1
|
Penzes JJ, Kaelber JT. Capsid Structure of the Fish Pathogen Syngnathus Scovelli Chapparvovirus Offers a New Perspective on Parvovirus Structural Biology. Viruses 2025; 17:679. [PMID: 40431691 PMCID: PMC12115719 DOI: 10.3390/v17050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Chapparvoviruses (ChPVs) comprise a divergent lineage of the Parvoviridae ssDNA virus family and evolved to infect vertebrate animals independently from the Parvovirinae subfamily. Despite being pathogenic and widespread in environmental samples and metagenomic assemblies, their structural characterization has proven challenging. Here, we report the first structural analysis of a ChPV, represented by the fish pathogen, Syngnathus scovelli chapparvovirus (SsChPV). We show through the SsChPV structure that the lineage harbors a surface morphology, subunit structure, and multimer interactions that are unique among parvoviruses. The SsChPV capsid evolved a threefold-related depression of α-helices that is analogous to the β-annulus pore of denso- and hamaparvoviruses and may play a role in monomer oligomerization during assembly. As interacting β-strands are absent from the twofold symmetry axis, the viral particle lacks the typical stability and resilience of parvovirus capsids. Although all parvoviruses thus far rely on the threading of large, flexible N-terminal domains to the capsid surface for their intracellular trafficking, our results show that ChPVs completely lack any such N-terminal sequences. This led to the subsequent degradation of their fivefold channel, the site of N-terminus externalization. These findings suggest that ChPVs harbor an infectious pathway that significantly deviates from the rest of the Parvoviridae.
Collapse
Affiliation(s)
- Judit J. Penzes
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08812, USA;
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08812, USA;
| |
Collapse
|
2
|
Martín-Bravo M, Gomez Llorente JM, Hernández-Rojas J. Virtual indentation of the empty capsid of the minute virus of mice using a minimal coarse-grained model. Phys Rev E 2024; 109:024402. [PMID: 38491620 DOI: 10.1103/physreve.109.024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 03/18/2024]
Abstract
A minimal coarse-grained model for T=1 viral capsids assembled from 20 protein rigid trimers has been designed by extending a previously proposed form of the interaction energy written as a sum of anisotropic pairwise interactions between the trimeric capsomers. The extension of the model has been performed to properly account for the coupling between two internal coordinates: the one that measures the intercapsomer distance and the other that gives the intercapsomer dihedral angle. The model has been able to fit with less than a 10% error the atomic force microscopy (AFM) indentation experimental data for the empty capsid of the minute virus of mice (MVM), providing in this way an admissible picture of the main mechanisms behind the capsid deformations. In this scenario, the bending of the intercapsomer dihedral angle is the angular internal coordinate that can support larger deformations away from its equilibrium values, determining important features of the AFM indentation experiments as the elastic constants along the three symmetry axes of the capsid and the critical indentations. From the value of one of the parameters of our model, we conclude that trimers in the MVM must be quite oblate tops, in excellent agreement with their known structure. The transition from the linear to the nonlinear regimes sampled in the indentation process appears to be an interesting topic for future research in physical virology.
Collapse
Affiliation(s)
- Manuel Martín-Bravo
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain
| | | | | |
Collapse
|
3
|
López-Bueno A, Gil-Ranedo J, Almendral JM. Assembly of Structurally Simple Icosahedral Viruses. Subcell Biochem 2024; 105:403-430. [PMID: 39738953 DOI: 10.1007/978-3-031-65187-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some virus examples, the assembly of the protein shell further requires non-symmetric interactions among intermediates to fold into specific conformations. In this chapter, the morphogenesis of some small and structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses, and polyomaviruses as paradigms, is described in some detail. Despite their small size, the assembly of these icosahedral viruses may follow rather complex pathways, as they may occur in different subcellular compartments, involve a panoply of cellular and viral factors, and regulatory protein post-translational modifications that challenge its comprehensive understanding. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. Further, membranes and factors at specific subcellular compartments may also be critically required for virus maturation. The high stability of intermediates and the process of viral maturation contribute to the overall irreversible character of the assembly process. These and other small, structurally less complex icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger, structurally more complex viruses as well as cellular and synthetic macromolecular complexes.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jon Gil-Ranedo
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Fuertes MA, López Mateos D, Valiente L, Rodríguez Huete A, Valbuena A, Mateu MG. Electrostatic Screening, Acidic pH and Macromolecular Crowding Increase the Self-Assembly Efficiency of the Minute Virus of Mice Capsid In Vitro. Viruses 2023; 15:v15051054. [PMID: 37243141 DOI: 10.3390/v15051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The hollow protein capsids from a number of different viruses are being considered for multiple biomedical or nanotechnological applications. In order to improve the applied potential of a given viral capsid as a nanocarrier or nanocontainer, specific conditions must be found for achieving its faithful and efficient assembly in vitro. The small size, adequate physical properties and specialized biological functions of the capsids of parvoviruses such as the minute virus of mice (MVM) make them excellent choices as nanocarriers and nanocontainers. In this study we analyzed the effects of protein concentration, macromolecular crowding, temperature, pH, ionic strength, or a combination of some of those variables on the fidelity and efficiency of self-assembly of the MVM capsid in vitro. The results revealed that the in vitro reassembly of the MVM capsid is an efficient and faithful process. Under some conditions, up to ~40% of the starting virus capsids were reassembled in vitro as free, non aggregated, correctly assembled particles. These results open up the possibility of encapsidating different compounds in VP2-only capsids of MVM during its reassembly in vitro, and encourage the use of virus-like particles of MVM as nanocontainers.
Collapse
Affiliation(s)
- Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Diego López Mateos
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez Huete
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Strobl K, Mateu MG, de Pablo PJ. Exploring nucleic acid condensation and release from individual parvovirus particles with different physicochemical cues. Virology 2023; 581:1-7. [PMID: 36842268 DOI: 10.1016/j.virol.2023.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
In the infection cycle, viruses release their genome in the host cell during uncoating. Here we use a variety of physicochemical procedures to induce and monitor the in vitro uncoating of ssDNA from individual Minute Virus of Mice (MVM) particles. Our experiments revealed two pathways of genome release: i) filamentous ssDNA appearing around intact virus particles when using gradual mechanical fatigue and heating at moderate temperature (50 °C). ii) thick structures of condensed ssDNA appearing when the virus particle is disrupted by mechanical nanoindentations, denaturing agent guanidinium chloride and high temperature (70 °C). We propose that in the case of filamentous ssDNA, when the capsid integrity is conserved, the genome is externalized through one channel of the capsid pores. However, the disruption of virus particles revealed a native structure of condensed genome. The mechanical analysis of intact particles after DNA strands ejection confirm the stabilization role of ssDNA in MVM.
