1
|
Tatulian SA. Analysis of protein-protein and protein-membrane interactions by isotope-edited infrared spectroscopy. Phys Chem Chem Phys 2024; 26:21930-21953. [PMID: 39108200 DOI: 10.1039/d4cp01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The objective of this work is to highlight the power of isotope-edited Fourier transform infrared (FTIR) spectroscopy in resolving important problems encountered in biochemistry, biophysics, and biomedical research, focusing on protein-protein and protein membrane interactions that play key roles in practically all life processes. An overview of the effects of isotope substitutions in (bio)molecules on spectral frequencies and intensities is given. Data are presented demonstrating how isotope-labeled proteins and/or lipids can be used to elucidate enzymatic mechanisms, the mode of membrane binding of peripheral proteins, regulation of membrane protein function, protein aggregation, and local and global structural changes in proteins during functional transitions. The use of polarized attenuated total reflection FTIR spectroscopy to identify the spatial orientation and the secondary structure of a membrane-bound interfacial enzyme and the mode of lipid hydrolysis is described. Methods of production of site-directed, segmental, and domain-specific labeling of proteins by the synthetic, semisynthetic, and recombinant strategies, including advanced protein engineering technologies such as nonsense suppression and frameshift quadruplet codons are overviewed.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
2
|
Mariani ME, Fidelio GD. Secretory Phospholipases A 2 in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:861. [PMID: 31354755 PMCID: PMC6635587 DOI: 10.3389/fpls.2019.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 05/17/2023]
Abstract
Secreted phospholipases (sPLA2s) in plants are a growing group of enzymes that catalyze the hydrolysis of sn-2 glycerophospholipids to lysophospholipids and free fatty acids. Until today, around only 20 sPLA2s were reported from plants. This review discusses the newly acquired information on plant sPLA2s including molecular, biochemical, catalytic, and functional aspects. The comparative analysis also includes phylogenetic, evolutionary, and tridimensional structure. The observations with emphasis in Glycine max sPLA2 are compared with the available data reported for all plants sPLA2s and with those described for animals (mainly from pancreatic juice and venoms sources).
Collapse
Affiliation(s)
- María Elisa Mariani
- Departamento de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Fundamentación Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gerardo Daniel Fidelio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Sarmiento C, Camarero JA. Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci 2019; 20:408-424. [PMID: 30734675 PMCID: PMC7135711 DOI: 10.2174/1389203720666190208110416] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033 USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-9121, USA
| |
Collapse
|
4
|
Abstract
Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein-membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
5
|
A model for hydrophobic protrusions on peripheral membrane proteins. PLoS Comput Biol 2018; 14:e1006325. [PMID: 30048443 PMCID: PMC6080788 DOI: 10.1371/journal.pcbi.1006325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 08/07/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022] Open
Abstract
With remarkable spatial and temporal specificities, peripheral membrane proteins bind to biological membranes. They do this without compromising solubility of the protein, and their binding sites are not easily distinguished. Prototypical peripheral membrane binding sites display a combination of patches of basic and hydrophobic amino acids that are also frequently present on other protein surfaces. The purpose of this contribution is to identify simple but essential components for membrane binding, through structural criteria that distinguish exposed hydrophobes at membrane binding sites from those that are frequently found on any protein surface. We formulate the concepts of protruding hydrophobes and co-insertability and have analysed more than 300 families of proteins that are classified as peripheral membrane binders. We find that this structural motif strongly discriminates the surfaces of membrane-binding and non-binding proteins. Our model constitutes a novel formulation of a structural pattern for membrane recognition and emphasizes the importance of subtle structural properties of hydrophobic membrane binding sites. Peripheral membrane proteins bind cellular membranes transiently, and are otherwise soluble proteins. As the interaction between proteins and membranes happens at cellular interfaces they are naturally involved in important interfacial processes such as recognition, signaling and trafficking. Commonly their binding sites are also soluble, and their binding mechanisms poorly understood. This complicates the elaboration of conceptual and quantitative models for peripheral membrane binding and makes binding site prediction difficult. It is therefore of great interest to discover traits that are common between these binding sites and that distinguishes them from other protein surfaces. In this work we identify simple and general structural features that facilitate membrane recognition by soluble proteins. We show that these motifs are highly over-represented on peripheral membrane proteins.
Collapse
|
6
|
Kerr D, Tietjen GT, Gong Z, Tajkhorshid E, Adams EJ, Lee KYC. Sensitivity of peripheral membrane proteins to the membrane context: A case study of phosphatidylserine and the TIM proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2126-2133. [PMID: 29920237 DOI: 10.1016/j.bbamem.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
There is a diverse class of peripheral membrane-binding proteins that specifically bind phosphatidylserine (PS), a lipid that signals apoptosis or cell fusion depending on the membrane context of its presentation. PS-receptors are specialized for particular PS-presenting pathways, indicating that they might be sensitive to the membrane context. In this review, we describe a combination of thermodynamic, structural, and computational techniques that can be used to investigate the mechanisms underlying this sensitivity. As an example, we focus on three PS-receptors of the T-cell Immunoglobulin and Mucin containing (TIM) protein family, which we have previously shown to differ in their sensitivity to PS surface density.
