1
|
Kazantseva OA, Piligrimova EG, Shadrin AM. vB_BcM_Sam46 and vB_BcM_Sam112, members of a new bacteriophage genus with unusual small terminase structure. Sci Rep 2021; 11:12173. [PMID: 34108535 PMCID: PMC8190038 DOI: 10.1038/s41598-021-91289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
One of the serious public health concerns is food contaminated with pathogens and their vital activity products such as toxins. Bacillus cereus group of bacteria includes well-known pathogenic species such as B. anthracis, B. cereus sensu stricto (ss), B. cytotoxicus and B. thuringiensis. In this report, we describe the Bacillus phages vB_BcM_Sam46 and vB_BcM_Sam112 infecting species of this group. Electron microscopic analyses indicated that phages Sam46 and Sam112 have the myovirus morphotype. The genomes of Sam46 and Sam112 comprise double-stranded DNA of 45,419 bp and 45,037 bp in length, respectively, and have the same GC-content. The genome identity of Sam46 and Sam112 is 96.0%, indicating that they belong to the same phage species. According to the phylogenetic analysis, these phages form a distinct clade and may be members of a new phage genus, for which we propose the name 'Samaravirus'. In addition, an interesting feature of the Sam46 and Sam112 phages is the unusual structure of their small terminase subunit containing N-terminal FtsK_gamma domain.
Collapse
Affiliation(s)
- Olesya A Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| | - Emma G Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Andrey M Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| |
Collapse
|
2
|
Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. CAMERS‐B: CRISPR/Cpf1 assisted multiple‐genes editing and regulation system for
Bacillus subtilis. Biotechnol Bioeng 2020; 117:1817-1825. [DOI: 10.1002/bit.27322] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| |
Collapse
|
3
|
Serrano E, Ramos C, Ayora S, Alonso JC. Viral SPP1 DNA is infectious in naturally competent Bacillus subtilis cells: inter- and intramolecular recombination pathways. Environ Microbiol 2020; 22:714-725. [PMID: 31876108 DOI: 10.1111/1462-2920.14908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/09/2023]
Abstract
A proteolyzed bacteriophage (phage) might release its DNA into the environment. Here, we define the recombination functions required to resurrect an infective lytic phage from inactive environmental viral DNA in naturally competent Bacillus subtilis cells. Using phage SPP1 DNA, a model that accounts for the obtained data is proposed (i) the DNA uptake apparatus takes up environmental SPP1 DNA, fragments it, and incorporates into the cytosol different linear single-stranded (ss) DNA molecules shorter than genome-length; (ii) the SsbA-DprA mediator loads RecA onto any fragmented linear SPP1 ssDNA, but negative modulators (RecX and RecU) promote a net RecA disassembly from these ssDNAs not homologous to the host genome; (iii) single strand annealing (SSA) proteins, DprA and RecO, anneal the SsbA- or SsbB-coated complementary strands, yielding tailed SPP1 duplex intermediates; (iv) RecA polymerized on these tailed intermediates invades a homologous region in another incomplete molecule, and in concert with RecD2 helicase, reconstitutes a complete linear phage genome with redundant regions at the ends of the molecule; and (v) DprA, RecO or viral G35P SSA, may catalyze the annealing of these terminally redundant regions, alone or with the help of an exonuclease, to produce a circular unit-length duplex viral genome ready to initiate replication.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| |
Collapse
|
4
|
Caldwell BJ, Bell CE. Structure and mechanism of the Red recombination system of bacteriophage λ. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:33-46. [PMID: 30904699 DOI: 10.1016/j.pbiomolbio.2019.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Abstract
While much of this volume focuses on mammalian DNA repair systems that are directly involved in genome stability and cancer, it is important to still be mindful of model systems from prokaryotes. Herein we review the Red recombination system of bacteriophage λ, which consists of an exonuclease for resecting dsDNA ends, and a single-strand annealing protein (SSAP) for binding the resulting 3'-overhang and annealing it to a complementary strand. The genetics and biochemistry of Red have been studied for over 50 years, in work that has laid much of the foundation for understanding DNA recombination in higher eukaryotes. In fact, the Red exonuclease (λ exo) is homologous to Dna2, a nuclease involved in DNA end-resection in eukaryotes, and the Red annealing protein (Redβ) is homologous to Rad52, the primary SSAP in eukaryotes. While eukaryotic recombination involves an elaborate network of proteins that is still being unraveled, the phage systems are comparatively simple and streamlined, yet still encompass the fundamental features of recombination, namely DNA end-resection, homologous pairing (annealing), and a coupling between them. Moreover, the Red system has been exploited in powerful methods for bacterial genome engineering that are important for functional genomics and systems biology. However, several mechanistic aspects of Red, particularly the action of the annealing protein, remain poorly understood. This review will focus on the proteins of the Red recombination system, with particular attention to structural and mechanistic aspects, and how the lessons learned can be applied to eukaryotic systems.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA; Department of Chemistry and Biochemistry, 484 West 12th Avenue, 1060 Carmack Road, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
6
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
7
|