Collapse
Affiliation(s)
- K Strobl
- Department of Condensed Matter Physics Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Department of Condensed Matter Physics Universidad Autónoma de Madrid, 28049, Madrid, Spain; Instituto de Física de la Materia Condensada (IFIMAC) Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Calvo-López T, Grueso E, Sánchez-Martínez C, Almendral JM. Intracellular virion traffic to the endosome driven by cell type specific sialic acid receptors determines parvovirus tropism. Front Microbiol 2023; 13:1063706. [PMID: 36756201 PMCID: PMC9899843 DOI: 10.3389/fmicb.2022.1063706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Parvoviruses are promising anticancer and gene therapy agents, but a deep knowledge of the entry process is crucial to exploit their therapeutic potential. We addressed this issue while attempting to retarget the oncolytic parvovirus minute virus of mice (MVMp) to the tumor vasculature. Residues at three functional domains of the icosahedral capsid were substituted by rational design with peptides competing with the vascular endothelial growth factor. Most substitutions impaired virus maturation, though some yielded infectious chimeric virions, and substitutions in a dimple at the twofold axis that allocates sialic acid (SIA) receptors altered viral tropism. One dimple-modified chimeric virion was efficiently attached as MVMp to α2-linked SIA moieties, but the infection was impaired by the binding to some inhibitory α2-3,-6,-8 SIA pseudoreceptors, which hampers intracellular virus traffic to the endosome in a cell type-dependent manner. Infectious from nonproductive traffic could be mechanistically discriminated by an endosomal drastic capsid structural transition comprising the cleavage of some VP2-Nt sequences and its associated VP1-Nt exposure. Correspondingly, neuraminidase removal of inhibitory SIA moieties enhanced the infection quantitatively, correlating to the restored virus traffic to the endosome and the extent of VP2-Nt cleavage/VP1-Nt exposure. This study illustrates (i) structural constraints to retarget parvoviruses with evolutionary adopted narrow grooves allocating small SIA receptors, (ii) the possibility to enhance parvovirus oncolysis by relaxing the glycan network on the cancer cell surface, and (iii) the major role played by the attachment to cell type-specific SIAs in the intracellular virus traffic to the endosome, which may determine parvovirus tropism and host range.
Collapse
Affiliation(s)
- Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Grueso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Sánchez-Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: José M. Almendral ✉
| |
Collapse
|
7
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
8
|
Mattola S, Aho V, Bustamante‐Jaramillo LF, Pizzioli E, Kann M, Vihinen‐Ranta M. Nuclear entry and egress of parvoviruses. Mol Microbiol 2022; 118:295-308. [PMID: 35974704 PMCID: PMC9805091 DOI: 10.1111/mmi.14974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/09/2023]
Abstract
Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | - Vesa Aho
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | | | - Edoardo Pizzioli
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Michael Kann
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden,Sahlgrenska AcademyGothenburgSweden,Department of Clinical MicrobiologyRegion Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Maija Vihinen‐Ranta
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
9
|
Mattola S, Hakanen S, Salminen S, Aho V, Mäntylä E, Ihalainen TO, Kann M, Vihinen-Ranta M. Concepts to Reveal Parvovirus-Nucleus Interactions. Viruses 2021; 13:1306. [PMID: 34372512 PMCID: PMC8310053 DOI: 10.3390/v13071306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/23/2023] Open
Abstract
Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification and damage, as well as protein-chromatin interactions.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Satu Hakanen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Sami Salminen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Vesa Aho
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| |
Collapse
|
10
|
Capsid assembly is regulated by amino acid residues asparagine 47 and 48 in the VP2 protein of porcine parvovirus. Vet Microbiol 2020; 253:108974. [PMID: 33433338 DOI: 10.1016/j.vetmic.2020.108974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/26/2020] [Indexed: 11/20/2022]
Abstract
Porcine parvovirus (PPV) is a major cause of reproductive failure in swine and has caused substantial losses throughout the world. Viral protein 2 (VP2) of PPV is a major structural protein that can self-assemble into virus-like particles (VLP) with hemagglutination (HA) activity. In order to identify the essential residues involved in the mechanism of capsid assembly and to further understand the function of HA, we analyzed a series of deletion mutants and site-directed mutations within the N-terminal of VP2 using the Escherichia coli system. Our results showed that deletion of the first 47 amino acids from the N-terminal of the VP2 protein did not affect capsid assembly, and further truncation to residue 48 Asparagine (Asn, N) caused detrimental effects. Site-directed mutagenesis experiments demonstrated that residue 47Asn reduced the assembly efficiency of PPV VLP, while residue 48Asn destroyed the stability, hemagglutination, and self-assembly characteristics of the PPV VP2 protein. Results from native PAGE inferred that macromolecular polymers were critical intermediates of the VP2 protein during the capsid assembly process. Site-directed mutation at 48Asn did not affect the ability of monomers to form into oligomers, but destroyed the ability of oligomers to assemble into macromolecular particles, influencing both capsid assembly and HA activity. Our findings provide valuable information on the mechanisms of PPV capsid assembly and the possibility of chimeric VLP vaccine development by replacing the first 47 amino acids at the N-terminal of the VP2 protein.
Collapse
|
11
|
Wu R, Prabhu R, Ozkan A, Sitharam M. Rapid prediction of crucial hotspot interactions for icosahedral viral capsid self-assembly by energy landscape atlasing validated by mutagenesis. PLoS Comput Biol 2020; 16:e1008357. [PMID: 33079933 PMCID: PMC7598928 DOI: 10.1371/journal.pcbi.1008357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/30/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Icosahedral viruses are under a micrometer in diameter, their infectious genome encapsulated by a shell assembled by a multiscale process, starting from an integer multiple of 60 viral capsid or coat protein (VP) monomers. We predict and validate inter-atomic hotspot interactions between VP monomers that are important for the assembly of 3 types of icosahedral viral capsids: Adeno Associated Virus serotype 2 (AAV2) and Minute Virus of Mice (MVM), both T = 1 single stranded DNA viruses, and Bromo Mosaic Virus (BMV), a T = 3 single stranded RNA virus. Experimental validation is by in-vitro, site-directed mutagenesis data found in literature. We combine ab-initio predictions at two scales: at the interface-scale, we predict the importance (cruciality) of an interaction for successful subassembly across each interface between symmetry-related VP monomers; and at the capsid-scale, we predict the cruciality of an interface for successful capsid assembly. At the interface-scale, we measure cruciality by changes in the capsid free-energy landscape partition function when an interaction is removed. The partition function computation uses atlases of interface subassembly landscapes, rapidly generated by a novel geometric method and curated opensource software EASAL (efficient atlasing and search of assembly landscapes). At the capsid-scale, cruciality of an interface for successful assembly of the capsid is based on combinatorial entropy. Our study goes all the way from resource-light, multiscale computational predictions of crucial hotspot inter-atomic interactions to validation using data on site-directed mutagenesis' effect on capsid assembly. By reliably and rapidly narrowing down target interactions, (no more than 1.5 hours per interface on a laptop with Intel Core i5-2500K @ 3.2 Ghz CPU and 8GB of RAM) our predictions can inform and reduce time-consuming in-vitro and in-vivo experiments, or more computationally intensive in-silico analyses.