Collapse
Affiliation(s)
- Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Gregory T Tietjen
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Zhiliang Gong
- Department of Chemistry, The University of Chicago, Chicago, IL, United States of America
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology and Committee on Immunology, The University of Chicago, Chicago, IL, United States of America
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America; Department of Chemistry, The University of Chicago, Chicago, IL, United States of America; James Franck Institute, The University of Chicago, Chicago, IL, United States of America.
| |
Collapse
|
7
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Abstract
Most interfacial enzymes undergo activation upon membrane binding. Interfacial activation is determined not only by the binding strength but also by the specific mode of protein-membrane interactions, including the angular orientation and membrane insertion of the enzymes. This chapter describes biophysical techniques to quantitatively evaluate membrane binding, orientation, membrane insertion, and activity of secreted phospholipase A2 (PLA2) and lipoxygenase (LO) enzymes. Procedures for recombinant production and purification of human pancreatic PLA2 and human 5-lipoxygenase (5-LO) are also presented. Several methods for measurements of membrane binding of peripheral proteins are described, i.e., fluorescence resonance energy transfer (FRET) from tryptophan or tyrosine residues of the protein to a fluorescent lipid in vesicles, changes in fluorescence of an environment-sensitive fluorescent lipid upon binding of proteins to membranes, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. These methods produce the apparent binding constant, the protein-to-lipid binding stoichiometry, and the Hill cooperativity coefficient. Experimental procedures for segmental isotope labeling of proteins and determination of the orientation of membrane-bound proteins by polarized ATR-FTIR spectroscopy are described. Furthermore, evaluation of membrane insertion of peripheral proteins by a fluorescence quenching technique is outlined. Combination of the orientation and membrane insertion provides a unique configuration of the protein-membrane complex and hence elucidates certain details of the enzyme function, such as the modes of acquisition of a membrane-residing substrate and product release. Finally, assays for determination of the activities of secreted PLA2, soybean LO, and human 5-LO are described.
Collapse
Affiliation(s)
- S A Tatulian
- College of Sciences, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
9
|
Suladze S, Cinar S, Sperlich B, Winter R. Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor. J Am Chem Soc 2015; 137:12588-96. [DOI: 10.1021/jacs.5b07009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Saba Suladze
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Suleyman Cinar
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Benjamin Sperlich
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Roland Winter
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| |
Collapse
|
10
|
Tatulian SA. Structural Dynamics of Insulin Receptor and Transmembrane Signaling. Biochemistry 2015; 54:5523-32. [PMID: 26322622 DOI: 10.1021/acs.biochem.5b00805] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The insulin receptor (IR) is a (αβ)2-type transmembrane tyrosine kinase that plays a central role in cell metabolism. Each αβ heterodimer consists of an extracellular ligand-binding α-subunit and a membrane-spanning β-subunit that comprises the cytoplasmic tyrosine kinase (TK) domain and the phosphorylation sites. The α- and β-subunits are linked via a single disulfide bridge, and the (αβ)2 tetramer is formed by disulfide bonds between the α-chains. Insulin binding induces conformational changes in IR that reach the intracellular β-subunit followed by a protein phosphorylation and activation cascade. Defects in this signaling process, including IR dysfunction caused by mutations, result in type 2 diabetes. Rational drug design aimed at treatment of diabetes relies on knowledge of the detailed structure of IR and the dynamic structural transformations during transmembrane signaling. Recent X-ray crystallographic studies have provided important clues about the mode of binding of insulin to IR, the resulting structural changes and their transmission to the TK domain, but a complete understanding of the structural basis underlying insulin signaling has not been achieved. This review presents a critical analysis of the current status of the structure-function relationship of IR, with a comparative assessment of the other IR family receptors, and discusses potential advancements that may provide insight into the molecular mechanism of insulin signaling.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida , 4111 Libra Drive, Orlando, Florida 32816, United States
| |
Collapse
|
11
|
Banerjee T, Taylor M, Jobling MG, Burress H, Yang Z, Serrano A, Holmes RK, Tatulian SA, Teter K. ADP-ribosylation factor 6 acts as an allosteric activator for the folded but not disordered cholera toxin A1 polypeptide. Mol Microbiol 2014; 94:898-912. [PMID: 25257027 DOI: 10.1111/mmi.12807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 11/26/2022]
Abstract
The catalytic A1 subunit of cholera toxin (CTA1) has a disordered structure at 37°C. An interaction with host factors must therefore place CTA1 in a folded conformation for the modification of its Gsα target which resides in a lipid raft environment. Host ADP-ribosylation factors (ARFs) act as in vitro allosteric activators of CTA1, but the molecular events of this process are not fully characterized. Isotope-edited Fourier transform infrared spectroscopy monitored ARF6-induced structural changes to CTA1, which were correlated to changes in CTA1 activity. We found ARF6 prevents the thermal disordering of structured CTA1 and stimulates the activity of stabilized CTA1 over a range of temperatures. Yet ARF6 alone did not promote the refolding of disordered CTA1 to an active state. Instead, lipid rafts shifted disordered CTA1 to a folded conformation with a basal level of activity that could be further stimulated by ARF6. Thus, ARF alone is unable to activate disordered CTA1 at physiological temperature: additional host factors such as lipid rafts place CTA1 in the folded conformation required for its ARF-mediated activation. Interaction with ARF is required for in vivo toxin activity, as enzymatically active CTA1 mutants that cannot be further stimulated by ARF6 fail to intoxicate cultured cells.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
ProBLM web server: protein and membrane placement and orientation package. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:838259. [PMID: 25126110 PMCID: PMC4122144 DOI: 10.1155/2014/838259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
The 3D structures of membrane proteins are typically determined without the presence of a lipid bilayer. For the purpose of studying the role of membranes on the wild type characteristics of the corresponding protein, determining the position and orientation of transmembrane proteins within a membrane environment is highly desirable. Here we report a geometry-based approach to automatically insert a membrane protein with a known 3D structure into pregenerated lipid bilayer membranes with various dimensions and lipid compositions or into a pseudomembrane. The pseudomembrane is built using the Protein Nano-Object Integrator which generates a parallelepiped of user-specified dimensions made up of pseudoatoms. The pseudomembrane allows for modeling the desolvation effects while avoiding plausible errors associated with wrongly assigned protein-lipid contacts. The method is implemented into a web server, the ProBLM server, which is freely available to the biophysical community. The web server allows the user to upload a protein coordinate file and any missing residues or heavy atoms are regenerated. ProBLM then creates a combined protein-membrane complex from the given membrane protein and bilayer lipid membrane or pseudomembrane. The user is given an option to manually refine the model by manipulating the position and orientation of the protein with respect to the membrane.
