1
|
Geslain SAM, Hausmann S, Geiser J, Allen GE, Gonzalez D, Valentini M. Critical functions and key interactions mediated by the RNase E scaffolding domain in Pseudomonas aeruginosa. PLoS Genet 2025; 21:e1011618. [PMID: 40096066 PMCID: PMC11964227 DOI: 10.1371/journal.pgen.1011618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/02/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The RNA degradosome is a bacterial multi-protein complex mediating mRNA processing and degradation. In Pseudomonadota, this complex assembles on the C-terminal domain (CTD) of RNase E through short linear motifs (SLiMs) that determine its composition and functionality. In the human pathogen Pseudomonas aeruginosa, the RNase E CTD exhibits limited similarity to that of model organisms, impeding our understanding of RNA metabolic processes in this bacterium. Our study systematically maps the interactions mediated by the P. aeruginosa RNase E CTD and highlights its critical role in transcript regulation and cellular functions. We identified the SLiMs crucial for membrane attachment, RNA binding and complex clustering, as well as for direct binding to the core components PNPase and RhlB. Transcriptome analyses of RNase E CTD mutants revealed altered expression of genes involved in quorum sensing, type III secretion, and amino acid metabolism. Additionally, we show that the mutants are impaired in cold adaptation, pH response, and virulence in an infection model. Overall, this work establishes the essential role of the RNA degradosome in driving bacterial adaptability and pathogenicity.
Collapse
Affiliation(s)
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Troyer L, Wang YH, Shobhna, Kim S, Woo J, Tajkhorshid E, Kim S. Single-molecule imaging reveals the role of membrane-binding motif and C-terminal domain of RNase E in its localization and diffusion in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622141. [PMID: 40093181 PMCID: PMC11908211 DOI: 10.1101/2024.11.05.622141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In Escherichia coli, RNase E is the key enzyme for RNA processing and mRNA degradation. Despite the conserved function across bacteria, the domain composition of RNase E varies significantly among species, possibly affecting the enzyme's subcellular localization, mobility, and function. In this work, we used super-resolution microscopy to find that 93% of RNase E is localized to the membrane in E. coli and exhibits slow diffusion comparable to polysomes diffusing in the cytoplasm. By replacing the native amphipathic membrane targeting sequence (MTS) with a transmembrane motif, we discovered that the MTS results in slower diffusion and stronger membrane binding than a transmembrane motif. Additionally, the evolutionarily divergent C-terminal domain (CTD) was shown to grant slow diffusion of RNase E but to weaken its membrane binding. By analyzing how membrane localization and diffusion of RNase E affect mRNA degradation rates in vivo, we provide new insights into RNase E's role in the spatiotemporal organization of RNA processes in bacterial cells.
Collapse
Affiliation(s)
- Laura Troyer
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally
| | - Yu-Huan Wang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally
| | - Shobhna
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana- Champaign, Urbana, IL, USA
| | - Seunghyeon Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jeechul Woo
- Moduli Technologies, LLC, Springfield, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana- Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | - Sangjin Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
4
|
Structural Insights into the Dimeric Form of Bacillus subtilis RNase Y Using NMR and AlphaFold. Biomolecules 2022; 12:biom12121798. [PMID: 36551226 PMCID: PMC9775385 DOI: 10.3390/biom12121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by a turn to a C-terminal region composed of helices that display either a straight or bent conformation. The structural organization of the N-terminal domain is maintained within the AlphaFold model of the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains. The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the C-terminal region. This latter region, with no function assigned up to now, is most likely involved in the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure.
Collapse
|
5
|
Wegener M, Dietz KJ. The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2022; 28:1446-1468. [PMID: 35973722 PMCID: PMC9745834 DOI: 10.1261/rna.079210.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
About three decades ago, researchers suggested that metabolic enzymes participate in cellular processes that are unrelated to their catalytic activity, and the term "moonlighting functions" was proposed. Recently developed advanced technologies in the field of RNA interactome capture now unveil the unexpected RNA binding activity of many metabolic enzymes, as exemplified here for the enzymes of glycolysis. Although for most of these proteins a precise binding mechanism, binding conditions, and physiological relevance of the binding events still await in-depth clarification, several well explored examples demonstrate that metabolic enzymes hold crucial functions in post-transcriptional regulation of protein synthesis. This widely conserved RNA-binding function of glycolytic enzymes plays major roles in controlling cell activities. The best explored examples are glyceraldehyde 3-phosphate dehydrogenase, enolase, phosphoglycerate kinase, and pyruvate kinase. This review summarizes current knowledge about the RNA-binding activity of the ten core enzymes of glycolysis in plant, yeast, and animal cells, its regulation and physiological relevance. Apparently, a tight bidirectional regulation connects core metabolism and RNA biology, forcing us to rethink long established functional singularities.