Collapse
Affiliation(s)
- Ruijin Wu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Rahul Prabhu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Aysegul Ozkan
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Meera Sitharam
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
12
|
Antiangiogenic Vascular Endothelial Growth Factor-Blocking Peptides Displayed on the Capsid of an Infectious Oncolytic Parvovirus: Assembly and Immune Interactions. J Virol 2019; 93:JVI.00798-19. [PMID: 31315994 DOI: 10.1128/jvi.00798-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022] Open
Abstract
As many tumor cells synthetize vascular endothelial growth factors (VEGF) that promote neo-vascularization and metastasis, frontline cancer therapies often administer anti-VEGF (α-VEGF) antibodies. To target the oncolytic parvovirus minute virus of mice (MVM) to the tumor vasculature, we studied the functional tolerance, evasion of neutralization, and induction of α-VEGF antibodies of chimeric viruses in which the footprint of a neutralizing monoclonal antibody within the 3-fold capsid spike was replaced by VEGF-blocking peptides: P6L (PQPRPL) and A7R (ATWLPPR). Both peptides allowed viral genome replication and nuclear translocation of chimeric capsid subunits. MVM-P6L efficiently propagated in culture, exposing the heterologous peptide on the capsid surface, and evaded neutralization by the anti-spike monoclonal antibody. In contrast, MVM-A7R yielded low infectious titers and was poorly recognized by an α-A7R monoclonal antibody. MVM-A7R showed a deficient assembly pattern, suggesting that A7R impaired a transitional configuration that the subunits must undergo in the 3-fold axis to close up the capsid shell. The MVM-A7R chimeric virus consistently evolved in culture into a mutant carrying the P6Q amino acid substitution within the A7R sequence, which restored normal capsid assembly and infectivity. Consistent with this finding, anti-native VEGF antibodies were induced in mice by a single injection of MVM-A7R empty capsids, but not by MVM-A7R virions. This fundamental study provides insights to endow an infectious parvovirus with immune antineovascularization and evasion capacities by replacing an antibody footprint in the capsid 3-fold axis with VEGF-blocking peptides, and it also illustrates the evolutionary capacity of single-stranded DNA (ssDNA) viruses to overcome engineered capsid structural restrictions.IMPORTANCE Targeting the VEGF signaling required for neovascularization by vaccination with chimeric capsids of oncolytic viruses may boost therapy for solid tumors. VEGF-blocking peptides (VEbp) engineered in the capsid 3-fold axis endowed the infectious parvovirus MVM with the ability to induce α-VEGF antibodies without adjuvant and to evade neutralization by MVM-specific antibodies. However, these properties may be compromised by structural restraints that the capsid imposes on the peptide configuration and by misassembly caused by the heterologous peptides. Significantly, chimeric MVM-VEbp resolved the structural restrictions by selecting mutations within the engineered peptides that restored efficient capsid assembly. These data show the promise of antineovascularization vaccines using chimeric VEbp-icosahedral capsids of oncolytic viruses but also raise safety concerns regarding the genetic stability of manipulated infectious parvoviruses in cancer and gene therapies.
Collapse
|
13
|
Medrano M, Valbuena A, Rodríguez-Huete A, Mateu MG. Structural determinants of mechanical resistance against breakage of a virus-based protein nanoparticle at a resolution of single amino acids. NANOSCALE 2019; 11:9369-9383. [PMID: 31041970 DOI: 10.1039/c9nr01935a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Virus particles and other protein-based supramolecular complexes have a vast nanotechnological potential. However, protein nanostructures are "soft" materials prone to disruption by force. Whereas some non-biological nanoparticles (NPs) may be stronger, for certain applications protein- and virus-based NPs have potential advantages related to their structure, self-assembly, production, engineering, and/or inbuilt functions. Thus, it may be desirable to acquire the knowledge needed to engineer protein-based nanomaterials with a higher strength against mechanical breakage. Here we have used the capsid of the minute virus of mice to experimentally identify individual chemical groups that determine breakage-related properties of a virus particle. Individual amino acid side chains that establish interactions between building blocks in the viral particle were truncated using protein engineering. Indentation experiments using atomic force microscopy were carried out to investigate the role of each targeted side chain in determining capsid strength and brittleness, by comparing the maximum force and deformation each modified capsid withstood before breaking apart. Side chains with major roles in determining capsid strength against breakage included polar groups located in solvent-exposed positions, and did not generally correspond with those previously identified as determinants of mechanical stiffness. In contrast, apolar side chains buried along the intersubunit interfaces that generally determined capsid stiffness had, at most, a minor influence on strength against disruption. Whereas no correlated variations between strength and either stiffness or brittleness were found, brittleness and stiffness were quantitatively correlated. Implications for developing robust protein-based NPs and for acquiring a deeper physics-based perspective of viruses are discussed.