Collapse
|
13
|
Kar S, Patel MA, Tripathy RK, Bajaj P, Pande AH. Oxidized-phospholipids in reconstituted high density lipoprotein particles affect structure and function of recombinant paraoxonase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1714-20. [DOI: 10.1016/j.bbalip.2013.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 11/25/2022]
|
14
|
Qin SS, Yu YX, Li QK, Yu ZW. Interaction of Human Synovial Phospholipase A2 with Mixed Lipid Bilayers: A Coarse-Grain and All-Atom Molecular Dynamics Simulation Study. Biochemistry 2013; 52:1477-89. [DOI: 10.1021/bi3012687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shan-Shan Qin
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering
Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Qi-Kai Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Tatulian SA. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol Biol 2013; 974:177-218. [PMID: 23404277 DOI: 10.1007/978-1-62703-275-9_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is widely used in structural characterization of proteins or peptides. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or upon intermolecular interactions. Sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as (13)C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, and molecular architecture of membrane pore or channel forming proteins and peptides. The purpose of this article was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, are also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
16
|
Mariani ME, Villarreal MA, Cheung F, Leiva EPM, Madoery RR, Fidelio GD. In silico and in vitro characterization of phospholipase A₂ isoforms from soybean (Glycine max). Biochimie 2012; 94:2608-19. [PMID: 23281487 DOI: 10.1016/j.biochi.2012.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
At the present, no secreted phospholipase A₂ (sPLA₂) from soybean (Glycine max) was investigated in detail. In this work we identified five sequences of putative secreted sPLA₂ from soybean after a BLAST search in G. max database. Sequence analysis showed a conserved PA2c domain bearing the Ca²⁺ binding loop and the active site motif. All the five mature proteins contain 12 cysteine residues, which are commonly conserved in plant sPLA₂s. We propose a phylogenetic tree based on sequence alignment of reported plant sPLA₂s including the novel enzymes from G. max. According to PLA₂ superfamily, two of G. max sPLA₂s are grouped as XIA and the rest of sequences as XIB, on the basis of differences found in their molecular weights and deviating sequences especially in the N- and C-terminal regions of the isoenzymes. Furthermore, we report the cloning, expression and purification of one of the putative isoenzyme denoted as GmsPLA₂-XIA-1. We demonstrate that this mature sPLA₂ of 114 residues had PLA₂ activity on Triton:phospholipid mixed micelles and determine the kinetic parameters for this system. We generate a model based on the known crystal structure of sPLA₂ from rice (isoform II), giving first insights into the three-dimensional structure of folded GmsPLA₂-XIA-1. Besides describing the spatial arrangement of highly conserved pair HIS-49/ASP-50 and the Ca⁺² loop domains, we propose the putative amino acids involved in the interfacial recognition surface. Additionally, molecular dynamics simulations indicate that calcium ion, besides its key function in the catalytic cycle, plays an important role in the overall stability of GmsPLA₂-XIA-1 structure.