Collapse
Affiliation(s)
- Melanie Wegener
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Trisciuzzi D, Siragusa L, Baroni M, Autiero I, Nicolotti O, Cruciani G. Getting Insights into Structural and Energetic Properties of Reciprocal Peptide-Protein Interactions. J Chem Inf Model 2022; 62:1113-1125. [PMID: 35148095 DOI: 10.1021/acs.jcim.1c01343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide-protein interactions play a key role for many cellular and metabolic processes involved in the onset of largely spread diseases such as cancer and neurodegenerative pathologies. Despite the progress in the structural characterization of peptide-protein interfaces, the in-depth knowledge of the molecular details behind their interactions is still a daunting task. Here, we present the first comprehensive in silico morphological and energetic study of peptide binding sites by focusing on both peptide and protein standpoints. Starting from the PixelDB database, a nonredundant benchmark collection of high-quality 3D crystallographic structures of peptide-protein complexes, a classification analysis of the most representative categories based on the nature of each cocrystallized peptide has been carried out. Several interpretable geometrical and energetic descriptors have been computed both from peptide and target protein sides in the attempt to unveil physicochemical and structural causative correlations. Finally, we investigated the most frequent peptide-protein residue pairs at the binding interface and made extensive energetic analyses, based on GRID MIFs, with the aim to study the peptide affinity-enhancing interactions to be further exploited in rational drug design strategies.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Department of Pharmacy, Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy
| | - Lydia Siragusa
- Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Massimo Baroni
- Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Ida Autiero
- Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy.,National Research Council, Institute of Biostructures and Bioimaging, 80138 Naples, Italy
| | - Orazio Nicolotti
- Department of Pharmacy, Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, via Elce di Sotto, 8, 06123 Perugia (PG), Italy
| |
Collapse
|
7
|
Osorio-Aguilar Y, Gonzalez-Vazquez MC, Hernandez-Ceron DE, Lozano-Zarain P, Martinez-Laguna Y, Gonzalez-Bonilla CR, Rocha-Gracia RDC, Carabarin-Lima A. Structural Characterization of Haemophilus influenzae Enolase and Its Interaction with Human Plasminogen by In Silico and In Vitro Assays. Pathogens 2021; 10:pathogens10121614. [PMID: 34959569 PMCID: PMC8707213 DOI: 10.3390/pathogens10121614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningitis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degradation of components of the extracellular matrix, favoring host tissue invasion. In this study, using molecular docking, three important residues involved in plasminogen interaction through the plasminogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae enolase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-binding protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was significant. With these results, we can propose that NTHiENO–plasminogen interaction could be one of the mechanisms used by H. influenzae to adhere to and invade host cells.
Collapse
Affiliation(s)
- Yesenia Osorio-Aguilar
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Maria Cristina Gonzalez-Vazquez
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Ygnacio Martinez-Laguna
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Alejandro Carabarin-Lima
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-(222)-229-5500 (ext. 3965)
| |
Collapse
|
8
|
Hui MP, Belasco JG. Multifaceted impact of a nucleoside monophosphate kinase on 5'-end-dependent mRNA degradation in bacteria. Nucleic Acids Res 2021; 49:11038-11049. [PMID: 34643703 PMCID: PMC8565310 DOI: 10.1093/nar/gkab884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
A key pathway for mRNA degradation in bacterial cells begins with conversion of the initial 5'-terminal triphosphate to a monophosphate, a modification that renders transcripts more vulnerable to attack by ribonucleases whose affinity for monophosphorylated 5' ends potentiates their catalytic efficacy. In Escherichia coli, the only proteins known to be important for controlling degradation via this pathway are the RNA pyrophosphohydrolase RppH, its heteromeric partner DapF, and the 5'-monophosphate-assisted endonucleases RNase E and RNase G. We have now identified the metabolic enzyme cytidylate kinase as another protein that affects rates of 5'-end-dependent mRNA degradation in E. coli. It does so by utilizing two distinct mechanisms to influence the 5'-terminal phosphorylation state of RNA, each dependent on the catalytic activity of cytidylate kinase and not its mere presence in cells. First, this enzyme acts in conjunction with DapF to stimulate the conversion of 5' triphosphates to monophosphates by RppH. In addition, it suppresses the direct synthesis of monophosphorylated transcripts that begin with cytidine by reducing the cellular concentration of cytidine monophosphate, thereby disfavoring the 5'-terminal incorporation of this nucleotide by RNA polymerase during transcription initiation. Together, these findings suggest dual signaling pathways by which nucleotide metabolism can impact mRNA degradation in bacteria.
