding and misfolding, and how the latter can give rise to amyloid disease. It also discusses the significance of these studies for our general understanding of normal and aberrant protein folding in the context of human health and disease.
Collapse
Affiliation(s)
- Mireille Dumoulin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|