1
|
Mashayekhi F, Zeinali E, Ganje C, Fanta M, Li L, Godbout R, Weinfeld M, Ismail IH. CDK-dependent phosphorylation regulates PNKP function in DNA replication. J Biol Chem 2024; 300:107880. [PMID: 39395804 DOI: 10.1016/j.jbc.2024.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Okazaki fragment maturation (OFM) stands as a pivotal DNA metabolic process, crucial for genome integrity and cell viability. Dysregulation of OFM leads to DNA single-strand breaks-accumulation, which is linked to various human diseases such as cancer and neurodegenerative disorders. Recent studies have implicated LIG3-XRCC1 acting in an alternative OFM pathway to the canonical FEN1-LIG1 pathway. Here, we reveal that polynucleotide kinase-phosphatase (PNKP) is another key participant in DNA replication, akin to LIG3-XRCC1. Through functional experiments, we demonstrate PNKP's enrichment at DNA replication forks and its association with PCNA, indicating its involvement in DNA replication processes. Cellular depletion of PNKP mirrors defects observed in OFM-related proteins, highlighting its significance in replication fork dynamics. Additionally, we identify PNKP as a substrate for cyclin-dependent kinase 1 and 2 (CDK1/2), which phosphorylates PNKP at multiple residues. Mutation analysis of these phosphorylation sites underscores the importance of CDK-mediated PNKP phosphorylation in DNA replication. Our findings collectively indicate a novel role for PNKP in facilitating Okazaki fragments joining, thus shedding light on its contribution to genome stability maintenance.
Collapse
Affiliation(s)
- Fatemeh Mashayekhi
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Cassandra Ganje
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mesfin Fanta
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Li
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 PMCID: PMC12054971 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
3
|
Tsai LK, Peng M, Chang CC, Wen L, Liu L, Liang X, Chen YE, Xu J, Sung LY. ZSCAN4 interacts with PARP1 to promote DNA repair in mouse embryonic stem cells. Cell Biosci 2023; 13:193. [PMID: 37875990 PMCID: PMC10594928 DOI: 10.1186/s13578-023-01140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In eukaryotic cells, DNA double strand breaks (DSB) are primarily repaired by canonical non-homologous end joining (c-NHEJ), homologous recombination (HR) and alternative NHEJ (alt-NHEJ). Zinc finger and SCAN domain containing 4 (ZSCAN4), sporadically expressed in 1-5% mouse embryonic stem cells (mESCs), is known to regulate genome stability by promoting HR. RESULTS Here we show that ZSCAN4 promotes DNA repair by acting with Poly (ADP-ribose) polymerase 1 (PARP1), which is a key member of the alt-NHEJ pathway. In the presence of PARP1, ZSCAN4-expressing mESCs are associated with lower extent of endogenous or chemical induced DSB comparing to ZSCAN4-negative ones. Reduced DSBs associated with ZSCAN4 are abolished by PARP1 inhibition, achieved either through small molecule inhibitor or gene knockout in mESCs. Furthermore, PARP1 binds directly to ZSCAN4, and the second ⍺-helix and the fourth zinc finger motif of ZSCAN4 are critical for this binding. CONCLUSIONS These data reveal that PARP1 and ZSCAN4 have a protein-protein interaction, and shed light on the molecular mechanisms by which ZSCAN4 reduces DSB in mESCs.
Collapse
Affiliation(s)
- Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Luan Wen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Center for Developmental Biology and Regenerative Medicine, Taipei, 106, Taiwan, ROC.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
4
|
Multifaceted Nature of DNA Polymerase θ. Int J Mol Sci 2023; 24:ijms24043619. [PMID: 36835031 PMCID: PMC9962433 DOI: 10.3390/ijms24043619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break repair and DNA translesion synthesis. Pol θ is often overexpressed in cancer cells and promotes their resistance to chemotherapeutic agents. In this review, we discuss unique biochemical properties and structural features of Pol θ, its multiple roles in protection of genome stability and the potential of Pol θ as a target for cancer treatment.
Collapse
|
5
|
Wang X, Mi S, Zhao M, Lu C, Jia C, Chen Y. Quantitative Analysis of the Protein Methylome Reveals PARP1 Methylation is involved in DNA Damage Response. Front Mol Biosci 2022; 9:878646. [PMID: 35847980 PMCID: PMC9277342 DOI: 10.3389/fmolb.2022.878646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Protein methylation plays important roles in DNA damage response. To date, proteome-wide profiling of protein methylation upon DNA damage has been not reported yet. In this study, using HILIC affinity enrichment combined with MS analysis, we conducted a quantitative analysis of the methylated proteins in HEK293T cells in response to IR treatment. In total, 235 distinct methylation sites responding to IR treatment were identified, and 38% of them were previously unknown. Multiple RNA-binding proteins were differentially methylated upon DNA damage stress. Furthermore, we identified 14 novel methylation sites in DNA damage response-related proteins. Moreover, we validated the function of PARP1 K23 methylation in repairing IR-induced DNA lesions. K23 methylation deficiency sensitizes cancer cells to radiation and HU-induced replication stress. In addition, PARP1 K23 methylation participates in the resolution of stalled replication forks by regulating PARP1 binding to damaged forks. Taken together, this study generates a data resource for global protein methylation in response to IR-induced DNA damage and reveals a critical role of PARP1 K23 methylation in DNA repair.
Collapse
Affiliation(s)
- Xinzhu Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shaojie Mi
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Industrial Microbiology Key Lab, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mingxin Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chen Lu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Chen Lu, ; Chenxi Jia, ; Yali Chen,
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- *Correspondence: Chen Lu, ; Chenxi Jia, ; Yali Chen,
| | - Yali Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- *Correspondence: Chen Lu, ; Chenxi Jia, ; Yali Chen,
| |
Collapse
|
6
|
Derby SJ, Chalmers AJ, Carruthers RD. Radiotherapy-Poly(ADP-ribose) Polymerase Inhibitor Combinations: Progress to Date. Semin Radiat Oncol 2022; 32:15-28. [PMID: 34861992 DOI: 10.1016/j.semradonc.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation resistance remains a huge clinical problem for cancer patients and oncologists in the 21st century. In recent years, the mammalian DNA damage response (DDR) has been extensively characterized and shown to play a key role in determining cellular survival following ionizing radiation exposure. Genomic instability due to altered DDR is a hallmark of cancer, with many tumors exhibiting abnormal DNA repair or lack of redundancy in DDR. Targeting the abnormal DDR phenotype of tumor cells could lead to substantial gains in radiotherapy efficacy, improving local control and survival for patients with cancers that are refractory to current therapies. Poly(ADP-ribose) polymerase inhibitors (PARPi) are the most clinically advanced DDR inhibitors under investigation as radiosensitisers. Preclinical evidence suggests that PARPi may provide tumor specific radiosensitisation in certain contexts. In addition to inhibition of DNA single strand break repair, PARPi may offer other benefits in combination treatment including radiosensitisation of hypoxic cells and targeting of alternative repair pathways such as microhomology mediated end joining which are increasingly recognized to be upregulated in cancer. Several early phase clinical trials of PARPi with radiation have completed or are in progress. Early reports have highlighted tumor specific challenges, with tolerability dependent upon anatomical location and use of concomitant systemic therapies; these challenges were largely predicted by preclinical data. This review discusses the role of PARP in the cellular response to ionizing radiation, summarizes preclinical studies of PARPi in combination with radiotherapy and explores current early phase clinical trials that are evaluating these combinations.