Collapse
Affiliation(s)
- Monica P Hui
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Joel G Belasco
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| |
Collapse
|
9
|
Polyribosome-Dependent Clustering of Membrane-Anchored RNA Degradosomes To Form Sites of mRNA Degradation in Escherichia coli. mBio 2021; 12:e0193221. [PMID: 34488454 PMCID: PMC8546579 DOI: 10.1128/mbio.01932-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The essential endoribonuclease RNase E, which is a component of the Escherichia coli multienzyme RNA degradosome, has a global role in RNA processing and degradation. RNase E localizes to the inner cytoplasmic membrane in small, short-lived clusters (puncta). Rifampin, which arrests transcription, inhibits RNase E clustering and increases its rate of diffusion. Here, we show that inhibition of clustering is due to the arrest of transcription using a rifampin-resistant control strain. Two components of the RNA degradosome, the 3′ exoribonuclease polynucleotide phosphorylase (PNPase) and the DEAD box RNA helicase RhlB, colocalize with RNase E in puncta. Clustering of PNPase and RhlB is inhibited by rifampin, and their diffusion rates increase, as evidenced by in vivo photobleaching measurements. Results with rifampin treatment reported here show that RNA degradosome diffusion is constrained by interaction with RNA substrate. Kasugamycin, which arrests translation initiation, inhibits formation of puncta and increases RNA degradosome diffusion rates. Since kasugamycin treatment results in continued synthesis and turnover of ribosome-free mRNA but inhibits polyribosome formation, RNA degradosome clustering is therefore polyribosome dependent. Chloramphenicol, which arrests translation elongation, results in formation of large clusters (foci) of RNA degradosomes that are distinct from puncta. Since chloramphenicol-treated ribosomes are stable, the formation of RNA degradosome foci could be part of a stress response that protects inactive polyribosomes from degradation. Our results strongly suggest that puncta are sites where translationally active polyribosomes are captured by membrane-associated RNA degradosomes. These sites could be part of a scanning process that is an initial step in mRNA degradation.
Collapse
|
10
|
Machado de Amorim A, Chakrabarti S. Assembly of multicomponent machines in RNA metabolism: A common theme in mRNA decay pathways. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1684. [PMID: 34351053 DOI: 10.1002/wrna.1684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022]
Abstract
Multicomponent protein-RNA complexes comprising a ribonuclease and partner RNA helicase facilitate the turnover of mRNA in all domains of life. While these higher-order complexes provide an effective means of physically and functionally coupling the processes of RNA remodeling and decay, most ribonucleases and RNA helicases do not exhibit sequence specificity in RNA binding. This raises the question as to how these assemblies select substrates for processing and how the activities are orchestrated at the precise moment to ensure efficient decay. The answers to these apparent puzzles lie in the auxiliary components of the assemblies that might relay decay-triggering signals. Given their function within the assemblies, these components may be viewed as "sensors." The functions and mechanisms of action of the sensor components in various degradation complexes in bacteria and eukaryotes are highlighted here to discuss their roles in RNA decay processes. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
McQuail J, Carpousis AJ, Wigneshweraraj S. The association between Hfq and RNase E in long-term nitrogen-starved Escherichia coli. Mol Microbiol 2021; 117:54-66. [PMID: 34219284 DOI: 10.1111/mmi.14782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022]
Abstract
Under conditions of nutrient adversity, bacteria adjust metabolism to minimize cellular energy usage. This is often achieved by controlling the synthesis and degradation of RNA. In Escherichia coli, RNase E is the central enzyme involved in RNA degradation and serves as a scaffold for the assembly of the multiprotein complex known as the RNA degradosome. The activity of RNase E against specific mRNAs can also be regulated by the action of small RNAs (sRNA). In this case, the ubiquitous bacterial chaperone Hfq bound to sRNAs can interact with the RNA degradosome for the sRNA guided degradation of target RNAs. The RNA degradosome and Hfq have never been visualized together in live bacteria. We now show that in long-term nitrogen starved E. coli, both RNase E and Hfq co-localize in a single, large focus. This subcellular assembly, which we refer to as the H-body, forms by a liquid-liquid phase separation type mechanism and includes components of the RNA degradosome, namely, the helicase RhlB and the exoribonuclease polynucleotide phosphorylase. The results support the existence of a hitherto unreported subcellular compartmentalization of a process(s) associated with RNA management in stressed bacteria.