Seco EM, Zinder JC, Manhart CM, Lo Piano A, McHenry CS, Ayora S. Bacteriophage SPP1 DNA replication strategies promote viral and disable host replication in vitro. Nucleic Acids Res 2012; 41:1711-21. [PMID: 23268446 PMCID: PMC3561973 DOI: 10.1093/nar/gks1290] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complex viruses that encode their own initiation proteins and subvert the host’s elongation apparatus have provided valuable insights into DNA replication. Using purified bacteriophage SPP1 and Bacillus subtilis proteins, we have reconstituted a rolling circle replication system that recapitulates genetically defined protein requirements. Eleven proteins are required: phage-encoded helicase (G40P), helicase loader (G39P), origin binding protein (G38P) and G36P single-stranded DNA-binding protein (SSB); and host-encoded PolC and DnaE polymerases, processivity factor (β2), clamp loader (τ-δ-δ′) and primase (DnaG). This study revealed a new role for the SPP1 origin binding protein. In the presence of SSB, it is required for initiation on replication forks that lack origin sequences, mimicking the activity of the PriA replication restart protein in bacteria. The SPP1 replisome is supported by both host and viral SSBs, but phage SSB is unable to support B. subtilis replication, likely owing to its inability to stimulate the PolC holoenzyme in the B. subtilis context. Moreover, phage SSB inhibits host replication, defining a new mechanism by which bacterial replication could be regulated by a viral factor.
Collapse
Affiliation(s)
- Elena M Seco
- Departamento de Biotecnología Microbiana, Centro Nacional, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Characterization of the Holliday junction resolving enzyme encoded by the Bacillus subtilis bacteriophage SPP1. PLoS One 2012; 7:e48440. [PMID: 23119018 PMCID: PMC3485210 DOI: 10.1371/journal.pone.0048440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022] Open
Abstract
Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL), and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR). Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from PE2 and PE3 promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the PE2 operon (genes 44 and 45) showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa). G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication.
Collapse
|
9
|
Abstract
The homologous recombination systems of linear double-stranded (ds)DNA bacteriophages are required for the generation of genetic diversity, the repair of dsDNA breaks, and the formation of concatemeric chromosomes, the immediate precursor to packaging. These systems have been studied for decades as a means to understand the basic principles of homologous recombination. From the beginning, it was recognized that these recombinases are linked intimately to the mechanisms of phage DNA replication. In the last decade, however, investigators have exploited these recombination systems as tools for genetic engineering of bacterial chromosomes, bacterial artificial chromosomes, and plasmids. This recombinational engineering technology has been termed "recombineering" and offers a new paradigm for the genetic manipulation of bacterial chromosomes, which is far more efficient than the classical use of nonreplicating integration vectors for gene replacement. The phage λ Red recombination system, in particular, has been used to construct gene replacements, deletions, insertions, inversions, duplications, and single base pair changes in the Escherichia coli chromosome. This chapter discusses the components of the recombination systems of λ, rac prophage, and phage P22 and properties of single-stranded DNA annealing proteins from these and other phage that have been instrumental for the development of this technology. The types of genetic manipulations that can be made are described, along with proposed mechanisms for both double-stranded DNA- and oligonucleotide-mediated recombineering events. Finally, the impact of this technology to such diverse fields as bacterial pathogenesis, metabolic engineering, and mouse genomics is discussed.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Yang W, Chen WY, Wang H, Ho JWS, Huang JD, Woo PCY, Lau SKP, Yuen KY, Zhang Q, Zhou W, Bartlam M, Watt RM, Rao Z. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis. Nucleic Acids Res 2011; 39:9803-19. [PMID: 21893587 PMCID: PMC3239189 DOI: 10.1093/nar/gkr660] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alkaline exonuclease and single-strand DNA (ssDNA) annealing proteins (SSAPs) are key components of DNA recombination and repair systems within many prokaryotes, bacteriophages and virus-like genetic elements. The recently sequenced β-proteobacterium Laribacter hongkongensis (strain HLHK9) encodes putative homologs of alkaline exonuclease (LHK-Exo) and SSAP (LHK-Bet) proteins on its 3.17 Mb genome. Here, we report the biophysical, biochemical and structural characterization of recombinant LHK-Exo protein. LHK-Exo digests linear double-stranded DNA molecules from their 5'-termini in a highly processive manner. Exonuclease activities are optimum at pH 8.2 and essentially require Mg(2+) or Mn(2+) ions. 5'-phosphorylated DNA substrates are preferred over dephosphorylated ones. The crystal structure of LHK-Exo was resolved to 1.9 Å, revealing a 'doughnut-shaped' toroidal trimeric arrangement with a central tapered channel, analogous to that of λ-exonuclease (Exo) from bacteriophage-λ. Active sites containing two bound Mg(2+) ions on each of the three monomers were located in clefts exposed to this central channel. Crystal structures of LHK-Exo in complex with dAMP and ssDNA were determined to elucidate the structural basis for substrate recognition and binding. Through structure-guided mutational analysis, we discuss the roles played by various active site residues. A conserved two metal ion catalytic mechanism is proposed for this class of alkaline exonucleases.