Collapse
Affiliation(s)
- María Elisa Mariani
- Centro de Investigaciones en Química Biológica de Córdoba, (CIQUIBIC, UNCeCONICET), Departamento de Química Biológica, Fac. de Cs. Químicas, Universidad Nacional de Córdoba, Haya de Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Huang WN, Chen YH, Chen CL, Wu W. Surface pressure-dependent interactions of secretory phospholipase A2 with zwitterionic phospholipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7034-7041. [PMID: 21557547 DOI: 10.1021/la200255r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hydrolytic activity of secretory phospholipase A(2) (PLA(2)) is regulated by many factors, including the physical state of substrate aggregates and the chemical nature of phospholipid molecules. In order to achieve strong binding of PLA(2) on its substrates, many previous works have used anionic lipid dispersion to characterize the orientation and penetration depth of PLA(2) molecules on membrane surfaces. In this study, we applied monolayer technique with controllable surface area to investigate the PLA(2)s of Taiwan cobra venom and bee venom on zwitterionic phophatidylcholine monolayers and demonstrated an optimum hydrolytic activity at a surface pressure of 18 and 24 mN/m, respectively. By combining polarized attenuated total reflection Fourier-transform infrared spectroscopy and monolayer-binding experiments, we found that the amount of membrane-bound PLA(2) decreased markedly as the surface pressure of the monolayer was increased. Interestingly, the insertion area of the PLA(2)s decreased to near zero as the surface pressure increased to the optimum pressure for hydrolytic activity. On the basis of the measured infrared dichroic ratio, the orientation of the PLA(2)s bound to zwitterionic membranes was similar to that observed on a negatively charged membrane and was independent of the surface pressure. Our findings suggest that both PLA(2)s were located on the membrane surface rather than penetrating the membrane bilayer and that the deeply inserted mode is not a favorable condition for the hydrolysis of phospholipids in zwitterionic phospholipid membranes. The results are discussed in terms of the easy access of catalytic water for the PLA(2) activity and the mobilization of its substrate and product to facilitate the catalytic process.
Collapse
Affiliation(s)
- Wei-Ning Huang
- Department of Biotechnology, Yuanpei University, Hsinchu, Taiwan.
| | | | | | | |
Collapse
|
18
|
Nanda H, Datta SAK, Heinrich F, Lösche M, Rein A, Krueger S, Curtis JE. Electrostatic interactions and binding orientation of HIV-1 matrix studied by neutron reflectivity. Biophys J 2011; 99:2516-24. [PMID: 20959092 DOI: 10.1016/j.bpj.2010.07.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/10/2010] [Accepted: 07/27/2010] [Indexed: 11/28/2022] Open
Abstract
The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly determined by experimental measurements. We present neutron reflectivity measurements that resolve the one-dimensional scattering length density profile of MA bound to a biomimetic of the native viral membrane. A molecular refinement procedure was developed using atomic structures of MA to determine the orientation of the protein on the membrane. The orientation defines a lipid-binding interface consistent with previous mutagenesis results. The MA protein maintains this orientation without the presence of a myristate group, driven only by electrostatic interactions. Furthermore, MA is found to penetrate the membrane headgroup region peripherally such that only the side chains of specific Lys and Arg residues interact with the surface. The results suggest that electrostatic interactions are sufficient to favorably orient MA on viral membrane mimics. The spatial determination of the membrane-bound protein demonstrates the ability of neutron reflectivity to discern orientation and penetration under physiologically relevant conditions.
Collapse
Affiliation(s)
- Hirsh Nanda
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Rojo L, Sjöberg MK, Hernández P, Zambrano C, Maccioni RB. Roles of cholesterol and lipids in the etiopathogenesis of Alzheimer's disease. J Biomed Biotechnol 2010; 2006:73976. [PMID: 17047312 PMCID: PMC1559932 DOI: 10.1155/jbb/2006/73976] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease is the principal cause of dementia throughout the world and the fourth cause of death in developed economies.This brain disorder is characterized by the formation of brain protein aggregates, namely, the paired helical filaments and senile plaques. Oxidative stress during life, neuroinflamamtion, and alterations in neuron-glia interaction patterns have been also involved in the etiopathogenesis of this disease. In recent years, cumulative evidence has been gained on the involvement of alteration in neuronal lipoproteins activity, as well as on the role of cholesterol and other lipids in the pathogenesis of this neurodegenerative disorder. In this review, we analyze the links between changes in cholesterol homeostasis, and the changes of lipids of major importance for neuronal activity and Alheimer's disease. The investigation on the fine molecular mechanisms underlying the lipids influence in the etiopathogenesis of Alzheimer's disease may shed light into its treatment and medical management.