Collapse
Affiliation(s)
- Sarah J Derby
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland.
| | - Anthony J Chalmers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Ross D Carruthers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
7
|
Olmedo-Pelayo J, Rubio-Contreras D, Gómez-Herreros F. Canonical non-homologous end-joining promotes genome mutagenesis and translocations induced by transcription-associated DNA topoisomerase 2 activity. Nucleic Acids Res 2020; 48:9147-9160. [PMID: 32749454 PMCID: PMC7498328 DOI: 10.1093/nar/gkaa640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
DNA topoisomerase II (TOP2) is a major DNA metabolic enzyme, with important roles in replication, transcription, chromosome segregation and spatial organisation of the genome. TOP2 is the target of a class of anticancer drugs that poison the DNA-TOP2 transient complex to generate TOP2-linked DNA double-strand breaks (DSBs). The accumulation of DSBs kills tumour cells but can also result in genome instability. The way in which topoisomerase activity contributes to transcription remains unclear. In this work we have investigated how transcription contributes to TOP2-dependent DSB formation, genome instability and cell death. Our results demonstrate that gene transcription is an important source of abortive TOP2 activity. However, transcription does not contribute significantly to apoptosis or cell death promoted by TOP2-induced DSBs. On the contrary: transcription-dependent breaks greatly contribute to deleterious mutations and translocations, and can promote oncogenic rearrangements. Importantly, we show that TOP2-induced genome instability is mediated by mutagenic canonical non-homologous end joining whereas homologous recombination protects cells against these insults. Collectively, these results uncover mechanisms behind deleterious effects of TOP2 abortive activity during transcription, with relevant implications for chemotherapy.
Collapse
Affiliation(s)
- Joaquín Olmedo-Pelayo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, 41080 Seville, Spain
| | - Diana Rubio-Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, 41080 Seville, Spain
| | - Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Genética, Universidad de Sevilla, 41080 Seville, Spain
| |
Collapse
|
8
|
Zhou C, Parsons JL. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev Mol Med 2020; 22:e3. [PMID: 32611474 PMCID: PMC7754878 DOI: 10.1017/erm.2020.4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/04/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with reported incidences of ~800 000 cases each year. One of the critical determinants in patient response to radiotherapy, particularly for oropharyngeal cancers, is human papillomavirus (HPV) status where HPV-positive patients display improved survival rates and outcomes particularly because of increased responsiveness to radiotherapy. The increased radiosensitivity of HPV-positive HNSCC has been largely linked with defects in the signalling and repair of DNA double-strand breaks. Therefore, strategies to further radiosensitise HPV-positive HNSCC, but also radioresistant HPV-negative HNSCC, have focussed on targeting key DNA repair proteins including PARP, DNA-Pk, ATM and ATR. However, inhibitors against CHK1 and WEE1 involved in cell-cycle checkpoint activation have also been investigated as targets for radiosensitisation in HNSCC. These studies, largely conducted using established HNSCC cell lines in vitro, have demonstrated variability in the response dependent on the specific inhibitors and cell models utilised. However, promising results are evident targeting specifically PARP, DNA-Pk, ATR and CHK1 in synergising with radiation in HNSCC cell killing. Nevertheless, these preclinical studies require further expansion and investigation for translational opportunities for the effective treatment of HNSCC in combination with radiotherapy.
Collapse
Affiliation(s)
- Chumin Zhou
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| | - Jason L. Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| |
Collapse
|
9
|
Bosshard S, Duroy PO, Mermod N. A role for alternative end-joining factors in homologous recombination and genome editing in Chinese hamster ovary cells. DNA Repair (Amst) 2019; 82:102691. [PMID: 31476574 DOI: 10.1016/j.dnarep.2019.102691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
CRISPR technologies greatly foster genome editing in mammalian cells through site-directed DNA double strand breaks (DSBs). However, precise editing outcomes, as mediated by homologous recombination (HR) repair, are typically infrequent and outnumbered by undesired genome alterations. By using knockdown and overexpression studies in Chinese hamster ovary (CHO) cells as well as characterizing repaired DNA junctions, we found that efficient HR-mediated genome editing depends on alternative end-joining (alt-EJ) DNA repair activities, a family of incompletely characterized DNA repair pathways traditionally considered to oppose HR. This dependency was influenced by the CRISPR nuclease type and the DSB-to-mutation distance, but not by the DNA sequence surrounding the DSBs or reporter cell line. We also identified elevated Mre11 and Pari, and low Rad51 expression levels as the most rate-limiting factors for HR in CHO cells. Counteracting these three bottlenecks improved precise genome editing by up to 75%. Altogether, our study provides novel insights into the complex interplay of alt-EJ and HR repair pathways, highlighting their relevance for developing improved genome editing strategies.
Collapse
Affiliation(s)
- Sandra Bosshard
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre-Olivier Duroy
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Bermúdez-Guzmán L, Leal A. DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria. Transl Neurodegener 2019; 8:14. [PMID: 31110700 PMCID: PMC6511134 DOI: 10.1186/s40035-019-0156-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3'-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
- Neuroscience Research Center, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
11
|
Mani RS, Mermershtain I, Abdou I, Fanta M, Hendzel MJ, Glover JNM, Weinfeld M. Domain analysis of PNKP-XRCC1 interactions: Influence of genetic variants of XRCC1. J Biol Chem 2018; 294:520-530. [PMID: 30446622 DOI: 10.1074/jbc.ra118.004262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Indexed: 12/28/2022] Open
Abstract
Polynucleotide kinase/phosphatase (PNKP) and X-ray repair cross-complementing 1 (XRCC1) are key proteins in the single-strand DNA break repair pathway. Phosphorylated XRCC1 stimulates PNKP by binding to its forkhead-associated (FHA) domain, whereas nonphosphorylated XRCC1 stimulates PNKP by interacting with the PNKP catalytic domain. Here, we have further studied the interactions between these two proteins, including two variants of XRCC1 (R194W and R280H) arising from single-nucleotide polymorphisms (SNPs) that have been associated with elevated cancer risk in some reports. We observed that interaction of the PNKP FHA domain with phosphorylated XRCC1 extends beyond the immediate, well-characterized phosphorylated region of XRCC1 (residues 515-526). We also found that an XRCC1 fragment, comprising residues 166-436, binds tightly to PNKP and DNA and efficiently activates PNKP's kinase activity. However, interaction of either of the SNP-derived variants of this fragment with PNKP was considerably weaker, and their stimulation of PNKP was severely reduced, although they still could bind DNA effectively. Laser microirradiation revealed reduced recruitment of PNKP to damaged DNA in cells expressing either XRCC1 variant compared with PNKP recruitment in cells expressing WT XRCC1 even though WT and variant XRCC1s were equally efficient at localizing to the damaged DNA. These findings suggest that the elevated risk of cancer associated with these XRCC1 SNPs reported in some studies may be due in part to the reduced ability of these XRCC1 variants to recruit PNKP to damaged DNA.
Collapse
Affiliation(s)
- Rajam S Mani
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Inbal Mermershtain
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ismail Abdou
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Mesfin Fanta
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - Michael J Hendzel
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| | - J N Mark Glover
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael Weinfeld
- From the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2 and
| |
Collapse
|
12
|
Chalasani SL, Kawale AS, Akopiants K, Yu Y, Fanta M, Weinfeld M, Povirk LF. Persistent 3'-phosphate termini and increased cytotoxicity of radiomimetic DNA double-strand breaks in cells lacking polynucleotide kinase/phosphatase despite presence of an alternative 3'-phosphatase. DNA Repair (Amst) 2018; 68:12-24. [PMID: 29807321 DOI: 10.1016/j.dnarep.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
Polynucleotide kinase/phosphatase (PNKP) has been implicated in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). To assess the consequences of PNKP deficiency for NHEJ of 3'-phosphate-ended DSBs, PNKP-deficient derivatives of HCT116 and of HeLa cells were generated using CRISPR/CAS9. For both cell lines, PNKP deficiency conferred sensitivity to ionizing radiation as well as to neocarzinostatin (NCS), which specifically induces DSBs bearing protruding 3'-phosphate termini. Moreover, NCS-induced DSBs, detected as 53BP1 foci, were more persistent in PNKP -/- HCT116 cells compared to their wild-type (WT) counterparts. Surprisingly, PNKP-deficient whole-cell and nuclear extracts were biochemically competent in removing both protruding and recessed 3'-phosphates from synthetic DSB substrates, albeit much less efficiently than WT extracts, suggesting an alternative 3'-phosphatase. Measurements by ligation-mediated PCR showed that PNKP-deficient HeLa cells contained significantly more 3'-phosphate-terminated and fewer 3'-hydroxyl-terminated DSBs than parental cells 5-15 min after NCS treatment, but this difference disappeared by 1 h. These results suggest that, despite presence of an alternative 3'-phosphatase, loss of PNKP significantly sensitizes cells to 3'-phosphate-terminated DSBs, due to a 3'-dephosphorylation defect.
