1
|
Kronborg K, Zhang YE. cAMP competitively inhibits periplasmic phosphatases to coordinate nutritional growth with competence of Haemophilus influenzae. J Biol Chem 2023; 299:105404. [PMID: 38229398 PMCID: PMC10694654 DOI: 10.1016/j.jbc.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024] Open
Abstract
Most naturally competent bacteria tightly regulate the window of the competent state to maximize their ecological fitness under specific conditions. Development of competence by Haemophilus influenzae strain Rd KW20 is stimulated by cAMP and inhibited by purine nucleotides, respectively. In contrast, cAMP inhibits cell growth, but nucleotides are important for KW20 growth. However, the mechanisms underlying the abovementioned reciprocal effects are unclear. Here, we first identified a periplasmic acid phosphatase AphAEc of Escherichia coli as a new cAMP-binding protein. We show cAMP competitively inhibits the phosphatase activities of AphAEc and its homolog protein AphAHi in the KW20 strain. Furthermore, we found cAMP inhibits two other periplasmic nonspecific phosphatases, NadNHi (which provides the essential growth factor V, NAD) and HelHi (eP4, which converts NADP to NAD) in KW20. We demonstrate cAMP inhibits cell growth rate, especially via NadNHi. On the other hand, the inhibitory effect of purine nucleotide AMP on competence was abolished in the triple deletion mutant ΔhelHiΔnadNHiΔaphAHi, but not in the single, double deletion or complemented strains. Adenosine, however, still inhibited the competence of the triple deletion mutant, demonstrating the crucial role of the three phosphatases in converting nucleotides to nucleosides and thus inhibiting KW20 competence. Finally, cAMP restored the competence inhibited by GMP in a dose-dependent manner, but not competence inhibited by guanosine. Altogether, we uncovered these three periplasmic phosphatases as the key players underlying the antagonistic effects of cAMP and purine nucleotides on both cell growth and competence development of H. influenzae.
Collapse
Affiliation(s)
- Kristina Kronborg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Zakataeva NP. Microbial 5'-nucleotidases: their characteristics, roles in cellular metabolism, and possible practical applications. Appl Microbiol Biotechnol 2021; 105:7661-7681. [PMID: 34568961 PMCID: PMC8475336 DOI: 10.1007/s00253-021-11547-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
5′-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their respective nucleosides and phosphate. Most 5′-nucleotidases have broad substrate specificity and are multifunctional enzymes capable of cleaving phosphorus from not only mononucleotide phosphate molecules but also a variety of other phosphorylated metabolites. 5′-Nucleotidases are widely distributed throughout all kingdoms of life and found in different cellular locations. The well-studied vertebrate 5′-nucleotidases play an important role in cellular metabolism. These enzymes are involved in purine and pyrimidine salvage pathways, nucleic acid repair, cell-to-cell communication, signal transduction, control of the ribo- and deoxyribonucleotide pools, etc. Although the first evidence of microbial 5′-nucleotidases was obtained almost 60 years ago, active studies of genetic control and the functions of microbial 5′-nucleotidases started relatively recently. The present review summarizes the current knowledge about microbial 5′-nucleotidases with a focus on their diversity, cellular localizations, molecular structures, mechanisms of catalysis, physiological roles, and activity regulation and approaches to identify new 5′-nucleotidases. The possible applications of these enzymes in biotechnology are also discussed. Key points • Microbial 5′-nucleotidases differ in molecular structure, hydrolytic mechanism, and cellular localization. • 5′-Nucleotidases play important and multifaceted roles in microbial cells. • Microbial 5′-nucleotidases have wide range of practical applications.