Collapse
Affiliation(s)
- Josh McQuail
- MRC Centre for Molecular Bacteriology, Imperial College London, London, UK
| | - Agamemnon J Carpousis
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, Toulouse, France
| | | |
Collapse
|
12
|
Muthunayake NS, Tomares DT, Childers WS, Schrader JM. Phase-separated bacterial ribonucleoprotein bodies organize mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1599. [PMID: 32445438 PMCID: PMC7554086 DOI: 10.1002/wrna.1599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
In bacteria, mRNA decay is controlled by megadalton scale macromolecular assemblies called, "RNA degradosomes," composed of nucleases and other RNA decay associated proteins. Recent advances in bacterial cell biology have shown that RNA degradosomes can assemble into phase-separated structures, termed bacterial ribonucleoprotein bodies (BR-bodies), with many analogous properties to eukaryotic processing bodies and stress granules. This review will highlight the functional role that BR-bodies play in the mRNA decay process through its organization into a membraneless organelle in the bacterial cytoplasm. This review will also highlight the phylogenetic distribution of BR-bodies across bacterial species, which suggests that these phase-separated structures are broadly distributed across bacteria, and in evolutionarily related mitochondria and chloroplasts. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
13
|
Satala D, Satala G, Karkowska-Kuleta J, Bukowski M, Kluza A, Rapala-Kozik M, Kozik A. Structural Insights into the Interactions of Candidal Enolase with Human Vitronectin, Fibronectin and Plasminogen. Int J Mol Sci 2020; 21:ijms21217843. [PMID: 33105833 PMCID: PMC7660097 DOI: 10.3390/ijms21217843] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Significant amounts of enolase—a cytosolic enzyme involved in the glycolysis pathway—are exposed on the cell surface of Candida yeast. It has been hypothesized that this exposed enolase form contributes to infection-related phenomena such as fungal adhesion to human tissues, and the activation of fibrinolysis and extracellular matrix degradation. The aim of the present study was to characterize, in structural terms, the protein-protein interactions underlying these moonlighting functions of enolase. The tight binding of human vitronectin, fibronectin and plasminogen by purified C. albicans and C. tropicalis enolases was quantitatively analyzed by surface plasmon resonance measurements, and the dissociation constants of the formed complexes were determined to be in the 10−7–10−8 M range. In contrast, the binding of human proteins by the S.cerevisiae enzyme was much weaker. The chemical cross-linking method was used to map the sites on enolase molecules that come into direct contact with human proteins. An internal motif 235DKAGYKGKVGIAMDVASSEFYKDGK259 in C. albicans enolase was suggested to contribute to the binding of all three human proteins tested. Models for these interactions were developed and revealed the sites on the enolase molecule that bind human proteins, extensively overlap for these ligands, and are well-separated from the catalytic activity center.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (D.S.); (M.B.)
| | - Grzegorz Satala
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland;
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (J.K.-K.); (A.K.); (M.R.-K.)
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (D.S.); (M.B.)
| | - Anna Kluza
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (J.K.-K.); (A.K.); (M.R.-K.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (J.K.-K.); (A.K.); (M.R.-K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (D.S.); (M.B.)
- Correspondence:
| |
Collapse
|
14
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
15
|
Ruiz-Márvez E, Ramírez CA, Rodríguez ER, Flórez MM, Delgado G, Guzmán F, Gómez-Puertas P, Requena JM, Puerta CJ. Molecular Characterization of Tc964, A Novel Antigenic Protein from Trypanosoma cruzi. Int J Mol Sci 2020; 21:E2432. [PMID: 32244527 PMCID: PMC7177413 DOI: 10.3390/ijms21072432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 11/16/2022] Open
Abstract
The Tc964 protein was initially identified by its presence in the interactome associated with the LYT1 mRNAs, which code for a virulence factor of Trypanosoma cruzi. Tc964 is annotated in the T. cruzi genome as a hypothetical protein. According to phylogenetic analysis, the protein is conserved in the different genera of the Trypanosomatidae family; however, recognizable orthologues were not identified in other groups of organisms. Therefore, as a first step, an in-depth molecular characterization of the Tc946 protein was carried out. Based on structural predictions and molecular dynamics studies, the Tc964 protein would belong to a particular class of GTPases. Subcellular fractionation analysis indicated that Tc964 is a nucleocytoplasmic protein. Additionally, the protein was expressed as a recombinant protein in order to analyze its antigenicity with sera from Chagas disease (CD) patients. Tc964 was found to be antigenic, and B-cell epitopes were mapped by the use of synthetic peptides. In parallel, the Leishmania major homologue (Lm964) was also expressed as recombinant protein and used for a preliminary evaluation of antigen cross-reactivity in CD patients. Interestingly, Tc964 was recognized by sera from Chronic CD (CCD) patients at different stages of disease severity, but no reactivity against this protein was observed when sera from Colombian patients with cutaneous leishmaniasis were analyzed. Therefore, Tc964 would be adequate for CD diagnosis in areas where both infections (CD and leishmaniasis) coexist, even though additional assays using larger collections of sera are needed in order to confirm its usefulness for differential serodiagnosis.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Márvez
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| | - César Augusto Ramírez
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| | - Eliana Rocío Rodríguez
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| | - Magda Mellisa Flórez
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 # 45-01, Bogota; Colombia; (M.M.F.); (G.D.)
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 # 45-01, Bogota; Colombia; (M.M.F.); (G.D.)