Collapse
Affiliation(s)
- Sri Lakshmi Chalasani
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Konstantin Akopiants
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Yaping Yu
- Centre for Genome Engineering, University of Calgary, Calgary, AB, Canada
| | - Mesfin Fanta
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute and University of Alberta, Edmonton, AB, Canada
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
13
|
Efficient Recreation of t(11;22) EWSR1-FLI1 + in Human Stem Cells Using CRISPR/Cas9. Stem Cell Reports 2018; 8:1408-1420. [PMID: 28494941 PMCID: PMC5425785 DOI: 10.1016/j.stemcr.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma.
Collapse
|
14
|
Kim K, Pedersen LC, Kirby TW, DeRose EF, London RE. Characterization of the APLF FHA-XRCC1 phosphopeptide interaction and its structural and functional implications. Nucleic Acids Res 2017; 45:12374-12387. [PMID: 29059378 PMCID: PMC5716189 DOI: 10.1093/nar/gkx941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023] Open
Abstract
Aprataxin and PNKP-like factor (APLF) is a DNA repair factor containing a forkhead-associated (FHA) domain that supports binding to the phosphorylated FHA domain binding motifs (FBMs) in XRCC1 and XRCC4. We have characterized the interaction of the APLF FHA domain with phosphorylated XRCC1 peptides using crystallographic, NMR, and fluorescence polarization studies. The FHA–FBM interactions exhibit significant pH dependence in the physiological range as a consequence of the atypically high pK values of the phosphoserine and phosphothreonine residues and the preference for a dianionic charge state of FHA-bound pThr. These high pK values are characteristic of the polyanionic peptides typically produced by CK2 phosphorylation. Binding affinity is greatly enhanced by residues flanking the crystallographically-defined recognition motif, apparently as a consequence of non-specific electrostatic interactions, supporting the role of XRCC1 in nuclear cotransport of APLF. The FHA domain-dependent interaction of XRCC1 with APLF joins repair scaffolds that support single-strand break repair and non-homologous end joining (NHEJ). It is suggested that for double-strand DNA breaks that have initially formed a complex with PARP1 and its binding partner XRCC1, this interaction acts as a backup attempt to intercept the more error-prone alternative NHEJ repair pathway by recruiting Ku and associated NHEJ factors.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
15
|
Tadi SK, Tellier-Lebègue C, Nemoz C, Drevet P, Audebert S, Roy S, Meek K, Charbonnier JB, Modesti M. PAXX Is an Accessory c-NHEJ Factor that Associates with Ku70 and Has Overlapping Functions with XLF. Cell Rep 2017; 17:541-555. [PMID: 27705800 DOI: 10.1016/j.celrep.2016.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 01/19/2023] Open
Abstract
In mammalian cells, classical non-homologous end joining (c-NHEJ) is critical for DNA double-strand break repair induced by ionizing radiation and during V(D)J recombination in developing B and T lymphocytes. Recently, PAXX was identified as a c-NHEJ core component. We report here that PAXX-deficient cells exhibit a cellular phenotype uncharacteristic of a deficiency in c-NHEJ core components. PAXX-deficient cells display normal sensitivity to radiomimetic drugs, are proficient in transient V(D)J recombination assays, and do not shift toward higher micro-homology usage in plasmid repair assays. Although PAXX-deficient cells lack c-NHEJ phenotypes, PAXX forms a stable ternary complex with Ku bound to DNA. Formation of this complex involves an interaction with Ku70 and requires a bare DNA extension for stability. Moreover, the relatively weak Ku-dependent stimulation of LIG4/XRCC4 activity by PAXX is unmasked by XLF ablation. Thus, PAXX plays an accessory role during c-NHEJ that is largely overlapped by XLF's function.
Collapse
Affiliation(s)
- Satish K Tadi
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, 13273 Marseille, France
| | - Carine Tellier-Lebègue
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Clément Nemoz
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Pascal Drevet
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Stéphane Audebert
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, 13273 Marseille, France
| | - Sunetra Roy
- Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Katheryn Meek
- Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, 13273 Marseille, France.
| |
Collapse
|
16
|
Dutta A, Eckelmann B, Adhikari S, Ahmed KM, Sengupta S, Pandey A, Hegde PM, Tsai MS, Tainer JA, Weinfeld M, Hegde ML, Mitra S. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res 2017; 45:2585-2599. [PMID: 27994036 PMCID: PMC5389627 DOI: 10.1093/nar/gkw1262] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ), an error-prone pathway for DNA double-strand break (DSB) repair, is implicated in genomic rearrangement and oncogenic transformation; however, its contribution to repair of radiation-induced DSBs has not been characterized. We used recircularization of a linearized plasmid with 3΄-P-blocked termini, mimicking those at X-ray-induced strand breaks, to recapitulate DSB repair via MMEJ or nonhomologous end-joining (NHEJ). Sequence analysis of the circularized plasmids allowed measurement of relative activity of MMEJ versus NHEJ. While we predictably observed NHEJ to be the predominant pathway for DSB repair in our assay, MMEJ was significantly enhanced in preirradiated cells, independent of their radiation-induced arrest in the G2/M phase. MMEJ activation was dependent on XRCC1 phosphorylation by casein kinase 2 (CK2), enhancing XRCC1's interaction with the end resection enzymes MRE11 and CtIP. Both endonuclease and exonuclease activities of MRE11 were required for MMEJ, as has been observed for homology-directed DSB repair (HDR). Furthermore, the XRCC1 co-immunoprecipitate complex (IP) displayed MMEJ activity in vitro, which was significantly elevated after irradiation. Our studies thus suggest that radiation-mediated enhancement of MMEJ in cells surviving radiation therapy may contribute to their radioresistance and could be therapeutically targeted.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Bradley Eckelmann
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | | | - Kazi Mokim Ahmed
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Miaw-Sheue Tsai
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - John A Tainer
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.,Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
17
|
Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 2016; 63:591-605. [PMID: 27915381 DOI: 10.1007/s00294-016-0670-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks are the most serious type of DNA damage and non-homologous end joining (NHEJ) is an important pathway for their repair. In Saccharomyces cerevisiae, three complexes mediate the canonical NHEJ pathway, Ku (Ku70/Ku80), MRX (Mre11/Rad50/Xrs2) and DNA ligase IV (Dnl4/Lif1). Mammalian NHEJ is more complex, primarily as a consequence of the fact that more factors are involved in the process, and also because higher chromatin organization and more complex regulatory networks exist in mammals. In addition, a stronger interconnection between the NHEJ and DNA damage response (DDR) pathways seems to occur in mammals compared to yeast. DDR employs multiple post-translational modifications (PTMs) of the target proteins and mutual crosstalk among them to ensure highly efficient down-stream effects. Checkpoint-mediated phosphorylation is the best understood PTM that regulates DDR, although recently SUMOylation has also been shown to be involved. Both phosphorylation and SUMOylation affect components of NHEJ. In this review, we discuss a role of these two PTMs in regulation of NHEJ via targeting the components of the ligation step.