Collapse
Affiliation(s)
- María Medrano
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
14
|
Bennett A, Rodriguez D, Lister S, Boulton M, McKenna R, Agbandje-McKenna M. Assembly and disassembly intermediates of maize streak geminivirus. Virology 2018; 525:224-236. [PMID: 30300759 DOI: 10.1016/j.virol.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/16/2018] [Accepted: 09/16/2018] [Indexed: 11/17/2022]
Abstract
Maize streak virus (MSV) belongs to the Geminiviridae. Four forms of MSV coat protein (CP) assemblages were isolated from infected plants: geminate capsids, T = 1 icosahedral capsids, pentamers and decamers of CPs. Sequential exposure of geminate capsids to increasing pH, from 4.8 to 7.2 was used to monitor capsid disassembly. The capsids remain intact at pH4.8, disassemble to decamers and pentamers by pH6.4 and aggregate by pH7.2. Similarly, high salt and divalent cations cause disassembly. The disassembly process was reversed in low pH and low salt, but resulted in empty (no DNA) single and geminate capsid assemblies. This is likely due to disruption of CP-DNA interactions under acidic conditions and suggests a mechanism of capsid assembly in which the genome is packaged into preformed empty capsids. The pH assay developed in this study provides a method for characterizing the conditions that are the determinants of geminivirus assembly and disassembly.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States
| | - David Rodriguez
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States
| | - Samantha Lister
- John Innes Center, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Margaret Boulton
- John Innes Center, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, United States.
| |
Collapse
|
15
|
The 5' Untranslated Region of the Capsid Protein 2 Gene of Mink Enteritis Virus Is Essential for Its Expression. J Virol 2018; 92:JVI.00787-18. [PMID: 29976664 DOI: 10.1128/jvi.00787-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Mink enteritis virus (MEV), as a parvovirus, is among the smallest of the animal DNA viruses. The limited genome leads to multifunctional sequences and complex gene expression regulation. Here, we show that the expression of viral capsid protein 2 (VP2) of MEV requires its 5' untranslated regions (5' UTR) which promote VP2 gene expression at both transcriptional and translational levels. The expression of VP2 was inhibited in several common eukaryotic expression vectors. Our data showed that the 5' UTR of VP2 enhanced capsid gene transcription but not increased stability or promotes nucleocytoplasmic export of VP2 mRNA. Analysis of the functions of 5' UTR fragments showed that the proximal region (nucleotides [nt] 1 to 270; that is, positions +1 to +270 relative to the transcription initiation site, nt 2048 to 2317 of MEV-L) of 5' UTR of VP2 was necessary for VP2 transcription and also promoted the activity of P38 promoter. Unexpectedly, further analysis showed that deletion of the distal region (nt 271 to 653) of the 5' UTR of VP2 almost completely abolished VP2 translation in the presence of P38, whereas the transcription was still induced significantly. Furthermore, using a luciferase reporter bicistronic system, we identified that the 5' UTR had an internal ribosome entry site-like function which could be enhanced by NS1 via the site at nt 382 to 447. Mutation of the 5' UTR in the MEV full-length clones further showed that the 5' UTR was required for VP2 gene expression. Together, our data reveal an undiscovered function of 5' UTR of MEV VP2 in regulating viral gene expression.IMPORTANCE MEV, a parvovirus, causes acute enteritis in mink. In the present report, we describe an untranslated sequence-dependent mechanism by which MEV regulates capsid gene expression. Our results highlight the roles of untranslated sequences in regulating the transcriptional activity of P38 promoter and translation of capsid genes. These data also reveal the possibility of an unusual translation mechanism in capsid protein expression and the multiple functions of nonstructural protein. A better understanding of the gene expression regulation mechanism of this virus will help in the design of new vaccines and targets for antiviral agents against MEV.
Collapse
|
16
|
Systematic analysis of biological roles of charged amino acid residues located throughout the structured inner wall of a virus capsid. Sci Rep 2018; 8:9543. [PMID: 29934575 PMCID: PMC6015035 DOI: 10.1038/s41598-018-27749-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
Structure-based mutational analysis of viruses is providing many insights into the relationship between structure and biological function of macromolecular complexes. We have systematically investigated the individual biological roles of charged residues located throughout the structured capsid inner wall (outside disordered peptide segments) of a model spherical virus, the minute virus of mice (MVM). The functional effects of point mutations that altered the electrical charge at 16 different positions at the capsid inner wall were analyzed. The results revealed that MVM capsid self-assembly is rather tolerant to point mutations that alter the number and distribution of charged residues at the capsid inner wall. However, mutations that either increased or decreased the number of positive charges around capsid-bound DNA segments reduced the thermal resistance of the virion. Moreover, mutations that either removed or changed the positions of negatively charged carboxylates in rings of acidic residues around capsid pores were deleterious by precluding a capsid conformational transition associated to through-pore translocation events. The results suggest that number, distribution and specific position of electrically charged residues across the inner wall of a spherical virus may have been selected through evolution as a compromise between several different biological requirements.
Collapse
|
17
|
The 164 K, 165 K and 167 K residues in 160YPVVKKPKLTEE171 are required for the nuclear import of goose parvovirus VP1. Virology 2018; 519:17-22. [DOI: 10.1016/j.virol.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 11/23/2022]
|
18
|
Gil-Ranedo J, Hernando E, Valle N, Riolobos L, Maroto B, Almendral JM. Differential phosphorylation and n-terminal configuration of capsid subunits in parvovirus assembly and viral trafficking. Virology 2018. [PMID: 29524834 DOI: 10.1016/j.virol.2018.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The T1 parvovirus Minute Virus of Mice (MVM) was used to study the roles that phosphorylation and N-terminal domains (Nt) configuration of capsid subunits may play in icosahedral nuclear viruses assembly. In synchronous MVM infection, capsid subunits newly assembled as two types of cytoplasmic trimeric intermediates (3VP2, and 1VP1:2VP2) harbored a VP1 phosphorylation level fivefold higher than that of VP2, and hidden Nt. Upon nuclear translocation at S phase, VP1-Nt became exposed in the heterotrimer and subsequent subviral assembly intermediates. Empty capsid subunits showed a phosphorylation level restored to VP1:VP2 stoichiometry, and the Nt concealed in their interior. However ssDNA-filled virus maturing at S/G2 lacked VP1 phosphorylation and one major VP2 phosphopeptide, and exposed VP2-Nt. Endosomal VP2-Nt cleavage resulted in VP3 subunits devoid of any phospholabel, implying that incoming viral particles specifically harbor a low phosphorylation status. Phosphorylation provides a mechanistic coupling of parvovirus nuclear assembly to the cell cycle.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Eva Hernando
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Noelia Valle
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Laura Riolobos
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Beatriz Maroto
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017; 9:v9120393. [PMID: 29261104 PMCID: PMC5744167 DOI: 10.3390/v9120393] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.
Collapse
Affiliation(s)
- István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | | | - Peter Tijssen
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC H7V 1B7, Canada.