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaiso, Avenida Universidad 2373223, Curauma, Valparaiso-Chile;
| | - Paulino Gómez-Puertas
- Grupo de Modelado Molecular del Centro de Biología Molecular Severo Ochoa, Microbes in Health and Welfare Department, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), 28049 Madrid, Spain;
| | - José María Requena
- Grupo Regulación de la Expresión Génica en Leishmania del Centro de Biología Molecular Severo Ochoa, Molecular Biology Department, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), 28049 Madrid, Spain;
| | - Concepción J. Puerta
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40- 62, Bogotá, Colombia; (E.R.-M.); (C.A.R.); (E.R.R.)
| |
Collapse
|
16
|
Mu R, Shinde P, Zou Z, Kreth J, Merritt J. Examining the Protein Interactome and Subcellular Localization of RNase J2 Complexes in Streptococcus mutans. Front Microbiol 2019; 10:2150. [PMID: 31620106 PMCID: PMC6759994 DOI: 10.3389/fmicb.2019.02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Regulated RNA turnover is vital for the control of gene expression in all cellular life. In Escherichia coli, this process is largely controlled by a stable degradosome complex containing RNase E and a variety of additional enzymes. In the Firmicutes phylum, species lack RNase E and often encode the paralogous enzymes RNase J1 and RNase J2. Unlike RNase J1, surprisingly little is known about the regulatory function and protein interactions of RNase J2, despite being a central pleiotropic regulator for the streptococci and other closely related organisms. Using crosslink coimmunoprecipitation in Streptococcus mutans, we have identified the major proteins found within RNase J2 protein complexes located in the cytoplasm and at the cell membrane. In both subcellular fractions, RNase J2 exhibited the most robust interactions with RNase J1, while additional transient and/or weaker "degradosome-like" interactions were also detected. In addition, RNase J2 exhibits multiple novel interactions that have not been previously reported for any RNase J proteins, some of which were highly biased for either the cytoplasmic or membrane fractions. We also determined that the RNase J2 C-terminal domain (CTD) encodes a structure that is likely conserved among RNase J enzymes and may have an analogous function to the C-terminal portion of RNase E. While we did observe a number of parallels between the RNase J2 interactome and the E. coli degradosome paradigm, our results suggest that S. mutans degradosomes are either unlikely to exist or are quite distinct from those of E. coli.
Collapse
Affiliation(s)
- Rong Mu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Pushkar Shinde
- Emory College of Arts and Sciences, Atlanta, GA, United States
| | - Zhengzhong Zou
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
17
|
Morinière L, Lecomte S, Gueguen E, Bertolla F. In vitro exploration of the Xanthomonas hortorum pv. vitians genome using transposon insertion sequencing and comparative genomics to discriminate between core and contextual essential genes. Microb Genom 2019; 7. [PMID: 33760724 PMCID: PMC8627662 DOI: 10.1099/mgen.0.000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The essential genome of a bacterium encompasses core genes associated with basic cellular processes and conditionally essential genes dependent upon environmental conditions or the genetic context. Comprehensive knowledge of those gene sets allows for a better understanding of fundamental bacterial biology and offers new perspectives for antimicrobial drug research against detrimental bacteria such as pathogens. We investigated the essential genome of Xanthomonas hortorum pv. vitians, a gammaproteobacterial plant pathogen of lettuce (Lactuca sativa L.) which belongs to the plant-pathogen reservoir genus Xanthomonas and is affiliated to the family Xanthomonadaceae. No practical means of disease control or prevention against this pathogen is currently available, and its molecular biology is virtually unknown. To reach a comprehensive overview of the essential genome of X. hortorum pv. vitians LM16734, we developed a mixed approach combining high-quality full genome sequencing, saturated transposon insertion sequencing (Tn-Seq) in optimal growth conditions, and coupled computational analyses such as comparative genomics, synteny assessment and phylogenomics. Among the 370 essential loci identified by Tn-Seq, a majority was bound to critical cell processes conserved across bacteria. The remaining genes were either related to specific ecological features of Xanthomonas or Xanthomonadaceae species, or acquired through horizontal gene transfer of mobile genetic elements and associated with ancestral parasitic gene behaviour and bacterial defence systems. Our study sheds new light on our usual concepts about gene essentiality and is pioneering in the molecular and genomic study of X. hortorum pv. vitians.
Collapse
Affiliation(s)
- Lucas Morinière
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Solène Lecomte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, F 69622 Villeurbanne, France
| | - Franck Bertolla
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
18
|
Gao A, Vasilyev N, Luciano DJ, Levenson-Palmer R, Richards J, Marsiglia WM, Traaseth NJ, Belasco JG, Serganov A. Structural and kinetic insights into stimulation of RppH-dependent RNA degradation by the metabolic enzyme DapF. Nucleic Acids Res 2019; 46:6841-6856. [PMID: 29733359 PMCID: PMC6061855 DOI: 10.1093/nar/gky327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
Vitally important for controlling gene expression in eukaryotes and prokaryotes, the deprotection of mRNA 5′ termini is governed by enzymes whose activity is modulated by interactions with ancillary factors. In Escherichia coli, 5′-end-dependent mRNA degradation begins with the generation of monophosphorylated 5′ termini by the RNA pyrophosphohydrolase RppH, which can be stimulated by DapF, a diaminopimelate epimerase involved in amino acid and cell wall biosynthesis. We have determined crystal structures of RppH–DapF complexes and measured rates of RNA deprotection. These studies show that DapF potentiates RppH activity in two ways, depending on the nature of the substrate. Its stimulatory effect on the reactivity of diphosphorylated RNAs, the predominant natural substrates of RppH, requires a substrate long enough to reach DapF in the complex, while the enhanced reactivity of triphosphorylated RNAs appears to involve DapF-induced changes in RppH itself and likewise increases with substrate length. This study provides a basis for understanding the intricate relationship between cellular metabolism and mRNA decay and reveals striking parallels with the stimulation of decapping activity in eukaryotes.