Collapse
|
18
|
Nikjoo H, Taleei R, Liamsuwan T, Liljequist D, Emfietzoglou D. Perspectives in radiation biophysics: From radiation track structure simulation to mechanistic models of DNA damage and repair. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Jiang B, Glover JNM, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev 2016; 161:130-140. [PMID: 27470939 DOI: 10.1016/j.mad.2016.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
The termini of DNA strand breaks induced by reactive oxygen species or by abortive DNA metabolic intermediates require processing to enable subsequent gap filling and ligation to proceed. The three proteins, tyrosyl DNA-phosphodiesterase 1 (TDP1), aprataxin (APTX) and polynucleotide kinase/phosphatase (PNKP) each act on a discrete set of modified strand-break termini. Recently, a series of neurodegenerative and neurodevelopmental disorders have been associated with mutations in the genes coding for these proteins. Mutations in TDP1 and APTX have been linked to Spinocerebellar ataxia with axonal neuropathy (SCAN1) and Ataxia-ocular motor apraxia 1 (AOA1), respectively, while mutations in PNKP are considered to be responsible for Microcephaly with seizures (MCSZ) and Ataxia-ocular motor apraxia 4 (AOA4). Here we present an overview of the mechanisms of these proteins and how their impairment may give rise to their respective disorders.
Collapse
Affiliation(s)
- Bingcheng Jiang
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| | - J N Mark Glover
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
20
|
Kai M. Roles of RNA-Binding Proteins in DNA Damage Response. Int J Mol Sci 2016; 17:310. [PMID: 26927092 PMCID: PMC4813173 DOI: 10.3390/ijms17030310] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as “liquid-demixing”). Among the PAR-associated IDPs are FUS/TLS (fused in sarcoma/translocated in sarcoma), EWS (Ewing sarcoma), TARF15 (TATA box-binding protein-associated factor 68 kDa) (also called FET proteins), a number of heterogeneous nuclear ribonucleoproteins (hnRNPs), and RBM14. Importantly, various point mutations within the FET genes have been implicated in pathological protein aggregation in neurodegenerative diseases, specifically with amyotrophic lateral sclerosis (ALS), and frontotemporal lobe degeneration (FTLD). The FET proteins also frequently exhibit gene translocation in human cancers, and emerging evidence shows their physical interactions with DDR proteins and thus implies their involvement in the maintenance of genome stability.
Collapse
Affiliation(s)
- Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
21
|
Singh PK, Mistry KN. A computational approach to determine susceptibility to cancer by evaluating the deleterious effect of nsSNP in XRCC1 gene on binding interaction of XRCC1 protein with ligase III. Gene 2016; 576:141-9. [DOI: 10.1016/j.gene.2015.09.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
22
|
How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J 2015; 471:1-11. [PMID: 26392571 DOI: 10.1042/bj20150582] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA DSBs (double-strand breaks) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that, in normal cells, DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilization of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. In the present review, we evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilization of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We consider the ways by which cancers modify and hijack these processes to gain genomic instability.
Collapse
|
23
|
Yamaguchi K, Kajikawa M, Okada N. LINE retrotransposition and host DNA repair machinery. Mob Genet Elements 2015; 5:92-97. [PMID: 26942045 PMCID: PMC4760211 DOI: 10.1080/2159256x.2015.1096998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
Long interspersed elements (LINEs), or non-long-terminal repeat (LTR) retrotransposons, are mobile genetic elements that exist in the genomic DNA of most eukaryotes, comprising a considerable portion of the host chromosomes. LINEs constitute endogenous mutagens that cause insertional mutations in host chromosomes and have a large impact on host genome evolution. Despite their importance, however, the molecular mechanism of LINE retrotransposition is not fully understood. Several studies suggest that host proteins that participate in the repair of DNA breaks modulate LINE retrotransposition. Recently, we provided evidence that there are 2 distinct pathways-annealing and direct-that join the 5'-end of LINEs to host chromosomal DNA. These pathways appear to be used distinctively by zebrafish LINEs and the human L1 in DT40 cells. In HeLa cells, only the annealing pathway appears to be used. This implies that different characteristics of the 2 LINEs and also host factors dictate which pathway is selected. Here, we discuss the 5'-end-joining pathways of LINE retrotransposition and propose that the pathways of LINE integration adopt certain host repair factors.
Collapse
Affiliation(s)
- Katsumi Yamaguchi
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama, Kanagawa Japan
| | - Masaki Kajikawa
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama, Kanagawa Japan
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Yokohama, Kanagawa Japan
- Department of Life Sciences; National Cheng Kung University; Tainan, Taiwan
- Foundation for Advancement of International Science; Tsukuba, Japan
| |
Collapse
|
24
|
Boudra MT, Bolin C, Chiker S, Fouquin A, Zaremba T, Vaslin L, Biard D, Cordelières FP, Mégnin-Chanet F, Favaudon V, Fernet M, Pennaneach V, Hall J. PARP-2 depletion results in lower radiation cell survival but cell line-specific differences in poly(ADP-ribose) levels. Cell Mol Life Sci 2015; 72:1585-97. [PMID: 25336152 PMCID: PMC11113491 DOI: 10.1007/s00018-014-1765-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 02/02/2023]
Abstract
Poly(ADP-ribose) polymerase-2 (PARP-2) activity contributes to a cells' poly(ADP-ribosyl)ating potential and like PARP-1, has been implicated in several DNA repair pathways including base excision repair and DNA single strand break repair. Here the consequences of its stable depletion in HeLa, U20S, and AS3WT2 cells were examined. All three PARP-2 depleted models showed increased sensitivity to the cell killing effects on ionizing radiation as reported in PARP-2 depleted mouse embryonic fibroblasts providing further evidence for a role in DNA strand break repair. The PARP-2 depleted HeLa cells also showed both higher constitutive and DNA damage-induced levels of polymers of ADP-ribose (PAR) associated with unchanged PARP-1 protein levels, but higher PARP activity and a concomitant lower PARG protein levels and activity. These changes were accompanied by a reduced maximal recruitment of PARP-1, XRCC1, PCNA, and PARG to DNA damage sites. This PAR-associated phenotype could be reversed in HeLa cells on re-expression of PARP-2 and was not seen in U20S and AS3WT2 cells. These results highlight the complexity of the relationship between different members of the PARP family on PAR metabolism and suggest that cell model dependent phenotypes associated with the absence of PARP-2 exist within a common background of radiation sensitivity.