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| |
Collapse
|
20
|
Ros C, Bayat N, Wolfisberg R, Almendral JM. Protoparvovirus Cell Entry. Viruses 2017; 9:v9110313. [PMID: 29072600 PMCID: PMC5707520 DOI: 10.3390/v9110313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
The Protoparvovirus (PtPV) genus of the Parvoviridae family of viruses includes important animal pathogens and reference molecular models for the entire family. Some virus members of the PtPV genus have arisen as promising tools to treat tumoral processes, as they exhibit marked oncotropism and oncolytic activities while being nonpathogenic for humans. The PtPVs invade and replicate within the nucleus making extensive use of the transport, transcription and replication machineries of the host cells. In order to reach the nucleus, PtPVs need to cross over several intracellular barriers and traffic through different cell compartments, which limit their infection efficiency. In this review we summarize molecular interactions, capsid structural transitions and hijacking of cellular processes, by which the PtPVs enter and deliver their single-stranded DNA genome into the host cell nucleus. Understanding mechanisms that govern the complex PtPV entry will be instrumental in developing approaches to boost their anticancer therapeutic potential and improving their safety profile.
Collapse
Affiliation(s)
- Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Nooshin Bayat
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark.
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Grosse S, Penaud-Budloo M, Herrmann AK, Börner K, Fakhiri J, Laketa V, Krämer C, Wiedtke E, Gunkel M, Ménard L, Ayuso E, Grimm D. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells. J Virol 2017; 91:e01198-17. [PMID: 28768875 PMCID: PMC5625497 DOI: 10.1128/jvi.01198-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids.IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production.
Collapse
Affiliation(s)
- Stefanie Grosse
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Anne-Kathrin Herrmann
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Julia Fakhiri
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Chiara Krämer
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Manuel Gunkel
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- CellNetworks Advanced Biological Screening Facility, University of Heidelberg, Heidelberg, Germany
| | - Lucie Ménard
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Carrillo PJP, Medrano M, Valbuena A, Rodríguez-Huete A, Castellanos M, Pérez R, Mateu MG. Amino Acid Side Chains Buried along Intersubunit Interfaces in a Viral Capsid Preserve Low Mechanical Stiffness Associated with Virus Infectivity. ACS NANO 2017; 11:2194-2208. [PMID: 28117975 DOI: 10.1021/acsnano.6b08549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-molecule experimental techniques and theoretical approaches reveal that important aspects of virus biology can be understood in biomechanical terms at the nanoscale. A detailed knowledge of the relationship in virus capsids between small structural changes caused by single-point mutations and changes in mechanical properties may provide further physics-based insights into virus function; it may also facilitate the engineering of viral nanoparticles with improved mechanical behavior. Here, we used the minute virus of mice to undertake a systematic experimental study on the contribution to capsid stiffness of amino acid side chains at interprotein interfaces and the specific noncovalent interactions they establish. Selected side chains were individually truncated by introducing point mutations to alanine, and the effects on local and global capsid stiffness were determined using atomic force microscopy. The results revealed that, in the natural virus capsid, multiple, mostly hydrophobic, side chains buried along the interfaces between subunits preserve a comparatively low stiffness of most (S2 and S3) regions. Virtually no point mutation tested substantially reduced stiffness, whereas most mutations increased stiffness of the S2/S3 regions. This stiffening was invariably associated with reduced virus yields during cell infection. The experimental evidence suggests that a comparatively low stiffness at S3/S2 capsid regions may have been biologically selected because it facilitates capsid assembly, increasing infectious virus yields. This study demonstrated also that knowledge of individual amino acid side chains and biological pressures that determine the physical behavior of a protein nanoparticle may be used for engineering its mechanical properties.
Collapse
Affiliation(s)
- Pablo José P Carrillo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - María Medrano
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Milagros Castellanos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Rebeca Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , c/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
23
|
Medrano M, Fuertes MÁ, Valbuena A, Carrillo PJP, Rodríguez-Huete A, Mateu MG. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid. J Am Chem Soc 2016; 138:15385-15396. [PMID: 27933931 DOI: 10.1021/jacs.6b07663] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.
Collapse
Affiliation(s)
- María Medrano
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Miguel Ángel Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Pablo J P Carrillo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| |
Collapse
|
24
|
Hou Q, Su J, Wang J, Li Z, Mao Y, Wang S, Xi J, Liu W. The phosphorylation of Ser221 in VP2 of mink enteritis virus and its roles in virus amplification. Virus Res 2016; 217:76-84. [PMID: 26972166 DOI: 10.1016/j.virusres.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022]
Abstract
Recent reports have indicated that phosphorylation of capsid proteins plays an important role in virion assemblage. Autonomous parvoviruses are among the smallest known viruses with an ssDNA genome enclosed within an icosahedral capsid. Here, we demonstrate that a structural protein (VP2) of one member, mink enteritis virus (MEV), is phosphorylated at serine-221 (Ser221) in vivo. Mutant viruses containing an S221A non-phosphorylatable alanine substitution, or an S221E glutamic acid substitution to mimic serine phosphorylation, were able to express VP2 but had either limited ability or were unable to propagate in feline F81 cells. We propose a new mechanism whereby VP2 phosphorylation plays an essential role in amplification during MEV infection.
Collapse
Affiliation(s)
- Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jun Su
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhili Li
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Shuang Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
25
|
Gil-Ranedo J, Hernando E, Riolobos L, Domínguez C, Kann M, Almendral JM. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly. PLoS Pathog 2015; 11:e1004920. [PMID: 26067441 PMCID: PMC4466232 DOI: 10.1371/journal.ppat.1004920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. Cellular and viral life cycles are connected through multiple, though poorly understood, mechanisms. Parvoviruses infect humans and a broad spectrum of animals, causing a variety of diseases, but they are also used in experimental cancer therapy and serve as vectors for gene therapy. Parvoviruses can only multiply in proliferating cells providing essential replicative and transcriptional functions. However, it is unknown whether the cell cycle regulatory machinery may also control parvovirus assembly. We found that the nuclear translocation of parvovirus MVM capsid subunits (VPs) was highly dependent on physiological cell cycle regulations in mammalian fibroblasts, including: quiescence, progression through G1/S boundary, DNA synthesis, and cell to cell contacts. VPs nuclear translocation was significantly more sensitive to cell cycle controls than viral genome replication and gene expression. The results support nuclear capsid assembly as the major driving process of parvoviruses biological hallmarks, such as pathogenesis in proliferative tissues and tropism for cancer cells. In addition, disturbing the tight coupling of parvovirus assembly with the cell cycle may determine viral persistence in quiescent and post-mitotic host tissues. These findings may contribute to understand cellular regulations on the assembly of other nuclear eukaryotic viruses, and to develop cell cycle-based avenues for antiviral therapy.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Eva Hernando
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Laura Riolobos
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Carlos Domínguez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Michael Kann
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, Bordeaux, France
| | - José M. Almendral
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins. J Virol 2014; 88:11748-59. [PMID: 25078698 DOI: 10.1128/jvi.01717-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. Importance: Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins.