Collapse
Affiliation(s)
- Natalia P Zakataeva
- Ajinomoto-Genetika Research Institute, 1st Dorozhny Proezd, b.1-1, Moscow, 117545, Russia.
| |
Collapse
|
3
|
Sousa EH, Carepo MS, Moura JJ. Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
4
|
Abstract
The regium-π interaction is an attractive noncovalent force between group 11 elements (Cu, Ag, and Au) acting as Lewis acids and aromatic surfaces. Herein, we report for the first time experimental (Protein Data Bank analysis) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of regium-π bonds involving Au(I) and aromatic amino acids (Phe, Tyr, Trp, and His). These findings might be important in the field of drug design and for retrospectively understanding the role of gold in proteins.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
5
|
Zeng L, Burne RA. Essential Roles of the sppRA Fructose-Phosphate Phosphohydrolase Operon in Carbohydrate Metabolism and Virulence Expression by Streptococcus mutans. J Bacteriol 2019; 201:e00586-18. [PMID: 30348833 PMCID: PMC6304665 DOI: 10.1128/jb.00586-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022] Open
Abstract
The dental caries pathogen Streptococcus mutans can ferment a variety of sugars to produce organic acids. Exposure of S. mutans to certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress in S. mutans was demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon in S. mutans, sppRA, which was highly expressed in the fruK mutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+ and Mn2+ but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of the sppRA operon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only induced sppA expression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression of sppA, via a plasmid or by deleting sppR, greatly alleviated fructose-induced stress in a fruK mutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show that S. mutans is capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutans is a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon in S. mutans that regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Skouri-Panet F, Benzerara K, Cosmidis J, Férard C, Caumes G, De Luca G, Heulin T, Duprat E. In Vitro and in Silico Evidence of Phosphatase Diversity in the Biomineralizing Bacterium Ramlibacter tataouinensis. Front Microbiol 2018; 8:2592. [PMID: 29375498 PMCID: PMC5768637 DOI: 10.3389/fmicb.2017.02592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial phosphatase activity can trigger the precipitation of metal-phosphate minerals, a process called phosphatogenesis with global geochemical and environmental implications. An increasing diversity of phosphatases expressed by diverse microorganisms has been evidenced in various environments. However, it is challenging to link the functional properties of genomic repertoires of phosphatases with the phosphatogenesis capabilities of microorganisms. Here, we studied the betaproteobacterium Ramlibacter tataouinensis (Rta), known to biomineralize Ca-phosphates in the environment and the laboratory. We investigated the functional repertoire of this biomineralization process at the cell, genome and molecular level. Based on a mineralization assay, Rta is shown to hydrolyse the phosphoester bonds of a wide range of organic P molecules. Accordingly, its genome has an unusually high diversity of phosphatases: five genes belonging to two non-homologous families, phoD and phoX, were detected. These genes showed diverse predicted cis-regulatory elements. Moreover, they encoded proteins with diverse structural properties according to molecular models. Heterologously expressed PhoD and PhoX in Escherichia coli had different profiles of substrate hydrolysis. As evidenced for Rta cells, recombinant E. coli cells induced the precipitation of Ca-phosphate mineral phases, identified as poorly crystalline hydroxyapatite. The phosphatase genomic repertoire of Rta (containing phosphatases of both the PhoD and PhoX families) was previously evidenced as prevalent in marine oligotrophic environments. Interestingly, the Tataouine sand from which Rta was isolated showed similar P-depleted, but Ca-rich conditions. Overall, the diversity of phosphatases in Rta allows the hydrolysis of a broad range of organic P substrates and therefore the release of orthophosphates (inorganic phosphate) under diverse trophic conditions. Since the release of orthophosphates is key to the achievement of high saturation levels with respect to hydroxyapatite and the induction of phosphatogenesis, Rta appears as a particularly efficient driver of this process as shown experimentally.