Collapse
Affiliation(s)
- Mohammed-Tayyib Boudra
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Faculté de Médecine, Université Paris-XI, 94270 Le Kremlin Bicêtre, France
| | - Celeste Bolin
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: Department of Biology, The College of Idaho, 2112 Cleveland Boulevard, Caldwell, ID 83605 USA
| | - Sara Chiker
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Faculté de Médecine, Université Paris-XI, 94270 Le Kremlin Bicêtre, France
| | - Alexis Fouquin
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Faculté de Médecine, Université Paris-XI, 94270 Le Kremlin Bicêtre, France
| | - Tomasz Zaremba
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: AstraZeneca Pharma Poland Sp. z o.o.ul., Postępu 18, 02-676 Warsaw, Poland
| | - Laurence Vaslin
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Denis Biard
- Commissariat à l’Energie Atomique, DSV-iMETI-SEPIA, 92265 Fontenay Aux Roses, France
| | - Fabrice P. Cordelières
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- CNRS, UMR3348, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Plateforme IBiSA d’Imagerie Cellulaire et Tissulaire, Institut Curie, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: Pôle d’imagerie photonique, Institut François Magendie, Bordeaux Imaging Center, UMS 3420 CNRS-Université de Bordeaux-US4 INSERM, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - Frédérique Mégnin-Chanet
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Present Address: Inserm U1030, Gustave Roussy Cancer Campus Grand Paris, 114 rue Edouard-Vaillant, 94805 Villejuif, France
| | - Vincent Favaudon
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Marie Fernet
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Vincent Pennaneach
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| | - Janet Hall
- Institut Curie, Centre de Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm, U612, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
- Inserm U612, Institut Curie-Recherche, Bât. 110-112, Centre Universitaire, 91405 Orsay, France
| |
Collapse
|
25
|
Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 2015; 518:254-7. [PMID: 25642960 PMCID: PMC4718306 DOI: 10.1038/nature14157] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here we show that repair by alternative NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify polymerase theta (Polθ; encoded by Polq in mice) as a crucial alternative NHEJ factor in mammalian cells. Polq inhibition suppresses alternative NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that loss of Polq in mice results in increased rates of homology-directed repair, evident by recombination of dysfunctional telomeres and accumulation of RAD51 at double-stranded breaks. Lastly, we show that depletion of Polθ has a synergistic effect on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumours carrying mutations in homology-directed repair genes.
Collapse
Affiliation(s)
- Pedro A. Mateos-Gomez
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000, Austin, TX 78712 USA
| | - Nidhi Nair
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000, Austin, TX 78712 USA
| | - Eros Lazzerini-Denchi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
26
|
Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, Hamamoto R. The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells. Neoplasia 2014; 16:257-64, 264.e2. [PMID: 24726141 DOI: 10.1016/j.neo.2014.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/21/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) catalyzes the poly(ADP-ribosyl)ation of protein acceptors using NAD(+) as the substrate is now considered as an important target for development of anticancer therapy. PARP1 is known to be post-translationally modified in various ways including phosphorylation and ubiquitination, but the physiological role of PARP1 methylation is not well understood. Herein we demonstrated that the histone methyltransferase SMYD2, which plays critical roles in human carcinogenesis, mono-methylated PARP1. We confirmed lysine 528 to be a target of SMYD2-dependent PARP1 methylation by LC-MS/MS and Edman Degradation analyses. Importantly, methylated PARP1 revealed enhanced poly(ADP-ribose) formation after oxidative stress, and positively regulated the poly(ADP-ribosyl)ation activity of PARP1. Hence, our study unveils a novel mechanism of PARP1 in human cancer through its methylation by SMYD2.
Collapse
Affiliation(s)
- Lianhua Piao
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL 60637, USA
| | - Daechun Kang
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takehiro Suzuki
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akiko Masuda
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL 60637, USA; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
27
|
Frit P, Barboule N, Yuan Y, Gomez D, Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair (Amst) 2014; 17:81-97. [PMID: 24613763 DOI: 10.1016/j.dnarep.2014.02.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/01/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years.
Collapse
Affiliation(s)
- Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Nadia Barboule
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Ying Yuan
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Dennis Gomez
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France.
| |
Collapse
|
28
|
Gicquel E, Souchard JP, Magnusson F, Chemaly J, Calsou P, Vicendo P. Role of intercalation and redox potential in DNA photosensitization by ruthenium(II) polypyridyl complexes: assessment using DNA repair protein tests. Photochem Photobiol Sci 2014; 12:1517-26. [PMID: 23835850 DOI: 10.1039/c3pp50070e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report that the photoreactivity of ruthenium(II) complexes with nucleobases may not only be modulated by their photoredox properties but also by their DNA binding mode. The damage resulting from photolysis of synthetic oligonucleotides and plasmid DNA by [Ru(bpz)3](2+), [Ru(bipy)3](2+) and the two DNA intercalating agents [Ru(bpz)2dppz](2+) and [Ru(bipy)2dppz](2+) has been monitored by polyacrylamide gel electrophoresis and by tests using proteins involved in DNA repair processes (DNA-PKCs, Ku80, Ku70, and PARP-1). The data show that intercalation controls the nature of the DNA damage photo-induced by ruthenium(II) complexes reacting with DNA via an electron transfer process. The intercalating agent [Ru(bpz)2dppz](2+) is a powerful DNA breaker inducing the formation of both single and double (DSBs) strand breaks which are recognized by the PARP-1 and DNA-PKCs proteins respectively. [Ru(bpz)2dppz](2+) is the first ruthenium(II) complex described in the literature that is able to induce DSBs by an electron transfer process. In contrast, its non-intercalating parent compound, [Ru(bpz)3](2+), is mostly an efficient DNA alkylating agent. Photoadducts are recognized by the proteins Ku70 and Ku80 as with cisplatin adducts. This result suggests that photoaddition of [Ru(bpz)2dppz](2+) is strongly affected by its DNA intercalation whereas its photonuclease activity is exalted. The data clearly show that DNA intercalation decreases drastically the photonuclease activity of ruthenium(II) complexes oxidizing guanine via the production of singlet oxygen. Interestingly, the DNA sequencing data revealed that the ligand dipyridophenazine exhibits on single-stranded oligonucleotides a preference for the 5'-TGCGT-3' sequence. Moreover the use of proteins involved in DNA repair processes to detect DNA damage was a powerful tool to examine the photoreactivity of ruthenium(II) complexes with nucleic acids.
Collapse
Affiliation(s)
- Etienne Gicquel
- Université de Toulouse, Laboratoire des IMRCP, UMR 5623 CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | | | | | | | | | | |
Collapse
|
29
|
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10:e1004086. [PMID: 24453986 PMCID: PMC3894167 DOI: 10.1371/journal.pgen.1004086] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- CNRS, Centre de Recherches de Gif-sur-Yvette, FRC3115, Gif-sur-Yvette, France
- Université Paris-Sud, Département de Biologie, Orsay, France
| | - Pascale Bertrand
- CEA, DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Laboratoire Réparation et Vieillissement, Fontenay-aux-Roses, France
- UMR 8200 CNRS, Villejuif, France
| | - Bernard S. Lopez
- Université Paris-Sud, Département de Biologie, Orsay, France
- UMR 8200 CNRS, Villejuif, France
- Institut de Cancérologie, Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
30
|
Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response. Chromosoma 2013; 123:79-90. [PMID: 24162931 DOI: 10.1007/s00412-013-0442-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/19/2023]
Abstract
Poly(ADP-ribose) (PAR) is a post-translational modification of proteins and is synthesised by PAR polymerases (PARPs), which have long been associated with the coordination of the cellular response to DNA damage, amongst other processes. Binding of some PARPs such as PARP1 to broken DNA induces a substantial wave of PARylation, which results in significant re-structuring of the chromatin microenvironment through modification of chromatin-associated proteins and recruitment of chromatin-modifying proteins. Similarly, other DNA damage response proteins are recruited to the damaged sites via PAR-specific binding modules, and in this way, PAR mediates not only local chromatin architecture but also DNA repair. Here, we discuss the expanding role of PAR in the DNA damage response, with particular focus on chromatin regulation.
Collapse
|
31
|
Taleei R, Nikjoo H. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:206-12. [DOI: 10.1016/j.mrgentox.2013.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022]
|
32
|
Chiruvella KK, Liang Z, Wilson TE. Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol 2013; 5:a012757. [PMID: 23637284 DOI: 10.1101/cshperspect.a012757] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromosomes when DSBs arise. Recent advances have revealed much about the identity, structure, and function of c-NHEJ proteins, but many questions exist regarding their concerted action in the context of chromatin. Alternative NHEJ (alt-NHEJ) refers to more recently described mechanism(s) that repair DSBs in less-efficient backup reactions. There is great interest in defining alt-NHEJ more precisely, including its regulation relative to c-NHEJ, in light of evidence that alt-NHEJ can execute chromosome rearrangements. Progress toward these goals is reviewed.