Collapse
|
27
|
Abstract
Parvoviruses are small, rugged, nonenveloped protein particles containing a linear, nonpermuted, single-stranded DNA genome of ∼5 kb. Their limited coding potential requires optimal adaptation to the environment of particular host cells, where entry is mediated by a variable program of capsid dynamics, ultimately leading to genome ejection from intact particles within the host nucleus. Genomes are amplified by a continuous unidirectional strand-displacement mechanism, a linear adaptation of rolling circle replication that relies on the repeated folding and unfolding of small hairpin telomeres to reorient the advancing fork. Progeny genomes are propelled by the viral helicase into the preformed capsid via a pore at one of its icosahedral fivefold axes. Here we explore how the fine-tuning of this unique replication system and the mechanics that regulate opening and closing of the capsid fivefold portals have evolved in different viral lineages to create a remarkably complex spectrum of phenotypes.
Collapse
Affiliation(s)
| | - Peter Tattersall
- Departments of 1Laboratory Medicine and.,Genetics, Yale University Medical School, New Haven, Connecticut 06510;
| |
Collapse
|
28
|
Generation of recombinant porcine parvovirus virus-like particles in Saccharomyces cerevisiae and development of virus-specific monoclonal antibodies. J Immunol Res 2014; 2014:573531. [PMID: 25045718 PMCID: PMC4089905 DOI: 10.1155/2014/573531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/09/2014] [Accepted: 05/25/2014] [Indexed: 12/18/2022] Open
Abstract
Porcine parvovirus (PPV) is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs). Nine monoclonal antibodies (MAbs) against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance.
Collapse
|
29
|
Pan X, Lü P, Zhang M, Hu Z, Li G, Ma S, Feng F, Chen K, Yao Q. Expression analysis of Bombyx mori bidensovirus structural proteins and assembly of virus-like particles in insect cells. Curr Microbiol 2014; 69:567-73. [PMID: 24916668 DOI: 10.1007/s00284-014-0613-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Bombyx mori bidensovirus (BmBDV) is a new designated species of the new genus Bidensovirus in the new family Bidnaviridae, which contains two single-stranded linear DNAs (VD1 and VD2) and causes the chronic densonucleosis disease of silkworm. Previous researches revealed that VD1-ORF3 encodes the major structural proteins VPs. In this work, through western blot, we found that VPs expressed from 48 h post-inoculation and kept increasing until 120 h post-inoculation in midgut of Bombyx mori. In order to further investigate the translation of vp gene, the ORFs (vp1 and vp2) of the VP started just up-stream of the first two candidate initiation codons were expressed in Sf9 cells by a baculovirus expression system. The expression products were purified by gradient density centrifugation and analyzed by Western blot and electron microscopy. The results showed that the expressions of vp1 yielded three proteins (VP1, VP1', and VP2), which are the same with the viral VPs expression in midgut of Bombyx mori, and vp2 generated two VPs with the molecular weights of about 51 kDa (VP2) and 37 kDa. The observation by electron microscopy indicated that these VPs can auto-assemble into virus-like particles that could not be distinguished from virus particles. These findings will provide materials for studying the structure of BmBDV and be helpful in the studies on BmBDV-based disease in silkworms.
Collapse
Affiliation(s)
- Xiaoli Pan
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lyi SM, Tan MJA, Parrish CR. Parvovirus particles and movement in the cellular cytoplasm and effects of the cytoskeleton. Virology 2014; 456-457:342-52. [PMID: 24889253 DOI: 10.1016/j.virol.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022]
Abstract
Cell infection by parvoviruses requires that capsids be delivered from outside the cell to the cytoplasm, followed by genome trafficking to the nucleus. Here we microinject capsids into cells that lack receptors and followed their movements within the cell over time. In general the capsids remained close to the positions where they were injected, and most particles did not move to the vicinity of or enter the nucleus. When 70 kDa-dextran was injected along with the capsids that did not enter the nucleus in significant amounts. Capsids conjugated to peptides containing the SV40 large T-antigen nuclear localization signal remained in the cytoplasm, although bovine serum albumen conjugated to the same peptide entered the nucleus rapidly. No effects of disruption of microfilaments, intermediate filaments, or microtubules on the distribution of the capsids were observed. These results suggest that movement of intact capsids within cells is primarily associated with passive processes.
Collapse
Affiliation(s)
- Sangbom Michael Lyi
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Min Jie Alvin Tan
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
31
|
A slender tract of glycine residues is required for translocation of the VP2 protein N-terminal domain through the parvovirus MVM capsid channel to initiate infection. Biochem J 2013; 455:87-94. [PMID: 23875612 DOI: 10.1042/bj20130503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Viruses constitute paradigms to study conformational dynamics in biomacromolecular assemblies. Infection by the parvovirus MVM (minute virus of mice) requires a conformational rearrangement that involves the intracellular externalization through capsid channels of the 2Nt (N-terminal region of VP2). We have investigated the role in this process of conserved glycine residues in an extended glycine-rich tract located immediately after 2Nt. Based on the virus structure, residues with hydrophobic side chains of increasing volume were substituted for glycine residues 31 or 33. Mutations had no effect on capsid assembly or stability, but inhibited virus infectivity. All mutations, except those to alanine residues which had minor effects, impaired 2Nt externalization in nuclear maturing virions and in purified virions, to an extent that correlated with the side chain size. Different biochemical and biophysical analyses were consistent with this result. Importantly, all of the tested glycine residue replacements impaired the capacity of the virion to initiate infection, at ratios correlating with their restrictive effects on 2Nt externalization. Thus small residues within the evolutionarily conserved glycine-rich tract facilitate 2Nt externalization through the capsid channel, as required by this virus to initiate cell entry. The results demonstrate the exquisite dependence on geometric constraints of a biologically relevant translocation event in a biomolecular complex.
Collapse
|
32
|
Snoussi K, Kann M. Interaction of parvoviruses with the nuclear envelope. Adv Biol Regul 2013; 54:39-49. [PMID: 24157125 DOI: 10.1016/j.jbior.2013.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Parvoviruses are serious pathogens but also serve as platforms for gene therapy or for using their lytic activity in experimental cancer treatment. Despite of their growing importance during the last decade little is known on how the viral genome is transported into the nucleus of the infected cell, which is crucial for replication. As nucleic acids are not karyophilic per se nuclear import must be driven by proteins attached to the viral genome. In turn, presence and conformation of these proteins depend upon the entry pathway of the virus into the cell. This review focuses on the trafficking of the parvoviral genome from the cellular periphery to nucleus. Despite of the uncertainties in knowledge about the entry pathway we show that parvoviruses developed a unique strategy to pass the nuclear envelope by hijacking enzymes involved in mitosis.