Collapse
Affiliation(s)
- Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Rose Levenson-Palmer
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - William M Marsiglia
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Nathaniel J Traaseth
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
19
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
20
|
Krucinska J, Falcone E, Erlandsen H, Hazeen A, Lombardo MN, Estrada A, Robinson VL, Anderson AC, Wright DL. Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens. Biochemistry 2019; 58:1188-1197. [PMID: 30714720 DOI: 10.1021/acs.biochem.8b01298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enolase is a glycolytic metalloenzyme involved in carbon metabolism. The advantage of targeting enolase lies in its essentiality in many biological processes such as cell wall formation and RNA turnover and as a plasminogen receptor. We initially used a DARTS assay to identify enolase as a target in Escherichia coli. The antibacterial activities of α-, β-, and γ-substituted seven-member ring tropolones were first evaluated against four strains representing a range of Gram-negative bacteria. We observed that the chemical properties and position of the substituents on the tropolone ring play an important role in the biological activity of the investigated compounds. Both α- and β-substituted phenyl derivatives of tropolone were the most active with minimum inhibitory concentrations in the range of 11-14 μg/mL. The potential inhibitory activity of the synthetic tropolones was further evaluated using an enolase inhibition assay, X-ray crystallography, and molecular docking simulations. The catalytic activity of enolase was effectively inhibited by both the naturally occurring β-thujaplicin and the α- and β-substituted phenyl derivatives of tropolones with IC50 values in range of 8-11 μM. Ligand binding parameters were assessed by isothermal titration calorimetry and differential scanning calorimetry techniques and agreed with the in vitro data. Our studies validate the antibacterial potential of tropolones with careful consideration of the position and character of chelating moieties for stronger interaction with metal ions and residues in the enolase active site.
Collapse
Affiliation(s)
- Jolanta Krucinska
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Eric Falcone
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment (COR2E) , University of Connecticut , 91 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Akram Hazeen
- Department of Chemistry , University of Connecticut , 55 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Michael N Lombardo
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Victoria L Robinson
- Department of Molecular and Cellular Biology , University of Connecticut , 91 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Amy C Anderson
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States
| | - Dennis L Wright
- Department of Pharmaceutical Sciences , University of Connecticut , 69 North Eagleville Road , Storrs , Connecticut 06269 , United States.,Department of Chemistry , University of Connecticut , 55 North Eagleville Road , Storrs , Connecticut 06269 , United States
| |
Collapse
|
21
|
Weng Y, Chen F, Liu Y, Zhao Q, Chen R, Pan X, Liu C, Cheng Z, Jin S, Jin Y, Wu W. Pseudomonas aeruginosa Enolase Influences Bacterial Tolerance to Oxidative Stresses and Virulence. Front Microbiol 2016; 7:1999. [PMID: 28018326 PMCID: PMC5156722 DOI: 10.3389/fmicb.2016.01999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram negative opportunistic pathogenic bacterium, which causes acute and chronic infections. Upon entering the host, bacteria alter global gene expression to adapt to host environment and avoid clearance by the host. Enolase is a glycolytic enzyme involved in carbon metabolism. It is also a component of RNA degradosome, which is involved in RNA processing and gene regulation. Here, we report that enolase is required for the virulence of P. aeruginosa in a murine acute pneumonia model. Mutation of enolase coding gene (eno) increased bacterial susceptibility to neutrophil mediated killing, which is due to reduced tolerance to oxidative stress. Catalases and alkyl hydroperoxide reductases play a major role in protecting the cell from oxidative damages. In the eno mutant, the expression levels of catalases (KatA and KatB) were similar as those in the wild type strain in the presence of H2O2, however, the expression levels of alkyl hydroperoxide reductases (AhpB and AhpC) were significantly reduced. Overexpression of ahpB but not ahpC in the eno mutant fully restored the bacterial resistance to H2O2 as well as neutrophil mediated killing, and partially restored bacterial virulence in the murine acute pneumonia model. Therefore, we have identified a novel role of enolase in the virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Fei Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yiwei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, GainesvilleFL, USA
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
22
|
Müller C, Sokol L, Vesper O, Sauert M, Moll I. Insights into the Stress Response Triggered by Kasugamycin in Escherichia coli. Antibiotics (Basel) 2016; 5:E19. [PMID: 27258317 PMCID: PMC4929434 DOI: 10.3390/antibiotics5020019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
The bacteriostatic aminoglycoside antibiotic kasugamycin inhibits protein synthesis at an initial step without affecting translation elongation. It binds to the mRNA track of the ribosome and prevents formation of the translation initiation complex on canonical mRNAs. In contrast, translation of leaderless mRNAs continues in the presence of the drug in vivo. Previously, we have shown that kasugamycin treatment in E. coli stimulates the formation of protein-depleted ribosomes that are selective for leaderless mRNAs. Here, we provide evidence that prolonged kasugamycin treatment leads to selective synthesis of specific proteins. Our studies indicate that leaderless and short-leadered mRNAs are generated by different molecular mechanisms including alternative transcription and RNA processing. Moreover, we provide evidence for ribosome heterogeneity in response to kasugamycin treatment by alteration of the modification status of the stalk proteins bL7/L12.