Collapse
|
33
|
Tobin LA, Robert C, Rapoport AP, Gojo I, Baer MR, Tomkinson AE, Rassool FV. Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias. Oncogene 2013; 32:1784-93. [PMID: 22641215 PMCID: PMC3752989 DOI: 10.1038/onc.2012.203] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/23/2012] [Accepted: 04/23/2012] [Indexed: 11/08/2022]
Abstract
Resistance to imatinib (IM) and other tyrosine kinase inhibitors (TKI)s is an increasing problem in leukemias caused by expression of BCR-ABL1. As chronic myeloid leukemia (CML) cell lines expressing BCR-ABL1 utilize an alternative non-homologous end-joining pathway (ALT NHEJ) to repair DNA double-strand breaks (DSB)s, we asked whether this repair pathway is a novel therapeutic target in TKI-resistant disease. Notably, the steady state levels of two ALT NHEJ proteins, poly-(ADP-ribose) polymerase 1 (PARP1) and DNA ligase IIIα, were increased in the BCR-ABL1-positive CML cell line K562 and, to a greater extent, in its imatinib-resistant (IMR) derivative. Incubation of these cell lines with a combination of DNA ligase and PARP inhibitors inhibited ALT NHEJ and selectively decreased survival with the effect being greater in the IMR derivative. Similar results were obtained with TKI-resistant derivatives of two hematopoietic cell lines that had been engineered to stably express BCR-ABL1. Together our results show that the sensitivity of cell lines expressing BCR-ABL1 to the combination of DNA ligase and PARP inhibitors correlates with the steady state levels of PARP1 and DNA ligase IIIα, and ALT NHEJ activity. Importantly, analysis of clinical samples from CML patients confirmed that the expression levels of PARP1 and DNA ligase IIIα correlated with the sensitivity to the DNA repair inhibitor combination. Thus, the expression levels of PARP1 and DNA ligase IIIα serve as biomarkers to identify a subgroup of CML patients who may be candidates for therapies that target the ALT NHEJ pathway when treatment with TKIs has failed.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols
- Apoptosis/drug effects
- Benzamides/pharmacology
- Blotting, Western
- Cell Proliferation/drug effects
- Comparative Genomic Hybridization
- DNA Breaks, Double-Stranded/drug effects
- DNA End-Joining Repair/drug effects
- DNA Ligase ATP
- DNA Ligases/antagonists & inhibitors
- DNA Ligases/genetics
- DNA Ligases/metabolism
- Drug Resistance, Neoplasm/drug effects
- Enzyme Inhibitors/pharmacology
- Fluorescent Antibody Technique
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Immunoenzyme Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Piperazines/pharmacology
- Poly (ADP-Ribose) Polymerase-1
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Poly-ADP-Ribose Binding Proteins
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenopus Proteins
Collapse
Affiliation(s)
- Lisa A. Tobin
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Carine Robert
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aaron P. Rapoport
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ivana Gojo
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Maria R. Baer
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Alan E. Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM
| | - Feyruz V. Rassool
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
34
|
Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: preserving genome integrity and modulating physiological events. Mol Aspects Med 2013; 34:1138-52. [PMID: 23454615 DOI: 10.1016/j.mam.2013.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
To cope with the devastating insults constantly inflicted to their genome by intrinsic and extrinsic DNA damaging sources, cells have evolved a sophisticated network of interconnected DNA caretaking mechanisms that will detect, signal and repair the lesions. Among the underlying molecular mechanisms that regulate these events, PARylation catalyzed by Poly(ADP-ribose) polymerases (PARPs), appears as one of the earliest post-translational modification at the site of the lesion that is known to elicit recruitment and regulation of many DNA damage response proteins. In this review we discuss how the complex PAR molecule operates in stress-induced DNA damage signaling and genome maintenance but also in various physiological settings initiated by developmentally programmed DNA breakage. To illustrate the latter, particular emphasis will be placed on the emerging contribution of PARPs to B cell receptor assembly and diversification.
Collapse
Affiliation(s)
- Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), Centre National de Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
35
|
Hanssen-Bauer A, Solvang-Garten K, Akbari M, Otterlei M. X-ray repair cross complementing protein 1 in base excision repair. Int J Mol Sci 2012; 13:17210-29. [PMID: 23247283 PMCID: PMC3546746 DOI: 10.3390/ijms131217210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large multiprotein DNA repair complexes as well as facilitate the recruitment of DNA repair proteins to sites of DNA damage. Moreover, XRCC1 is present in constitutive DNA repair complexes, some of which associate with the replication machinery. Because of the critical role of XRCC1 in DNA repair, its common variants Arg194Trp, Arg280His and Arg399Gln have been extensively studied. However, the prevalence of these variants varies strongly in different populations, and their functional influence on DNA repair and disease remains elusive. Here we present the current knowledge about the role of XRCC1 and its variants in BER and human disease/cancer.
Collapse
Affiliation(s)
- Audun Hanssen-Bauer
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
| | - Karin Solvang-Garten
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
| | - Mansour Akbari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 N, Denmark; E-Mail:
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +47-72573075; Fax: +47-72576400
| |
Collapse
|
36
|
Kashkina E, Qi T, Weinfeld M, Young D. Polynucleotide kinase/phosphatase, Pnk1, is involved in base excision repair in Schizosaccharomyces pombe. DNA Repair (Amst) 2012; 11:676-83. [PMID: 22748672 DOI: 10.1016/j.dnarep.2012.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/03/2012] [Accepted: 06/03/2012] [Indexed: 11/30/2022]
Abstract
We previously reported that Schizosaccharomyces pombe pnk1 cells are more sensitive than wild-type cells to γ-radiation and camptothecin, indicating that Pnk1 is required for DNA repair. Here, we report that pnk1pku70 and pnk1rhp51 double mutants are more sensitive to γ-radiation than single mutants, from which we infer that Pnk1's primary role is independent of either homologous recombination or non-homologous end joining mechanisms. We also report that pnk1 cells are more sensitive than wild-type cells to oxidizing and alkylating agents, suggesting that Pnk1 is involved in base excision repair. Mutational analysis of Pnk1 revealed that the DNA 3'-phosphatase activity is necessary for repair of DNA damage, whereas the 5'-kinase activity is dispensable. A role for Pnk1 in base excision repair is supported by genetic analyses which revealed that pnk1apn2 is synthetically lethal, suggesting that Pnk1 and Apn2 may function in parallel pathways essential for the repair of endogenous DNA damage. Furthermore, the nth1pnk1apn2 and tdp1pnk1apn2 triple mutants are viable, implying that single-strand breaks with 3'-blocked termini produced by Nth1 and Tdp1 contribute to synthetic lethality. We also examined the sensitivity to methyl methanesulfonate of all single and double mutant combinations of nth1, apn2, tdp1 and pnk1. Together, our results support a model where Tdp1 and Pnk1 act in concert in an Apn2-independent base excision repair pathway to repair 3'-blocked termini produced by Nth1; and they also provide evidence that Pnk1 has additional roles in base excision repair.
Collapse
Affiliation(s)
- Ekaterina Kashkina
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB T2N4N1, Canada
| | | | | | | |
Collapse
|
37
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
38
|
Ali AAE, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M, Ladurner AG, Pearl LH, Oliver AW. The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 2012; 19:685-692. [PMID: 22683995 PMCID: PMC4826610 DOI: 10.1038/nsmb.2335] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/29/2012] [Indexed: 12/22/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a primary DNA damage sensor whose (ADP-ribose) polymerase activity is acutely regulated by interaction with DNA breaks. Upon activation at sites of DNA damage, PARP1 modifies itself and other proteins by covalent addition of long, branched polymers of ADP-ribose, which in turn recruit downstream DNA repair and chromatin remodeling factors. PARP1 recognizes DNA damage through its N-terminal DNA-binding domain (DBD), which consists of a tandem repeat of an unusual zinc-finger (ZnF) domain. We have determined the crystal structure of the human PARP1-DBD bound to a DNA break. Along with functional analysis of PARP1 recruitment to sites of DNA damage in vivo, the structure reveals a dimeric assembly whereby ZnF1 and ZnF2 domains from separate PARP1 molecules form a strand-break recognition module that helps activate PARP1 by facilitating its dimerization and consequent trans-automodification.