Collapse
Affiliation(s)
- Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Recombination-dependent concatemeric viral DNA replication. Virus Res 2011; 160:1-14. [PMID: 21708194 DOI: 10.1016/j.virusres.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed.
Collapse
|
12
|
Ayora S, Carrasco B, Cárdenas PP, César CE, Cañas C, Yadav T, Marchisone C, Alonso JC. Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol Rev 2011; 35:1055-81. [PMID: 21517913 DOI: 10.1111/j.1574-6976.2011.00272.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In all living organisms, the response to double-strand breaks (DSBs) is critical for the maintenance of chromosome integrity. Homologous recombination (HR), which utilizes a homologous template to prime DNA synthesis and to restore genetic information lost at the DNA break site, is a complex multistep response. In Bacillus subtilis, this response can be subdivided into five general acts: (1) recognition of the break site(s) and formation of a repair center (RC), which enables cells to commit to HR; (2) end-processing of the broken end(s) by different avenues to generate a 3'-tailed duplex and RecN-mediated DSB 'coordination'; (3) loading of RecA onto single-strand DNA at the RecN-induced RC and concomitant DNA strand exchange; (4) branch migration and resolution, or dissolution, of the recombination intermediates, and replication restart, followed by (5) disassembly of the recombination apparatus formed at the dynamic RC and segregation of sister chromosomes. When HR is impaired or an intact homologous template is not available, error-prone nonhomologous end-joining directly rejoins the two broken ends by ligation. In this review, we examine the functions that are known to contribute to DNA DSB repair in B. subtilis, and compare their properties with those of other bacterial phyla.
Collapse
Affiliation(s)
- Silvia Ayora
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen WY, Ho JW, Huang JD, Watt RM. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae. BMC Mol Biol 2011; 12:16. [PMID: 21501469 PMCID: PMC3118119 DOI: 10.1186/1471-2199-12-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 04/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SXT is an integrating conjugative element (ICE) originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA) genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo) and single strand annealing protein (S065, SXT-Bet) encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively. RESULTS SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA) molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb). When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo. CONCLUSIONS The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V. cholerae cells, through facilitating homologous DNA recombination events. The results presented here significantly extend our general understanding of the properties and activities of alkaline exonuclease and single strand annealing proteins of viral/bacteriophage origin, and will assist the rational development of bacterial recombineering systems.
Collapse
Affiliation(s)
- Wen-yang Chen
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | |
Collapse
|
14
|
Sabri M, Häuser R, Ouellette M, Liu J, Dehbi M, Moeck G, García E, Titz B, Uetz P, Moineau S. Genome annotation and intraviral interactome for the Streptococcus pneumoniae virulent phage Dp-1. J Bacteriol 2011; 193:551-62. [PMID: 21097633 PMCID: PMC3019816 DOI: 10.1128/jb.01117-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae causes several diseases, including pneumonia, septicemia, and meningitis. Phage Dp-1 is one of the very few isolated virulent S. pneumoniae bacteriophages, but only a partial characterization is currently available. Here, we confirmed that Dp-1 belongs to the family Siphoviridae. Then, we determined its complete genomic sequence of 56,506 bp. It encodes 72 open reading frames, of which 44 have been assigned a function. We have identified putative promoters, Rho-independent terminators, and several genomic clusters. We provide evidence that Dp-1 may be using a novel DNA replication system as well as redirecting host protein synthesis through queuosine-containing tRNAs. Liquid chromatography-mass spectrometry analysis of purified phage Dp-1 particles identified at least eight structural proteins. Finally, using comprehensive yeast two-hybrid screens, we identified 156 phage protein interactions, and this intraviral interactome was used to propose a structural model of Dp-1.