Collapse
Affiliation(s)
- Fériel Skouri-Panet
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Karim Benzerara
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Julie Cosmidis
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Céline Férard
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Géraldine Caumes
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Gilles De Luca
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Thierry Heulin
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Elodie Duprat
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| |
Collapse
|
7
|
Zhou Y, Hölzl G, Vom Dorp K, Peisker H, Melzer M, Frentzen M, Dörmann P. Identification and characterization of a plastidial phosphatidylglycerophosphate phosphatase in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:221-234. [PMID: 27614107 DOI: 10.1111/tpj.13378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Phosphatidylglycerol (PG) is the only phospholipid in the thylakoid membranes of chloroplasts of plants, and it is also found in extraplastidial membranes including mitochondria and the endoplasmic reticulum. Previous studies showed that lack of PG in the pgp1-2 mutant of Arabidopsis deficient in phosphatidylglycerophosphate (PGP) synthase strongly affects thylakoid biogenesis and photosynthetic activity. In the present study, the gene encoding the enzyme for the second step of PG synthesis, PGP phosphatase, was isolated based on sequence similarity to the yeast GEP4 and Chlamydomonas PGPP1 genes. The Arabidopsis AtPGPP1 protein localizes to chloroplasts and harbors PGP phosphatase activity with alkaline pH optimum and divalent cation requirement. Arabidopsis pgpp1-1 mutant plants contain reduced amounts of chlorophyll, but photosynthetic quantum yield remains unchanged. The absolute content of plastidial PG (34:4; total number of acyl carbons:number of double bonds) is reduced by about 1/3, demonstrating that AtPGPP1 is involved in the synthesis of plastidial PG. PGP 34:3, PGP 34:2 and PGP 34:1 lacking 16:1 accumulate in pgpp1-1, indicating that the desaturation of 16:0 to 16:1 by the FAD4 desaturase in the chloroplasts only occurs after PGP dephosphorylation.
Collapse
Affiliation(s)
- Yonghong Zhou
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Katharina Vom Dorp
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Margrit Frentzen
- Botany, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| |
Collapse
|
8
|
Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens. Appl Environ Microbiol 2016; 83:AEM.02361-16. [PMID: 27836849 DOI: 10.1128/aem.02361-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022] Open
Abstract
The alginate-producing bacterium Pseudomonas fluorescens utilizes the Entner-Doudoroff (ED) and pentose phosphate (PP) pathways to metabolize fructose, since the upper part of its Embden-Meyerhof-Parnas pathway is defective. Our previous study indicated that perturbation of the central carbon metabolism by diminishing glucose-6-phosphate dehydrogenase activity could lead to sugar phosphate stress when P. fluorescens was cultivated on fructose. In the present study, we demonstrate that PFLU2693, annotated as a haloacid dehalogenase-like enzyme, is a new sugar phosphate phosphatase, now designated Spp, which is able to dephosphorylate a range of phosphate substrates, including glucose 6-phosphate and fructose 6-phosphate, in vitro The effect of spp overexpression on growth and alginate production was investigated using both the wild type and several mutant strains. The results obtained suggested that sugar phosphate accumulation caused diminished growth in some of the mutant strains, since this was partially relieved by spp overexpression. On the other hand, overexpression of spp in fructose-grown alginate-producing strains negatively affected both growth and alginate production. The latter implies that Spp dephosphorylates the sugar phosphates, thus depleting the pool of these important metabolites. Deletion of the spp gene did not affect growth of the wild-type strain on fructose, but the gene could not be deleted in the alginate-producing strain. This indicates that Spp is essential for relieving the cells of sugar phosphate stress in P. fluorescens actively producing alginate. IMPORTANCE In enteric bacteria, the sugar phosphate phosphatase YigL is known to play an important role in combating stress caused by sugar phosphate accumulation. In this study, we identified a sugar phosphate phosphatase, designated Spp, in Pseudomonas fluorescens Spp utilizes glucose 6-phosphate, fructose 6-phosphate, and ribose 5-phosphate as substrates, and overexpression of the gene had a positive effect on growth in P. fluorescens mutants experiencing sugar phosphate stress. The gene was localized downstream of gnd and zwf-2, which encode enzymes involved in the pentose phosphate and Entner-Doudoroff pathways. Genes encoding Spp homologues were identified in similar genetic contexts in some bacteria belonging to several phylogenetically diverse families, suggesting similar functions.