Collapse
Affiliation(s)
- Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Lena Sokol
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
23
|
Holtappels M, Vrancken K, Noben J, Remans T, Schoofs H, Deckers T, Valcke R. The in planta proteome of wild type strains of the fire blight pathogen, Erwinia amylovora. J Proteomics 2016; 139:1-12. [DOI: 10.1016/j.jprot.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
|
24
|
Aït-Bara S, Carpousis AJ. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol 2015; 97:1021-135. [PMID: 26096689 DOI: 10.1111/mmi.13095] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
Ribonuclease E (RNase E) of Escherichia coli, which is the founding member of a widespread family of proteins in bacteria and chloroplasts, is a fascinating enzyme that still has not revealed all its secrets. RNase E is an essential single-strand specific endoribonuclease that is involved in the processing and degradation of nearly every transcript in E. coli. A striking enzymatic property is a preference for substrates with a 5' monophosphate end although recent work explains how RNase E can overcome the protection afforded by the 5' triphosphate end of a primary transcript. Other features of E. coli RNase E include its interaction with enzymes involved in RNA degradation to form the multienzyme RNA degradosome and its localization to the inner cytoplasmic membrane. The N-terminal catalytic core of the RNase E protomer associates to form a tetrameric holoenzyme. Each RNase E protomer has a large C-terminal intrinsically disordered (ID) noncatalytic region that contains sites for interactions with protein components of the RNA degradosome as well as RNA and phospholipid bilayers. In this review, RNase E homologs have been classified into five types based on their primary structure. A recent analysis has shown that type I RNase E in the γ-proteobacteria forms an orthologous group of proteins that has been inherited vertically. The RNase E catalytic core and a large ID noncatalytic region containing an RNA binding motif and a membrane targeting sequence are universally conserved features of these orthologs. Although the ID noncatalytic region has low composition and sequence complexity, it is possible to map microdomains, which are short linear motifs that are sites of interaction with protein and other ligands. Throughout bacteria, the composition of the multienzyme RNA degradosome varies with species, but interactions with exoribonucleases (PNPase, RNase R), glycolytic enzymes (enolase, aconitase) and RNA helicases (DEAD-box proteins, Rho) are common. Plasticity in RNA degradosome composition is due to rapid evolution of RNase E microdomains. Characterization of the RNase E-PNPase interaction in α-proteobacteria, γ-proteobacteria and cyanobacteria suggests that it arose independently several times during evolution, thus conferring an advantage in control and coordination of RNA processing and degradation.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Institut, National de la Santé et de la Recherche Médicale & Université d'Auvergne, Clermont-Ferrand, 63001, France
| | - Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique et Université de Toulouse 3, Toulouse, 31062, France
| |
Collapse
|
25
|
Proteomic analysis of the response of Escherichia coli to short-chain fatty acids. J Proteomics 2015; 122:86-99. [PMID: 25845584 DOI: 10.1016/j.jprot.2015.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/13/2015] [Accepted: 03/29/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED Given their simple and easy-to-manipulate chemical structures, short-chain fatty acids (SCFAs) are valuable feedstocks for many industrial applications. While the microbial production of SCFAs by engineered Escherichia coli has been demonstrated recently, productivity and yields are limited by their antimicrobial properties. In this work, we performed a comparative proteomic analysis of E. coli under octanoic acid stress (15 mM) and identified the underlying mechanisms of SCFA toxicity. Out of a total of 33 spots differentially expressed at a p-value ≤ 0.05, nine differentially expressed proteins involved in transport and structural roles (OmpF, HPr, and FliC), oxidative stress (SodA, SodB, and TrxA), protein synthesis (PPiB and RpsA) and metabolic functions (HPr, PflB) were selected for further investigation. Our studies suggest that membrane damage and oxidative stress are the main routes of inhibition by SCFAs in E. coli. The outer membrane porin OmpF had the greatest impact on SCFA tolerance. Intracellular pH analysis on ompF mutants grown under octanoic acid stress indicated that this porin facilitates transport of SCFAs into the cell. The same response was observed under hexanoic acid stress, further supporting the role of OmpF in response to the presence of SCFAs. Furthermore, analysis of membrane protein expression revealed that other outer membrane porins are also involved in the response of E. coli to SCFAs. BIOLOGICAL SIGNIFICANCE This work covers the first known proteomic analysis to assess the inhibitory effect of SCFAs in E. coli. SCFAs are molecules of great interest in the industry, but their microbial production is limited by their antimicrobial properties. This work allowed identification of differentially expressed proteins in response to SCFA stress and demonstrated the relevance of short- and medium-chain FA transport across the cell membrane via outer membrane porins, providing valuable insights on the toxicity mechanism of SCFAs in E. coli. These results could also benefit future engineering efforts by guiding the design and construction of industrial strains that produce SCFAs with increased tolerance and productivity.