Collapse
Affiliation(s)
- Kenza Snoussi
- Department of Infection Biology (Molecular Virology), University of Tsukuba, Japan; Human Biology Program, University of Tsukuba, Japan
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
33
|
Structural characterization of H-1 parvovirus: comparison of infectious virions to empty capsids. J Virol 2013; 87:5128-40. [PMID: 23449783 DOI: 10.1128/jvi.03416-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors.
Collapse
|
34
|
Abstract
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by hydrophobic contacts and non-covalent interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some cases, non-symmetric interactions among intermediates are involved in assembly, highlighting the remarkable capacity of capsid proteins to fold into demanding conformations compatible with a closed protein shell. In this chapter, the morphogenesis of structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses or polyomaviruses as paradigms, is described in some detail. Icosahedral virus assembly may occur in different subcellular compartments and involve a panoplia of cellular and viral factors, chaperones, and protein modifications that, in general, are still poorly characterized. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. High stability of intermediates and proteolytic cleavages during viral maturation usually contribute to the overall irreversible character of the assembly process. These and other simple icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger viruses and cellular and synthetic macromolecular complexes.
Collapse
Affiliation(s)
- José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain,
| |
Collapse
|
35
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
36
|
Bocanegra R, Rodríguez-Huete A, Fuertes MÁ, del Álamo M, Mateu MG. Molecular recognition in the human immunodeficiency virus capsid and antiviral design. Virus Res 2012; 169:388-410. [DOI: 10.1016/j.virusres.2012.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/07/2023]
|
37
|
Mateu MG. Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective. Virus Res 2012; 168:1-22. [DOI: 10.1016/j.virusres.2012.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
38
|
Sánchez-Martínez C, Grueso E, Carroll M, Rommelaere J, Almendral JM. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry. Virology 2012; 432:45-56. [PMID: 22727830 DOI: 10.1016/j.virol.2012.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022]
Abstract
The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Castellanos M, Pérez R, Carrillo PJP, de Pablo PJ, Mateu MG. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory. Biophys J 2012; 102:2615-24. [PMID: 22713577 DOI: 10.1016/j.bpj.2012.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 01/22/2023] Open
Abstract
New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.
Collapse
Affiliation(s)
- Milagros Castellanos
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Departamento de Física de la Materia Condensada C-III, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
40
|
An in-frame deletion in the NS protein-coding sequence of parvovirus H-1PV efficiently stimulates export and infectivity of progeny virions. J Virol 2012; 86:7554-64. [PMID: 22553326 DOI: 10.1128/jvi.00212-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An in-frame, 114-nucleotide-long deletion that affects the NS-coding sequence was created in the infectious molecular clone of the standard parvovirus H-1PV, thereby generating Del H-1PV. The plasmid was transfected and further propagated in permissive human cell lines in order to analyze the effects of the deletion on virus fitness. Our results show key benefits of this deletion, as Del H-1PV proved to exhibit (i) higher infectivity (lower particle-to-infectivity ratio) in vitro and (ii) enhanced tumor growth suppression in vivo compared to wild-type H-1PV. This increased infectivity correlated with an accelerated egress of Del H-1PV progeny virions in producer cells and with an overall stimulation of the viral life cycle in subsequently infected cells. Indeed, virus adsorption and internalization were significantly improved with Del H-1PV, which may account for the earlier appearance of viral DNA replicative forms that was observed with Del H-1PV than wild-type H-1PV. We hypothesize that the internal deletion within the NS2 and/or NS1 protein expressed by Del H-1PV results in the stimulation of some step(s) of the viral life cycle, in particular, a maturation step(s), leading to more efficient nuclear export of infectious viral particles and increased fitness of the virus produced.
Collapse
|
41
|
Abstract
Parvoviruses package a ssDNA genome. Both nonpathogenic and pathogenic members exist, including those that cause fetal infections, encompassing the entire spectrum of virus phenotypes. Their small genomes and simple coding strategy has enabled functional annotation of many steps in the infectious life cycle. They assemble a multifunctional capsid responsible for cell recognition and the transport of the packaged genome to the nucleus for replication and progeny virus production. It is also the target of the host immune response. Understanding how the capsid structure relates to the function of parvoviruses provides a platform for recombinant engineering of viral gene delivery vectors for the treatment of clinical diseases, and is fundamental for dissecting the viral determinants of pathogenicity. This review focuses on our current understanding of parvovirus capsid structure and function with respect to the infectious life cycle.
Collapse
Affiliation(s)
- Sujata Halder
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, College of Medicine, 1600 SW Archer Road, PO Box 100245, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
42
|
Pulicherla N, Kota P, Dokholyan NV, Asokan A. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids. PLoS One 2012; 7:e32163. [PMID: 22389684 PMCID: PMC3289628 DOI: 10.1371/journal.pone.0032163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/20/2012] [Indexed: 02/02/2023] Open
Abstract
The capsid proteins of adeno-associated viruses (AAV) have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s) of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.
Collapse
Affiliation(s)
- Nagesh Pulicherla
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pradeep Kota
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Pérez R, Castellanos M, Rodríguez-Huete A, Mateu MG. Molecular Determinants of Self-Association and Rearrangement of a Trimeric Intermediate during the Assembly of a Parvovirus Capsid. J Mol Biol 2011; 413:32-40. [DOI: 10.1016/j.jmb.2011.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/26/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
|
44
|
Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J Virol 2011; 85:4863-74. [PMID: 21367902 DOI: 10.1128/jvi.01999-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus.
Collapse
|
45
|
Abstract
Bombyx mori densovirus 1 (BmDNV-1), a major pathogen of silkworms, causes significant losses to the silk industry. The structure of the recombinant BmDNV-1 virus-like particle has been determined at 3.1-Å resolution using X-ray crystallography. It is the first near-atomic-resolution structure of a virus-like particle within the genus Iteravirus. The particles consist of 60 copies of the 55-kDa VP3 coat protein. The capsid protein has a β-barrel "jelly roll" fold similar to that found in many diverse icosahedral viruses, including archaeal, bacterial, plant, and animal viruses, as well as other parvoviruses. Most of the surface loops have little structural resemblance to other known parvovirus capsid proteins. In contrast to vertebrate parvoviruses, the N-terminal β-strand of BmDNV-1 VP3 is positioned relative to the neighboring 2-fold related subunit in a "domain-swapped" conformation, similar to findings for other invertebrate parvoviruses, suggesting domain swapping is an evolutionarily conserved structural feature of the Densovirinae.