Collapse
|
9
|
Saliba J, Zabriskie R, Ghosh R, Powell BC, Hicks S, Kimmel M, Meng Q, Ritter DI, Wheeler DA, Gibbs RA, Tsai FTF, Plon SE. Pharmacogenetic characterization of naturally occurring germline NT5C1A variants to chemotherapeutic nucleoside analogs. Pharmacogenet Genomics 2016; 26:271-9. [PMID: 26906009 PMCID: PMC4853247 DOI: 10.1097/fpc.0000000000000208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mutations or alterations in expression of the 5' nucleotidase gene family can lead to altered responses to treatment with nucleoside analogs. While investigating leukemia susceptibility genes, we discovered a very rare p.L254P NT5C1A missense variant in the substrate recognition motif. Given the paucity of cellular drug response data from the NT5C1A germline variation, we characterized p.L254P and eight rare variants of NT5C1A from genomic databases. MATERIALS AND METHODS Through lentiviral infection, we created HEK293 cell lines that stably overexpress wild-type NT5C1A, p.L254P, or eight NT5C1A variants reported in the National Heart Lung and Blood Institute Exome Variant Server (one truncating and seven missense). IC50 values were determined by cytotoxicity assays after exposure to chemotherapeutic nucleoside analogs (cladribine, gemcitabine, 5-fluorouracil). In addition, we used structure-based homology modeling to generate a three-dimensional model for the C-terminal region of NT5C1A. RESULTS The p.R180X (truncating), p.A214T, and p.L254P missense changes were the only variants that significantly impaired protein function across all nucleotide analogs tested (>5-fold difference vs. wild-type; P<0.05). Several of the remaining variants individually showed differential effects (both more and less resistant) across the analogs tested. The homology model provided a structural framework to understand the impact of NT5C1A mutants on catalysis and drug processing. The model predicted active site residues within NT5C1A motif III and we experimentally confirmed that p.K314 (not p.K320) is required for NT5C1A activity. CONCLUSION We characterized germline variation and predicted protein structures of NT5C1A. Individual missense changes showed considerable variation in response to the different nucleoside analogs tested, which may impact patients' responses to treatment.
Collapse
Affiliation(s)
- Jason Saliba
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ryan Zabriskie
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Rajarshi Ghosh
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Bradford C Powell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | | | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX
| | - Qingchang Meng
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Deborah I Ritter
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Francis T F Tsai
- Departments of Biochemistry and Molecular Biology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sharon E Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
10
|
Salomon D, Dar D, Sreeramulu S, Sessa G. Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:305-14. [PMID: 21062109 DOI: 10.1094/mpmi-09-10-0196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. X. campestris pv. vesicatoria pathogenicity depends on a type III secretion system delivering effector proteins into the host cells. We hypothesized that some X. campestris pv. vesicatoria effectors target conserved eukaryotic cellular processes and examined phenotypes induced by their expression in yeast. Out of 21 effectors tested, 14 inhibited yeast growth in normal or stress conditions. Viability assay revealed that XopB and XopF2 attenuated cell proliferation, while AvrRxo1, XopX, and XopE1 were cytotoxic. Inspection of morphological features and DNA content of yeast cells indicated that cytotoxicity caused by XopX and AvrRxo1 was associated with cell-cycle arrest at G0/1. Interestingly, XopB, XopE1, XopF2, XopX, and AvrRxo1 that inhibited growth in yeast also caused phenotypes, such as chlorosis and cell death, when expressed in either host or nonhost plants. Finally, the ability of several effectors to cause phenotypes in yeast and plants was dependent on their putative catalytic residues or localization motifs. This study supports the use of yeast as a heterologous system for functional analysis of X. campestris pv. vesicatoria type III effectors, and sets the stage for identification of their eukaryotic molecular targets and modes of action.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
11
|
3-D Model of the bee venom acid phosphatase: Insights into allergenicity. Biochem Biophys Res Commun 2009; 378:711-5. [DOI: 10.1016/j.bbrc.2008.11.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 11/29/2022]
|
12
|
Schnell R, Agren D, Schneider G. 1.9 A structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1096-100. [PMID: 19052358 PMCID: PMC2593691 DOI: 10.1107/s1744309108035203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/28/2008] [Indexed: 11/10/2022]
Abstract
NarL from Mycobacterium tuberculosis is a putative nitrate response regulator that is involved in the regulation of anaerobic metabolism in this pathogen. The recombinant purified N-terminal signal receiver domain of NarL has been crystallized in space group C222(1), with unit-cell parameters a = 85.6, b = 90.0, c = 126.3 A, and the structure was determined by molecular replacement to 1.9 A resolution. Comparisons with related signal receiver domains show that the closest structural homologue is an uncharacterized protein from Staphylococcus aureus, whereas the nearest sequence homologue, NarL from Escherichia coli, displays larger differences in three-dimensional structure. The largest differences between the mycobacterial and E. coli NarL domains were found in the loop between beta3 and alpha3 in the proximity of the phosphorylation site. The active site in response regulators is similar to that of members of the haloacid dehalogenase (HAD) family, which also form a phospho-aspartyl intermediate. In NarL, the aspartic acid that acts as catalytic acid/base in several HAD enzymes is replaced by an arginine residue, which is less likely to participate in steps involving proton abstraction. This substitution may slow down the breakdown of the phospho-aspartyl anhydride and allow signalling beyond the timescales defined by a catalytic reaction intermediate.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