Collapse
Affiliation(s)
- Ammar A E Ali
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN7 9QR, UK
| | - Gyula Timinszky
- Genome Biology Unit, Structural & Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Physiological Chemistry, Adolf Butenandt Institute, University of Munich, Butenandt Street 5, 81377 Munich, Germany
| | - Raquel Arribas-Bosacoma
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN7 9QR, UK
| | - Marek Kozlowski
- Genome Biology Unit, Structural & Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Physiological Chemistry, Adolf Butenandt Institute, University of Munich, Butenandt Street 5, 81377 Munich, Germany
| | - Paul O Hassa
- Genome Biology Unit, Structural & Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Hassler
- Genome Biology Unit, Structural & Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Physiological Chemistry, Adolf Butenandt Institute, University of Munich, Butenandt Street 5, 81377 Munich, Germany
| | - Andreas G Ladurner
- Genome Biology Unit, Structural & Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Physiological Chemistry, Adolf Butenandt Institute, University of Munich, Butenandt Street 5, 81377 Munich, Germany
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN7 9QR, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN7 9QR, UK
| |
Collapse
|
39
|
Leong IUS, Lai D, Lan CC, Johnson R, Love DR, Johnson R, Love DR. Targeted mutagenesis of zebrafish: Use of zinc finger nucleases. ACTA ACUST UNITED AC 2011; 93:249-55. [DOI: 10.1002/bdrc.20213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Pacchierotti F, Ranaldi R, Derijck AA, van der Heijden GW, de Boer P. In vivo repair of DNA damage induced by X-rays in the early stages of mouse fertilization, and the influence of maternal PARP1 ablation. Mutat Res 2011; 714:44-52. [PMID: 21762709 DOI: 10.1016/j.mrfmmm.2011.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 01/17/2023]
Abstract
The early pronucleus stage of the mouse zygote has been characterised in vitro as radiosensitive, due to a high rate of induction of chromosome-type chromosome abnormalities (CA). We have investigated the repair of irradiation induced double strand DNA breaks in vivo by γH2AX foci and first cleavage metaphase analysis. Breaks were induced in sperm and in the early zygote stages comprising sperm chromatin remodelling and early pronucleus expansion. Moreover, the role of PARP1 in the formation and repair of spontaneous and radiation-induced double strand breaks in the zygote was evaluated by comparing observations in C57BL/6J and PARP1 genetically ablated females. The results confirmed in vivo that the rate of chromosome aberration induction by X-rays was approximately 3-fold higher in the zygote than in mouse lymphocytes. This finding was related to a diminished efficiency of double strand break signalling, as shown by a lower rate of γH2AX radiation-induced foci compared to that measured in most other somatic cell types. The spontaneous frequency of CA in PARP1 depleted zygotes was slightly but significantly higher than in wild type zygotes. Also, these zygotes showed some impairment of the radiation-induced DNA Damage Response when exposed closer to the start of S-phase, revealed by a higher number of γH2AX foci and a longer cell cycle delay. The rate of chromosome aberrations, however, was not elevated over that of wild type zygotes, possibly thanks to backup repair pathways and/or selection mechanisms against damaged cells. When comparing with the literature data on irradiation induced CA in mouse zygotes in vitro, the levels of induction were strikingly similar as was the frequency of misrepair of double strand breaks (γH2AX foci). This result can be reassuring for in vitro human gamete and embryo handling, because it shows that culture conditions do not significantly affect double strand DNA break repair.
Collapse
Affiliation(s)
- F Pacchierotti
- Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | | | | | | | | |
Collapse
|
41
|
Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011; 332:1443-6. [PMID: 21680843 DOI: 10.1126/science.1202723] [Citation(s) in RCA: 636] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sirtuin 6 (SIRT6) is a mammalian homolog of the yeast Sir2 deacetylase. Mice deficient for SIRT6 exhibit genome instability. Here, we show that in mammalian cells subjected to oxidative stress SIRT6 is recruited to the sites of DNA double-strand breaks (DSBs) and stimulates DSB repair, through both nonhomologous end joining and homologous recombination. Our results indicate that SIRT6 physically associates with poly[adenosine diphosphate (ADP)-ribose] polymerase 1 (PARP1) and mono-ADP-ribosylates PARP1 on lysine residue 521, thereby stimulating PARP1 poly-ADP-ribosylase activity and enhancing DSB repair under oxidative stress.
Collapse
Affiliation(s)
- Zhiyong Mao
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res 2011; 730:28-36. [PMID: 21575645 DOI: 10.1016/j.mrfmmm.2011.04.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023]
Abstract
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94143-1331, USA.
| |
Collapse
|
43
|
Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci 2011; 36:262-71. [PMID: 21353781 DOI: 10.1016/j.tibs.2011.01.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/09/2023]
Abstract
The termini of DNA strand breaks induced by internal and external factors often require processing before missing nucleotides can be replaced by DNA polymerases and the strands rejoined by DNA ligases. Polynucleotide kinase/phosphatase (PNKP) serves a crucial role in the repair of DNA strand breaks by catalyzing the restoration of 5'-phosphate and 3'-hydroxyl termini. It participates in several DNA repair pathways through interactions with other DNA repair proteins, notably XRCC1 and XRCC4. Recent studies have highlighted the physiological importance of PNKP in maintaining the genomic stability of normal tissues, particularly developing neural cells, as well as enhancing the resistance of cancer cells to genotoxic therapeutic agents.
Collapse
|
44
|
Piao L, Nakagawa H, Ueda K, Chung S, Kashiwaya K, Eguchi H, Ohigashi H, Ishikawa O, Daigo Y, Matsuda K, Nakamura Y. C12orf48, termed PARP-1 binding protein, enhances poly(ADP-ribose) polymerase-1 (PARP-1) activity and protects pancreatic cancer cells from DNA damage. Genes Chromosomes Cancer 2011; 50:13-24. [PMID: 20931645 DOI: 10.1002/gcc.20828] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To identify novel therapeutic targets for aggressive and therapy-resistant pancreatic cancer, we had previously performed expression profile analysis of pancreatic cancers using microarrays and found dozens of genes trans-activated in pancreatic ductal adenocarcinoma (PDAC) cells. Among them, this study focused on the characterization of a novel gene C12orf48 whose overexpression in PDAC cells was validated by Northern blot and immunohistochemical analysis. Its overexpression was observed in other aggressive and therapy-resistant malignancies as well. Knockdown of C12orf48 by siRNA in PDAC cells significantly suppressed their growth. Importantly, we demonstrated that C12orf48 protein could directly interact with Poly(ADP-ribose) Polymerase-1 (PARP-1), one of the essential proteins in the repair of DNA damage, and positively regulate the poly(ADP-ribosyl)ation activity of PARP-1. Depletion of C12orf48 sensitized PDAC cells to agents causing DNA damage and also enhanced DNA damage-induced G2/M arrest through reduction of PARP-1 enzymatic activities. Hence, our findings implicate C12orf48, termed PARP-1 binding protein (PARPBP), or its interaction with PARP-1 to be a potential molecular target for development of selective therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Lianhua Piao
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Allinson SL. DNA end-processing enzyme polynucleotide kinase as a potential target in the treatment of cancer. Future Oncol 2010; 6:1031-42. [PMID: 20528239 DOI: 10.2217/fon.10.40] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacological inhibition of DNA-repair pathways as an approach for the potentiation of chemo- and radio-therapeutic cancer treatments has attracted increasing levels of interest in recent years. Inhibitors of several enzymes involved in the repair of DNA strand breaks are currently at various stages of the drug development process. Polynucleotide kinase (PNK), a bifunctional DNA-repair enzyme that possesses both 3'-phosphatase and 5'-kinase activities, plays an important role in the repair of both single strand and double strand breaks and as a result, RNAi-mediated knockdown of PNK sensitizes cells to a range of DNA-damaging agents. Recently, a small molecule inhibitor of PNK has been developed that is able to sensitize cells to ionizing radiation and the topoisomerase I poison, camptothecin. Although still in the early stages of development, PNK inhibition represents a promising means of enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Sarah L Allinson
- School of Health & Medicine, Division of Biomedical & Life Sciences, Lancaster University, Lancaster LA14YQ, UK.