Collapse
Affiliation(s)
- Leonel Rojo
- Laboratory of Cellular and Molecular Biology and Neurosciences, Millennium Institute for Advanced Studies in
Cell Biology and Biotechnology (CBB), Millennium Building, Las Encinas 3370, Ñuñoa, Santiago, Chile
- Department of Chemistry, Arturo Prat University, avenue Arturo Prat 2120, Iquique, Chile
| | - Marcela K. Sjöberg
- Laboratory of Cellular and Molecular Biology and Neurosciences, Millennium Institute for Advanced Studies in
Cell Biology and Biotechnology (CBB), Millennium Building, Las Encinas 3370, Ñuñoa, Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Salvador 486, 750-0922 Providencia,
Santiago, Chile
| | - Paula Hernández
- Laboratory of Cellular and Molecular Biology and Neurosciences, Millennium Institute for Advanced Studies in
Cell Biology and Biotechnology (CBB), Millennium Building, Las Encinas 3370, Ñuñoa, Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Salvador 486, 750-0922 Providencia,
Santiago, Chile
| | - Cristian Zambrano
- Laboratory of Cellular and Molecular Biology and Neurosciences, Millennium Institute for Advanced Studies in
Cell Biology and Biotechnology (CBB), Millennium Building, Las Encinas 3370, Ñuñoa, Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Salvador 486, 750-0922 Providencia,
Santiago, Chile
| | - Ricardo B. Maccioni
- Laboratory of Cellular and Molecular Biology and Neurosciences, Millennium Institute for Advanced Studies in
Cell Biology and Biotechnology (CBB), Millennium Building, Las Encinas 3370, Ñuñoa, Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Salvador 486, 750-0922 Providencia,
Santiago, Chile
- *Ricardo B. Maccioni:
| |
Collapse
|
20
|
Haimi P, Hermansson M, Batchu KC, Virtanen JA, Somerharju P. Substrate efflux propensity plays a key role in the specificity of secretory A-type phospholipases. J Biol Chem 2010; 285:751-60. [PMID: 19887372 PMCID: PMC2804224 DOI: 10.1074/jbc.m109.061218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/01/2009] [Indexed: 01/01/2023] Open
Abstract
To better understand the principles underlying the substrate specificity of A-type phospholipases (PLAs), a high throughput mass spectrometric assay was employed to study the effect of acyl chain length and unsaturation of phospholipids on their rate of hydrolysis by three different secretory PLAs in micelles and vesicle bilayers. With micelles, each enzyme responded differently to substrate acyl chain unsaturation and double bond position, probably reflecting differences in the accommodative properties of their substrate binding sites. Experiments with saturated acyl positional isomers indicated that the length of the sn2 chain was more critical than that of the sn1 chain, suggesting tighter association of the former with the enzyme. Only the first 9-10 carbons of the sn2 acyl chain seem to interact intimately with the active site. Strikingly, no discrimination between positional isomers was observed with vesicles, and the rate of hydrolysis decreased far more with increasing chain length than with micelles, suggesting that translocation of the phospholipid substrate to the active site is rate-limiting with bilayers. Supporting this conclusion, acyl chain structure affected hydrolysis and spontaneous intervesicle transfer, which correlates with lipid efflux propensity, analogously. We conclude that substrate efflux propensity plays a more important role in the specificity of secretory PLA(2)s than commonly thought and could also be a key attribute in phospholipid homeostasis in which (unknown) PLA(2)s are key players.
Collapse
Affiliation(s)
- Perttu Haimi
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Martin Hermansson
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Krishna Chaithanya Batchu
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Jorma A. Virtanen
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Pentti Somerharju
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| |
Collapse
|
21
|
Berrade L, Camarero JA. Expressed protein ligation: a resourceful tool to study protein structure and function. Cell Mol Life Sci 2009; 66:3909-22. [PMID: 19685006 PMCID: PMC3806878 DOI: 10.1007/s00018-009-0122-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 01/21/2023]
Abstract
This review outlines the use of expressed protein ligation (EPL) to study protein structure, function and stability. EPL is a chemoselective ligation method that allows the selective ligation of unprotected polypeptides from synthetic and recombinant origin for the production of semi-synthetic protein samples of well-defined and homogeneous chemical composition. This method has been extensively used for the site-specific introduction of biophysical probes, unnatural amino acids, and increasingly complex post-translational modifications. Since it was introduced 10 years ago, EPL applications have grown increasingly more sophisticated in order to address even more complex biological questions. In this review, we highlight how this powerful technology combined with standard biochemical analysis techniques has been used to improve our ability to understand protein structure and function.
Collapse
Affiliation(s)
- Luis Berrade
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 616, Los Angeles, CA 90033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 616, Los Angeles, CA 90033 USA
| |
Collapse
|
22
|
Vallejo DF, Zamarreño F, Guérin DMA, Grigera JR, Costabel MD. Prediction of the most favorable configuration in the ACBP-membrane interaction based on electrostatic calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:696-700. [PMID: 19150435 DOI: 10.1016/j.bbamem.2008.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 11/19/2022]
Abstract
Acyl-CoA binding proteins (ACBPs) are highly conserved 10 kDa cytosolic proteins that bind medium- and long-chain acyl-CoA esters. They act as intracellular carriers of acyl-CoA and play a role in acyl-CoA metabolism, gene regulation, acyl-CoA-mediated cell signaling, transport-mediated lipid synthesis, membrane trafficking and also, ACBPs were indicated as a possible inhibitor of diazepam binding to the GABA-A receptor. To estimate the importance of the non-specific electrostatic energy in the ACBP-membrane interaction, we computationally modeled the interaction of HgACBP with both anionic and neutral membranes. To compute the Free Electrostatic Energy of Binding (dE), we used the Finite Difference Poisson Boltzmann Equation (FDPB) method as implemented in APBS. In the most energetically favorable orientation, ACBP brings charged residues Lys18 and Lys50 and hydrophobic residues Met46 and Leu47 into membrane surface proximity. This conformation suggests that these four ACBP amino acids are most likely to play a leading role in the ACBP-membrane interaction and ligand intake. Thus, we propose that long range electrostatic forces are the first step in the interaction mechanism between ACBP and membranes.