13
|
Leone R, Cappelletti E, Benvenuti M, Lentini G, Thaller MC, Mangani S. Structural insights into the catalytic mechanism of the bacterial class B phosphatase AphA belonging to the DDDD superfamily of phosphohydrolases. J Mol Biol 2008; 384:478-88. [PMID: 18845157 DOI: 10.1016/j.jmb.2008.09.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/11/2008] [Accepted: 09/16/2008] [Indexed: 11/16/2022]
Abstract
AphA is a magnesium-dependent, bacterial class B acid phosphatase that catalyzes the hydrolysis of a variety of phosphoester substrates and belongs to the DDDD superfamily of phosphohydrolases. The recently reported crystal structure of AphA from Escherichia coli has revealed the quaternary structure of the enzyme together with hints about its catalytic mechanism. The present work reports the crystal structures of AphA from E. coli in complex with substrate, transition-state, and intermediate analogues. The structures provide new insights into the mechanism of the enzyme and allow a revision of some aspects of the previously proposed mechanism that have broader implications for all the phosphatases of the DDDD superfamily.
Collapse
Affiliation(s)
- Rosalida Leone
- Dipartimento di Chimica, Università di Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Dudev T, Lim C. Competition between protein ligands and cytoplasmic inorganic anions for the metal cation: a DFT/CDM study. J Am Chem Soc 2007; 128:10541-8. [PMID: 16895422 DOI: 10.1021/ja063111s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many of the essential metalloproteins are located in the cell, whose cytoplasmic fluid contains several small inorganic anions, such as Cl-, NO2-, NO3-, H2PO4-, and SO4(2-), that play an indispensable role in determining the cell's volume, regulating the cell's pH, signal transduction, muscle contraction, as well as cell growth and metabolism. However, the physical principles governing the competition between these abundant, intracellular anions and protein or nucleic acid residues in binding to cytoplasmic metal cations such as Na+, K+, Mg2+, and Ca2+ are not well understood; hence, we have delineated the physicochemical basis for this competition using density functional theory in conjunction with the continuum dielectric method. The results show that the metal cation can bind to its target protein against a high background concentration of inorganic anions because (i) desolvating a negatively charged Asp/Glu carboxylate in a protein cavity costs much less than desolvating an inorganic anion in aqueous solution and (ii) the metal-binding site acts as a polydentate ligand that uses all its ligating entities to bind the metal cation either directly or indirectly. The results also show that the absolute hydration free energy of the "alien" anion as well as the net charge and relative solvent exposure of the metal-binding protein cavity are the key factors governing the competition between protein and inorganic ligands for a given cytoplasmic metal cation. Increasing the net negative charge of the protein cavity, while decreasing the number of available amide groups for metal binding, protects the metal-bound ligands from being dislodged by cellular anions, thus revealing a "protective" role for carboxylate groups in a protein cavity, in addition to their role in high affinity metal-binding.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
15
|
Felts RL, Ou Z, Reilly TJ, Tanner JJ. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily. Biochemistry 2007; 46:11110-9. [PMID: 17824671 DOI: 10.1021/bi701016m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipoprotein e (P4) from Haemophilus influenzae belongs to the "DDDD" superfamily of phosphohydrolases and is the prototype of class C nonspecific acid phosphatases. P4 is also a component of a H. influenzae vaccine. We report the crystal structures of recombinant P4 in the ligand-free and tungstate-inhibited forms, which are the first structures of a class C phosphatase. P4 has a two-domain architecture consisting of a core alpha/beta domain and a smaller alpha domain. The core domain features a five-stranded beta-sheet flanked by helices on both sides that is reminiscent of the haloacid dehalogenase superfamily. The alpha domain appears to be unique and plays roles in substrate binding and dimerization. The active site is solvent accessible and located in a cleft between the two domains. The structure shows that P4 is a metalloenzyme and that magnesium is the most likely metal ion in the crystalline recombinant enzyme. The ligands of the metal ion are the carboxyl groups of the first and third Asp residues of the DDDD motif, the backbone carbonyl of the second Asp of the DDDD motif, and two water molecules. The structure of the tungstate-bound enzyme suggests that Asp64 is the nucleophile that attacks the substrate P atom. Dimerization appears to be important for catalysis because intersubunit contacts stabilize the active site. Analysis of the structural context of mutations engineered for vaccine studies shows that the most promising mutations are located in the dimer interface. This observation suggests a structure-based vaccine design strategy in which the dimer interface is disrupted in order to expose epitopes that are buried in dimeric P4.