| |
Collapse
|
46
|
Audebert M, Riu A, Jacques C, Hillenweck A, Jamin EL, Zalko D, Cravedi JP. Use of the γH2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicol Lett 2010; 199:182-92. [PMID: 20832459 DOI: 10.1016/j.toxlet.2010.08.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 01/18/2023]
Abstract
The development of in vitro genotoxic assays as an alternative method to animal experimentation is of growing interest in the context of the implementation of new regulations on chemicals. However, extrapolation of toxicity data from in vitro systems to in vivo models is hampered by the fact that in vitro systems vary in their capability to metabolize chemicals, and that biotransformation can greatly influence the experimental results. Therefore, much attention has to be paid to the cellular models used and experimental conditions. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic ubiquitous pollutants. Human exposure to PAHs is mainly from food origin. In this study, a detailed analysis of the biotransformation capabilities of three human cell lines commonly used for in vitro testing (HepG2, ACHN and Caco-2) was undertaken using 3 model PAHs (benzo(a)pyrene [B(a)P], fluoranthene [FLA] and 3-methylcholanthrene [3-MC]). Concomitantly the genotoxicity of these PAHs was investigated in different cell lines, using a new genotoxic assay (H2AX) in 96-well plates. The metabolic rates of B(a)P, FLA and 3-MC were similar in HepG2 and Caco-2 cell lines, respectively, though with the production of different metabolites. The ACHN cell line was shown to express very limited metabolic capabilities. We demonstrated that the PAHs having a high metabolic rate (B(a)P and 3-MC) were genotoxic from 10(-7) molar in both HepG2 and Caco-2 cells. The present study shows that H2AX measurement in human cell lines competent for the metabolism, is an efficient and sensitive genotoxic assay requiring less cells and time than other currently available tests.
Collapse
Affiliation(s)
- M Audebert
- INRA, UMR 1089 Xénobiotiques INRA-ENVT, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Mansour WY, Rhein T, Dahm-Daphi J. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 2010; 38:6065-77. [PMID: 20483915 PMCID: PMC2952854 DOI: 10.1093/nar/gkq387] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end-joining (NHEJ), the major repair pathway for DNA double-strand breaks (DSB) in mammalian cells, employs a repertoire of core proteins, the recruitment of which to DSB-ends is Ku-dependent. Lack of either of the core components invariably leads to a repair deficiency. There has been evidence that an alternative end-joining operates in the absence of the core components. We used chromosomal reporter substrates to specifically monitor NHEJ of single I-SceI-induced-DSB for detailed comparison of classical and alternative end-joining. We show that rapid repair of both compatible and non-compatible ends require Ku-protein. In the absence of Ku, cells use a slow but efficient repair mode which experiences increasing sequence-loss with time after DSB induction. Chemical inhibition and PARP1-depletion demonstrated that the alternative end-joining in vivo is completely dependent upon functional PARP1. Furthermore, we show that the requirement for PARP1 depends on the absence of Ku but not on DNA-dependent protein kinase (DNA-PKcs). Extensive sequencing of repair junctions revealed that the alternative rejoining does not require long microhomologies. Together, we show that mammalian cells need Ku for rapid and conservative NHEJ. PARP1-dependent alternative route may partially rescue the deficient repair phenotype presumably at the expense of an enhanced mutation rate.
Collapse
Affiliation(s)
- Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiation Oncology, Department of Radiotherapy and Radiation Oncology, University Medical School Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | |
Collapse
|
48
|
Activation of PARP-1 in response to bleomycin depends on the Ku antigen and protein phosphatase 5. Oncogene 2010; 29:2093-103. [PMID: 20101203 DOI: 10.1038/onc.2009.492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) has an important role in the cellular response to a broad spectrum of DNA lesions. PARP-1 is strongly activated in response to double-stranded DNA breaks (DSBs), yet its contribution to the DSB response is poorly understood. Here we used bleomycin, a radiomimetic that generates DSBs with high specificity to focus on the response of PARP-1 to DSBs. We report that the induction of PARP-1 activity by bleomycin depends on the Ku antigen, a nonhomologous-DNA-End-Joining factor and protein phosphatase 5 (PP5). PARP-1 activation in response to bleomycin was reduced over 10-fold in Ku-deficient cells, whereas its activation in response to U.V. was unaffected. PARP-1 activation was rescued by reexpression of Ku, but was refractory to manipulation of DNA-dependent protein kinase or ATM. Similarly, PARP-1 activation subsequent to bleomycin was reduced 2-fold on ablation of PP5 and was increased 5-fold when PP5 was overexpressed. PP5 seemed to act directly on PARP-1, as its basal phosphorylation was reduced on overexpression of PP5, and PP5 dephosphorylated PARP-1 in vitro. These results highlight the functional importance of Ku antigen and PP5 for PARP-1 activity subsequent to DSBs.
Collapse
|
49
|
Letsolo BT, Rowson J, Baird DM. Fusion of short telomeres in human cells is characterized by extensive deletion and microhomology, and can result in complex rearrangements. Nucleic Acids Res 2009; 38:1841-52. [PMID: 20026586 PMCID: PMC2847243 DOI: 10.1093/nar/gkp1183] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Telomere fusion is an important mutational event that has the potential to lead to large-scale genomic rearrangements of the types frequently observed in cancer. We have developed single-molecule approaches to detect, isolate and characterize the DNA sequence of telomere fusion events in human cells. Using these assays, we have detected complex fusion events that include fusion with interstitial loci adjacent to fragile sites, intra-molecular rearrangements, and fusion events involving the telomeres of both arms of the same chromosome consistent with ring chromosome formation. All fusion events were characterized by the deletion of at least one of the telomeres extending into the sub-telomeric DNA up to 5.6 kb; close to the limit of our assays. The deletion profile indicates that deletion may extend further into the chromosome. Short patches of DNA sequence homology with a G:C bias were observed at the fusion point in 60% of events. The distinct profile that accompanies telomere fusion may be a characteristic of the end-joining processes involved in the fusion event.
Collapse
Affiliation(s)
- Boitelo T Letsolo
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | |
Collapse
|
50
|
Mitchell J, Smith GCM, Curtin NJ. Poly(ADP-Ribose) polymerase-1 and DNA-dependent protein kinase have equivalent roles in double strand break repair following ionizing radiation. Int J Radiat Oncol Biol Phys 2009; 75:1520-7. [PMID: 19931734 DOI: 10.1016/j.ijrobp.2009.07.1722] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/29/2009] [Accepted: 07/14/2009] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). METHODS AND MATERIALS The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kinetics assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. RESULTS DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K(d)(app) = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. CONCLUSION DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.
Collapse
Affiliation(s)
- Jody Mitchell
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|