Collapse
Affiliation(s)
- Diego F Vallejo
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB) CCT La Plata- CONICET- UNLP-CIC, La Plata, Argentina
| | | | | | | | | |
Collapse
|
23
|
Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008; 77:495-520. [PMID: 18405237 DOI: 10.1146/annurev.biochem.76.062405.154007] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipases A(2) (PLA2s) are esterases that hydrolyze the sn-2 ester of glycerophospholipids and constitute one of the largest families of lipid hydrolyzing enzymes. The mammalian genome contains 10 enzymatically active secreted PLA2s (sPLA2s) and two sPLA2-related proteins devoid of lipolytic enzymatic activity. In addition to the well-established functions of one of these enzymes in digestion of dietary phospholipids and another in host defense against bacterial infections, accumulating evidence shows that some of these sPLA2s are involved in arachidonic acid release from cellular phospholipids for the biosynthesis of eicosanoids, especially during inflammation. More speculative results suggest the involvement of one or more sPLA2s in promoting atherosclerosis and cancer. In addition, the mammalian genome encodes several types of sPLA2-binding proteins, and mounting evidence shows that sPLA2s may have functions related to binding to cellular target proteins in a manner independent of their lipolytic enzymatic activity.
Collapse
Affiliation(s)
- Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Nice-Sophia-Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
24
|
Lipid bilayer deformation and the free energy of interaction of a Kv channel gating-modifier toxin. Biophys J 2008; 95:3816-26. [PMID: 18621840 DOI: 10.1529/biophysj.108.130971] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of membrane proteins act via binding at the water/lipid bilayer interface. An important example of such proteins is provided by the gating-modifier toxins that act on voltage-gated potassium (Kv) channels. They are thought to partition to the headgroup region of lipid bilayers, and so provide a good system for probing the nature of interactions of a protein with the water/bilayer interface. We used coarse-grained molecular dynamics simulations to compute the one-dimensional potential of mean force (i.e., free energy) profile that governs the interaction between a Kv channel gating-modifier toxin (VSTx1) and model phospholipid bilayers. The reaction coordinate sampled corresponds to the position of the toxin along the bilayer normal. The course-grained representation of the protein and lipids enabled us to explore extended time periods, revealing aspects of toxin/bilayer dynamics and energetics that would be difficult to observe on the timescales currently afforded by atomistic molecular dynamics simulations. In particular, we show for this model system that the bilayer deforms as it interacts with the toxin, and that such deformations perturb the free energy profile. Bilayer deformation therefore adds an additional layer of complexity to be addressed in investigations of membrane/protein systems. In particular, one should allow for local deformations that may arise due to the spatial array of charged and hydrophobic elements of an interfacially located membrane protein.
Collapse
|
25
|
The interaction of phospholipase A2 with a phospholipid bilayer: coarse-grained molecular dynamics simulations. Biophys J 2008; 95:1649-57. [PMID: 18469074 DOI: 10.1529/biophysj.107.123190] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A number of membrane-active enzymes act in a complex environment formed by the interface between a lipid bilayer and bulk water. Although x-ray diffraction studies yield structures of isolated enzyme molecules, a detailed characterization of their interactions with the interface requires a measure of how deeply such a membrane-associated protein penetrates into a lipid bilayer. Here, we apply coarse-grained (CG) molecular dynamics (MD) simulations to probe the interaction of porcine pancreatic phospholipase A2 (PLA2) with a lipid bilayer containing palmitoyl-oleoyl-phosphatidyl choline and palmitoyl-oleoyl-phosphatidyl glycerol molecules. We also used a configuration from a CG-MD trajectory to initiate two atomistic (AT) MD simulations. The results of the CG and AT simulations are evaluated by comparison with available experimental data. The membrane-binding surface of PLA2 consists of a patch of hydrophobic residues surrounded by polar and basic residues. We show this proposed footprint interacts preferentially with the anionic headgroups of the palmitoyl-oleoyl-phosphatidyl glycerol molecules. Thus, both electrostatic and hydrophobic interactions determine the location of PLA2 relative to the bilayer. From a general perspective, this study demonstrates that CG-MD simulations may be used to reveal the orientation and location of a membrane-surface-bound protein relative to a lipid bilayer, which may subsequently be refined by AT-MD simulations to probe more detailed interactions.