Collapse
|
46
|
Cohen S, Au S, Panté N. How viruses access the nucleus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1634-45. [PMID: 21167871 DOI: 10.1016/j.bbamcr.2010.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/24/2010] [Accepted: 12/08/2010] [Indexed: 10/25/2022]
Abstract
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
47
|
Mateu MG. Virus engineering: functionalization and stabilization. Protein Eng Des Sel 2010; 24:53-63. [PMID: 20923881 DOI: 10.1093/protein/gzq069] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chemically and/or genetically engineered viruses, viral capsids and viral-like particles carry the promise of important and diverse applications in biomedicine, biotechnology and nanotechnology. Potential uses include new vaccines, vectors for gene therapy and targeted drug delivery, contrast agents for molecular imaging and building blocks for the construction of nanostructured materials and electronic nanodevices. For many of the contemplated applications, the improvement of the physical stability of viral particles may be critical to adequately meet the demanding physicochemical conditions they may encounter during production, storage and/or medical or industrial use. The first part of this review attempts to provide an updated general overview of the fast-moving, interdisciplinary virus engineering field; the second part focuses specifically on the modification of the physical stability of viral particles by protein engineering, an emerging subject that has not been reviewed before.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
48
|
Abstract
Penaeus stylirostris densovirus (PstDNV), a pathogen of penaeid shrimp, causes significant damage to farmed and wild shrimp populations. In contrast to other parvoviruses, PstDNV probably has only one type of capsid protein that lacks the phospholipase A2 activity that has been implicated as a requirement during parvoviral host cell infection. The structure of recombinant virus-like particles, composed of 60 copies of the 37.5-kDa coat protein, the smallest parvoviral capsid protein reported thus far, was determined to 2.5-Å resolution by X-ray crystallography. The structure represents the first near-atomic resolution structure within the genus Brevidensovirus. The capsid protein has a β-barrel "jelly roll" motif similar to that found in many icosahedral viruses, including other parvoviruses. The N-terminal portion of the PstDNV coat protein adopts a "domain-swapped" conformation relative to its twofold-related neighbor similar to the insect parvovirus Galleria mellonella densovirus (GmDNV) but in stark contrast to vertebrate parvoviruses. However, most of the surface loops have little structural resemblance to any of the known parvoviral capsid proteins.
Collapse
|
49
|
Translation control by protein kinase R restricts minute virus of mice infection: role in parvovirus oncolysis. J Virol 2010; 84:5043-51. [PMID: 20219905 DOI: 10.1128/jvi.02188-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relevance of translational control in the gene expression and oncotropism of the autonomous parvoviruses was investigated with MVMp, the prototype strain of minute virus of mice (MVM), infecting normal and transformed rodent and human cells of different tissue origins. Mouse embryo fibroblasts (MEFs) and NIH 3T3 fibroblasts were resistant to MVMp infection, but 3T3 fibroblasts derived from double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) knockout mice (PKR(o/o)) behaved in a manner that was highly permissive to productive MVMp replication. NIH 3T3 resistance correlated with significant phosphorylation of eukaryotic translation initiation factor 2 (eIF2) occurring at early time points after infection. Permissive PKR(o/o) cells were converted to MVMp-restrictive cells after reintroduction of the PKR gene by transfection. Conversely, regulated expression of the vaccinia virus E3 protein, a PKR inhibitor, in MEFs prevented eIF2alpha phosphorylation and increased MVMp protein synthesis. In vitro-synthesized genome-length R1 mRNA of MVMp was a potent activator of PKR. Virus-resistant primary MEFs and NIH 3T3 cells responded to MVMp infection with significant increases in eIF2alpha phosphorylation. In contrast, virus-permissive mouse (PKR(o/o), BHK21, and A9) and human transformed (NB324K fibroblast, U373 glioma, and HepG2 hepatoma) cells consistently showed no significant increase in the level of eIF2alpha phosphorylation following MVMp infection. The synthesis of the viral NS1 protein was inversely correlated with the steady-state PKR levels. Our results show that the PKR-mediated antiviral response is an important mechanism for control of productive MVMp infection, and its impairment in human transformed cells allowed efficient MVMp gene expression. PKR translational control may therefore contribute to the oncolysis of MVMp and other autonomous parvoviruses.
Collapse
|
50
|
Parrish CR. Structures and functions of parvovirus capsids and the process of cell infection. Curr Top Microbiol Immunol 2010; 343:149-76. [PMID: 20397069 DOI: 10.1007/82_2010_33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To infect a cell, the parvovirus or adeno-associated virus (AAV) genome must be delivered from outside the plasma membrane to the nucleus, and in the process, the capsid must follow a series of binding and trafficking steps and also undergo necessary changes that result in exposure or release the ssDNA genome at the appropriate time and place within the cell. The 25 nm parvovirus capsid is comprised of two or three forms of a single protein, and although it is robust and stable, it is still sufficiently flexible to allow the exposure of several internal components at appropriate times during cell infection. The capsid can also accommodate insertion of peptides into surface loops, and capsid proteins from different viral serotypes can be shuffled to create novel functional variants. The capsids of the different viruses bind to one or more cell receptors, and for at least some viruses, the insertion of additional or alternative receptor binding sequences or structures into the capsid can expand or redirect its tropism. The infection process after cell binding involves receptor-mediated endocytosis followed by viral trafficking through the endosomal systems. That endosomal trafficking may be complex and prolonged for hours or be relatively brief. Generally only a small proportion of the particles taken up enter the cytoplasm after altering the endosomal membrane through the activity of a VP1-encoded phospholipase A2 domain that becomes released to the outside of the viral particle. Modifications to the capsid that can occur within the endosome or cytoplasm include structural changes to expose internal components, ubiquination and proteosomal processing, and possible trafficking of particles on molecular motors. It is still not clear how the genomes enter the nucleus, but nuclear pore-dependent entry of particles or permeabilization of nuclear membranes have been proposed. Those processes control the infection, pathogenesis, and host ranges of the autonomous viruses and determine the effectiveness of gene therapy using AAV capsids.
Collapse
Affiliation(s)
- Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|