Collapse
Affiliation(s)
- Mourad Sabri
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Roman Häuser
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Marc Ouellette
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Jing Liu
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Mohammed Dehbi
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Greg Moeck
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Ernesto García
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Björn Titz
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Peter Uetz
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| |
Collapse
|
15
|
Szczepańska AK. Bacteriophage-encoded functions engaged in initiation of homologous recombination events. Crit Rev Microbiol 2010; 35:197-220. [PMID: 19563302 DOI: 10.1080/10408410902983129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recombination plays a significant role in bacteriophage biology. Functions promoting recombination are involved in key stages of phage multiplication and drive phage evolution. Their biological role is reflected by the great variety of phages existing in the environment. This work presents the role of recombination in the phage life cycle and highlights the discrete character of phage-encoded recombination functions (anti-RecBCD activities, 5' --> 3' DNA exonucleases, single-stranded DNA binding proteins, single-stranded DNA annealing proteins, and recombinases). The focus of this review is on phage proteins that initiate genetic exchange. Importance of recombination is reviewed based on the accepted coli-phages T4 and lambda models, the recombination system of phage P22, and the recently characterized recombination functions of Bacillus subtilis phage SPP1 and mycobacteriophage Che9c. Key steps of the molecular mechanisms involving phage recombination functions and their application in molecular engineering are discussed.
Collapse
Affiliation(s)
- Agnieszka K Szczepańska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
16
|
Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S, Tadesse S, Alonso JC, Graumann PL. Evidence for different pathways during horizontal gene transfer in competent Bacillus subtilis cells. PLoS Genet 2009; 5:e1000630. [PMID: 19730681 PMCID: PMC2727465 DOI: 10.1371/journal.pgen.1000630] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/04/2009] [Indexed: 02/03/2023] Open
Abstract
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways. Many bacteria can actively acquire novel genetic material from their environment, which leads to the rapid spreading of, for example, antibiotic resistance genes. The bacterium Bacillus subtilis can differentiate into the state of competence, in which cells take up ssDNA through a DNA uptake complex that is specifically localized at a single cell pole. DNA can be integrated into the chromosome, via RecA, or can be reconstituted as circular dsDNA, if derived from plasmid or from viral DNA. We show that RecO, RecU, and Ku proteins, but not RecA, are important for plasmid transformation, and differentially accumulate at the polar DNA uptake machinery. Upon addition of any kind of DNA, the assembly of RecU at the competence pole dissipated, while RecA formed filamentous structures that rapidly grew and shrank within a 1 minute time scale. RecO visibly accumulated at the competence machinery only upon addition of plasmid DNA, but not of chromosomal DNA. In vitro, RecO was highly efficient at enhancing the annealing of complementary strands covered by SsbA, without the need for any nucleotide cofactor. The findings show that competent cells possess a dynamic recombination machinery and provide visual evidence for the existence of different pathways for transformation with chromosomal DNA or with plasmid DNA.
Collapse
Affiliation(s)
- Dawit Kidane
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Candela Manfredi
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Katharina Rothmaier
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Serkalem Tadesse
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
| | - Juan C. Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (JCA); (PLG)
| | - Peter L. Graumann
- Mikrobiologie, Fakultät für Biologie, Universität Freiburg, Freiburg, Germany
- * E-mail: (JCA); (PLG)
| |
Collapse
|
17
|
López-Torrejón G, Martínez-Jiménez MI, Ayora S. Role of LrpC from Bacillus subtilis in DNA transactions during DNA repair and recombination. Nucleic Acids Res 2006; 34:120-9. [PMID: 16407330 PMCID: PMC1326243 DOI: 10.1093/nar/gkj418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein, which binds both single-stranded (ss) and double-stranded (ds) DNA and facilitates the formation of higher order protein–DNA complexes in vitro. LrpC binds at different sites within the same DNA molecule promoting intramolecular ligation. When bound to separate molecules, it promotes intermolecular ligation, and joint molecule formation between a circular ssDNA and a homologous ssDNA-tailed linear dsDNA. LrpC binding showed a higher affinity for 4-way (Holliday) junctions in their open conformation, when compared with curved dsDNA. Consistent with these biochemical activities, an lrpC null mutant strain rendered cells sensitive to DNA damaging agents such as methyl methanesulfonate and 4-nitroquinoline-1-oxide, and showed a segregation defect. These findings collectively suggest that LrpC may be involved in DNA transactions during DNA repair and recombination.
Collapse
Affiliation(s)
- Gema López-Torrejón
- Department of Microbial Biotechnology, Centro Nacional Biotecnología, CSICDarwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - María I. Martínez-Jiménez
- Department of Microbial Biotechnology, Centro Nacional Biotecnología, CSICDarwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional Biotecnología, CSICDarwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de MadridDarwin 2, Cantoblanco, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4528; Fax: +34 91585 4506,
| |
Collapse
|