Collapse
|
26
|
Chiou YL, Cheng YC, Kao PH, Wang JJ, Chang LS. Mutations on the N-terminal region abolish differentially the enzymatic activity, membrane-damaging activity and cytotoxicity of Taiwan cobra phospholipase A2. Toxicon 2008; 51:270-9. [DOI: 10.1016/j.toxicon.2007.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/27/2007] [Accepted: 10/02/2007] [Indexed: 12/01/2022]
|
27
|
Redfern RE, Redfern D, Furgason MLM, Munson M, Ross AH, Gericke A. PTEN Phosphatase Selectively Binds Phosphoinositides and Undergoes Structural Changes. Biochemistry 2008; 47:2162-71. [DOI: 10.1021/bi702114w] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roberta E. Redfern
- Chemistry Department, Kent State University, Kent, Ohio 44242, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Duane Redfern
- Chemistry Department, Kent State University, Kent, Ohio 44242, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Melonnie L. M. Furgason
- Chemistry Department, Kent State University, Kent, Ohio 44242, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Mary Munson
- Chemistry Department, Kent State University, Kent, Ohio 44242, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Alonzo H. Ross
- Chemistry Department, Kent State University, Kent, Ohio 44242, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Arne Gericke
- Chemistry Department, Kent State University, Kent, Ohio 44242, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
28
|
Ray S, Scott JL, Tatulian SA. Effects of Lipid Phase Transition and Membrane Surface Charge on the Interfacial Activation of Phospholipase A2. Biochemistry 2007; 46:13089-100. [DOI: 10.1021/bi7015102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Supriyo Ray
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826
| | - Jennifer L. Scott
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826
| | - Suren A. Tatulian
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826
| |
Collapse
|
29
|
Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC STRUCTURAL BIOLOGY 2007; 7:44. [PMID: 17603894 PMCID: PMC1934363 DOI: 10.1186/1472-6807-7-44] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/29/2007] [Indexed: 02/05/2023]
Abstract
BACKGROUND Three-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. RESULTS We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database. CONCLUSION Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that most peripheral proteins not only interact with the membrane surface, but penetrate through the interfacial region and reach the hydrocarbon interior, which is consistent with published experimental studies.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Mikhail A Lomize
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
30
|
Bond PJ, Sansom MSP. Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Proc Natl Acad Sci U S A 2007; 104:2631-6. [PMID: 17301243 PMCID: PMC1797625 DOI: 10.1073/pnas.0606822104] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coarse-grained molecular dynamics simulations are used to explore the interaction with a phospholipid bilayer of the voltage sensor (VS) domain and the S4 helix from the archaebacterial voltage-gated potassium (Kv) channel KvAP. Multiple 2-mus self-assembly simulations reveal that the isolated S4 helix may adopt either interfacial or transmembrane (TM) locations with approximately equal probability. In the TM state, the insertion of the voltage-sensing region of S4 is facilitated via local bilayer deformation that, combined with side chain "snorkeling," enables its Arg side chains to interact with lipid headgroups and water. Multiple 0.2-mus self-assembly simulations of the VS domain are also performed, along with simulations of MscL and KcsA, to permit comparison with more "canonical" integral membrane protein structures. All three stably adopt a TM orientation within a bilayer. For MscL and KcsA, there is no significant bilayer deformation. In contrast, for the VS, there is considerable local deformation, which is again primarily due to the lipid-exposed S4. It is shown that for both the VS and isolated S4 helix, the positively charged side chains of S4 are accommodated within the membrane through a combination of stabilizing interactions with lipid glycerol and headgroup regions, water, and anionic side chains. Our results support the possibility that bilayer deformation around key gating charge residues in Kv channels may result in "focusing" of the electrostatic field, and indicate that, when considering competing models of voltage-sensing, it is essential to consider the dynamics and structure of not only the protein but also of the local lipid environment.
Collapse
Affiliation(s)
- Peter J. Bond
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford 1 3QU, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford 1 3QU, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Pande AH, Qin S, Nemec KN, He X, Tatulian SA. Isoform-specific membrane insertion of secretory phospholipase A2 and functional implications. Biochemistry 2006; 45:12436-47. [PMID: 17029399 DOI: 10.1021/bi060898q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite increasing evidence that the membrane-binding mode of interfacial enzymes including the depth of membrane insertion is crucial for their function, the membrane insertion of phospholipase A(2) (PLA(2)) enzymes has not been studied systematically. Here, we analyze the membrane insertion of human group IB PLA(2) (hIBPLA(2)) and compare it with that of a structurally homologous V3W mutant of human group IIA PLA(2) (V3W-hIIAPLA(2)) and with a structurally divergent group III bee venom PLA(2) (bvPLA(2)). Increasing the anionic charge of membranes results in a blue shift of the fluorescence of Trp(3) of hIBPLA(2), a decrease in quenching by acrylamide, and an increase in enzyme activity, reflecting an enhancement in the membrane binding of PLA(2). Fluorescence quenching by brominated lipids indicates significant penetration of Trp(3) into fluid POPC/POPG membranes but little insertion into the solid DPPC/DPPG membranes. Increased membrane fluidity also supports hIBPLA(2) activity, suggesting that membrane insertion of hIBPLA(2) is controlled by membrane fluidity and is necessary for the full activity of the enzyme. Trp fluorescence quenching of the V3W-hIIAPLA(2) and bvPLA(2) by water- and membrane-soluble quenchers indicates substantial membrane insertion of Trp(3) of V3W-hIIAPLA(2), similar to that found for hIBPLA(2), and no insertion of tryptophans of bvPLA(2). Our results provide evidence that (a) structurally similar group IB and IIA PLA(2)s, but not structurally diverse group III PLA(2), significantly penetrate into membranes; (b) membrane insertion is controlled by membrane fluidity and facilitates activation of IB and IIA PLA(2)s; and (c) structurally distinct PLA(2) isoforms may employ different tactics of substrate accession/product release during lipid hydrolysis.