Collapse
Affiliation(s)
- Richard L Felts
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
16
|
Makde RD, Gupta GD, Mahajan SK, Kumar V. Structural and mutational analyses reveal the functional role of active-site Lys-154 and Asp-173 of Salmonella typhimurium AphA protein. Arch Biochem Biophys 2007; 464:70-9. [PMID: 17570338 DOI: 10.1016/j.abb.2007.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/27/2007] [Accepted: 03/30/2007] [Indexed: 11/22/2022]
Abstract
The Salmonella typhimurium class B nonspecific acid phosphatase (AphA protein) belongs to the L2-haloacid dehalogenase superfamily. The conserved Lys-154 interacts with substrate phosphate, nucleophile Asp-46, and Asp-173 in the wild-type AphA protein. Asp-173 also interacts with Mg(II) water ligand and with main-chain amide of loop-4. We report here the mutational analysis of Lys-154 and Asp-173, the crystal structures of the K154N and K154R mutants, and the results of electrostatic potential calculations. The K154N, K154R and D173N mutants display significant reduction in the phosphatase activity. Lys-154 may not be responsible for a juxtaposition of the substrate phosphate and the aspartyl nucleophile, but has an hitherto unknown functional role of rendering the substrate phosphorous atom electron deficient. Nearly 10,000-fold increase in the K(d) value for dissociation of the cofactor Mg(II) observed for the D173N mutant correlates well with theoretically estimated change in the binding free energy of Mg(II).
Collapse
Affiliation(s)
- Ravindra D Makde
- High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | | | |
Collapse
|
17
|
Rangarajan ES, Proteau A, Wagner J, Hung MN, Matte A, Cygler M. Structural Snapshots of Escherichia coli Histidinol Phosphate Phosphatase along the Reaction Pathway. J Biol Chem 2006; 281:37930-41. [PMID: 16966333 DOI: 10.1074/jbc.m604916200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Felts RL, Reilly TJ, Calcutt MJ, Tanner JJ. Cloning, purification and crystallization of Bacillus anthracis class C acid phosphatase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:705-8. [PMID: 16820700 PMCID: PMC2242959 DOI: 10.1107/s174430910602389x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/22/2006] [Indexed: 11/10/2022]
Abstract
Cloning, expression, purification and crystallization studies of a recombinant class C acid phosphatase from the Category A pathogen Bacillus anthracis are reported. Large diffraction-quality crystals were grown in the presence of HEPES and Jeffamine ED-2001 at pH 7.0. The crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 53.4, b = 90.1, c = 104.2 angstroms. The asymmetric unit is predicted to contain two protein molecules with a solvent content of 38%. Two native data sets were collected from the same crystal before and after flash-annealing. The first data set had a mosaicity of 1.6 degrees and a high-resolution limit of 1.8 angstroms. After flash-annealing, the apparent mosaicity decreased to 0.9 degrees and the high-resolution limit of usable data increased to 1.6 angstroms. This crystal form is currently being used to determine the structure of B. anthracis class C acid phosphatase with experimental phasing techniques.
Collapse
Affiliation(s)
- Richard L. Felts
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Thomas J. Reilly
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
- Veterinary Medical Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael J. Calcutt
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|