Collapse
Affiliation(s)
- Abhay H Pande
- Biomolecular Science Center, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | | | |
Collapse
|
32
|
Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. Positioning of proteins in membranes: a computational approach. Protein Sci 2006; 15:1318-33. [PMID: 16731967 PMCID: PMC2242528 DOI: 10.1110/ps.062126106] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A new computational approach has been developed to determine the spatial arrangement of proteins in membranes by minimizing their transfer energies from water to the lipid bilayer. The membrane hydrocarbon core was approximated as a planar slab of adjustable thickness with decadiene-like interior and interfacial polarity profiles derived from published EPR studies. Applicability and accuracy of the method was verified for a set of 24 transmembrane proteins whose orientations in membranes have been studied by spin-labeling, chemical modification, fluorescence, ATR FTIR, NMR, cryo-microscopy, and neutron diffraction. Subsequently, the optimal rotational and translational positions were calculated for 109 transmembrane, five integral monotopic and 27 peripheral protein complexes with known 3D structures. This method can reliably distinguish transmembrane and integral monotopic proteins from water-soluble proteins based on their transfer energies and membrane penetration depths. The accuracies of calculated hydrophobic thicknesses and tilt angles were approximately 1 A and 2 degrees, respectively, judging from their deviations in different crystal forms of the same proteins. The hydrophobic thicknesses of transmembrane proteins ranged from 21.1 to 43.8 A depending on the type of biological membrane, while their tilt angles with respect to the bilayer normal varied from zero in symmetric complexes to 26 degrees in asymmetric structures. Calculated hydrophobic boundaries of proteins are located approximately 5 A lower than lipid phosphates and correspond to the zero membrane depth parameter of spin-labeled residues. Coordinates of all studied proteins with their membrane boundaries can be found in the Orientations of Proteins in Membranes (OPM) database:http://opm.phar.umich.edu/.
Collapse
Affiliation(s)
- Andrei L Lomize
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA.
| | | | | | | |
Collapse
|
33
|
Muralidharan V, Muir TW. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 2006; 3:429-38. [PMID: 16721376 DOI: 10.1038/nmeth886] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biophysical techniques such as fluorescence spectroscopy and nuclear magnetic resonance (NMR) spectroscopy provide a window into the inner workings of proteins. These approaches make use of probes that can either be naturally present within the protein or introduced through a labeling procedure. In general, the more control one has over the type, location and number of probes in a protein, then the more information one can extract from a given biophysical analysis. Recently, two related approaches have emerged that allow proteins to be labeled with a broad range of physical probes. Expressed protein ligation (EPL) and protein trans-splicing (PTS) are both intein-based approaches that permit the assembly of a protein from smaller synthetic and/or recombinant pieces. Here we provide some guidelines for the use of EPL and PTS, and highlight how the dovetailing of these new protein chemistry methods with standard biophysical techniques has improved our ability to interrogate protein function, structure and folding.
Collapse
Affiliation(s)
- Vasant Muralidharan
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
34
|
Abstract
The kinetics of peptide-membrane association have been studied previously using stopped-flow tryptophan fluorescence; however, such experiments do not directly report the coil-to-helix transition process, which is a hallmark of peptide-membrane interaction. Herein, we report a new method for directly assessing the kinetics of the helix formation accompanied by the peptide-membrane association. This method is based on the technique of fluorescence resonance energy transfer (FRET) and an amino acid FRET pair, p-cyano-L-phenylalanine and tryptophan. To demonstrate the utility of this method, we have studied the membrane-mediated helix folding dynamics of a mutant of magainin 2, an antibiotic peptide found in the skin of the African clawed frog, Xenopus laevis. Our results indicate that the coil-to-helix transition occurs during the binding of the peptide to the lipid vesicle (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], 3:1, wt/wt) but prior to the full insertion of the peptide into the hydrophobic region of the lipid bilayers.
Collapse
Affiliation(s)
- Matthew J Tucker
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
35
|
Qin S, Pande AH, Nemec KN, He X, Tatulian SA. Evidence for the Regulatory Role of the N-terminal Helix of Secretory Phospholipase A2 from Studies on Native and Chimeric Proteins. J Biol Chem 2005; 280:36773-83. [PMID: 16103116 DOI: 10.1074/jbc.m506789200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipase A(2) (PLA(2)) enzymes are activated by binding to phospholipid membranes. Although the N-terminal alpha-helix of group I/II PLA(2)s plays an important role in the productive mode membrane binding of the enzymes, its role in the structural aspects of membrane-induced activation of PLA(2)s is not well understood. In order to elucidate membrane-induced conformational changes in the N-terminal helix and in the rest of the PLA(2), we have created semisynthetic human group IB PLA(2) in which the N-terminal decapeptide is joined with the (13)C-labeled fragment, as well as a chimeric protein containing the N-terminal decapeptide from human group IIA PLA(2) joined with a (13)C-labeled fragment of group IB PLA(2). Infrared spectral resolution of the unlabeled and (13)C-labeled segments suggests that the N-terminal helix of membrane-bound IB PLA(2) has a more rigid structure than the other helices. On the other hand, the overall structure of the chimeric PLA(2) is more rigid than that of the IB PLA(2), but the N-terminal helix is more flexible. A combination of homology modeling and polarized infrared spectroscopy provides the structure of membrane-bound chimeric PLA(2), which demonstrates remarkable similarity but also distinct differences compared with that of IB PLA(2). Correlation is delineated between structural and membrane binding properties of PLA(2)s and their N-terminal helices. Altogether, the data provide evidence that the N-terminal helix of group I/II PLA(2)s acts as a regulatory domain that mediates interfacial activation of these enzymes.
Collapse
Affiliation(s)
- Shan Qin
- Biomolecular Science Center, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | | | |
Collapse
|