Collapse
|
26
|
Ruan J, Mouveaux T, Light SH, Minasov G, Anderson WF, Tomavo S, Ngô HM. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:417-26. [PMID: 25760592 PMCID: PMC4356359 DOI: 10.1107/s1399004714026479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.
Collapse
Affiliation(s)
- Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, France
| | - Samuel H. Light
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, France
| | - Huân M. Ngô
- Center for Structural Genomics of Infectious Diseases, Northwestern University, 320 E. Superior Street, Morton 7-601, Chicago, IL 60611, USA
- BrainMicro LLC, 21 Pendleton Street, New Haven, CT 06511, USA
| |
Collapse
|
27
|
Dolan PT, Roth AP, Xue B, Sun R, Dunker AK, Uversky VN, LaCount DJ. Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions. Protein Sci 2014; 24:221-35. [PMID: 25424537 DOI: 10.1002/pro.2608] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022]
Abstract
Viral proteins bind to numerous cellular and viral proteins throughout the infection cycle. However, the mechanisms by which viral proteins interact with such large numbers of factors remain unknown. Cellular proteins that interact with multiple, distinct partners often do so through short sequences known as molecular recognition features (MoRFs) embedded within intrinsically disordered regions (IDRs). In this study, we report the first evidence that MoRFs in viral proteins play a similar role in targeting the host cell. Using a combination of evolutionary modeling, protein-protein interaction analyses and forward genetic screening, we systematically investigated two computationally predicted MoRFs within the N-terminal IDR of the hepatitis C virus (HCV) Core protein. Sequence analysis of the MoRFs showed their conservation across all HCV genotypes and the canine and equine Hepaciviruses. Phylogenetic modeling indicated that the Core MoRFs are under stronger purifying selection than the surrounding sequence, suggesting that these modules have a biological function. Using the yeast two-hybrid assay, we identified three cellular binding partners for each HCV Core MoRF, including two previously characterized cellular targets of HCV Core (DDX3X and NPM1). Random and site-directed mutagenesis demonstrated that the predicted MoRF regions were required for binding to the cellular proteins, but that different residues within each MoRF were critical for binding to different partners. This study demonstrated that viruses may use intrinsic disorder to target multiple cellular proteins with the same amino acid sequence and provides a framework for characterizing the binding partners of other disordered regions in viral and cellular proteomes.
Collapse
Affiliation(s)
- Patrick T Dolan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | | | | | | | | | | | | |
Collapse
|
28
|
Aït-Bara S, Carpousis AJ, Quentin Y. RNase E in the γ-Proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol Genet Genomics 2014; 290:847-62. [PMID: 25432321 PMCID: PMC4435900 DOI: 10.1007/s00438-014-0959-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
RNase E of Escherichia coli is a membrane-associated endoribonuclease that has a major role in mRNA degradation. The enzyme has a large C-terminal noncatalytic region that is mostly intrinsically disordered (ID). Under standard growth conditions, RhlB, enolase and PNPase associate with the noncatalytic region to form the multienzyme RNA degradosome. To elucidate the origin and evolution of the RNA degradosome, we have identified and characterized orthologs of RNase E in the γ-Proteobacteria, a phylum of bacteria with diverse ecological niches and metabolic phenotypes and an ancient origin contemporary with the radiation of animals, plants and fungi. Intrinsic disorder, composition bias and tandem sequence repeats are conserved features of the noncatalytic region. Composition bias is bipartite with a catalytic domain proximal ANR-rich region and distal AEPV-rich region. Embedded in the noncatalytic region are microdomains (also known as MoRFs, MoREs or SLiMs), which are motifs that interact with protein and other ligands. Our results suggest that tandem repeat sequences are the progenitors of microdomains. We have identified 24 microdomains with phylogenetic signals that were acquired once with few losses. Microdomains involved in membrane association and RNA binding are universally conserved suggesting that they were present in ancestral RNase E. The RNA degradosome of E. coli arose in two steps with RhlB and PNPase acquisition early in a major subtree of the γ-Proteobacteria and enolase acquisition later. We propose a mechanism of microdomain acquisition and evolution and discuss implications of these results for the structure and function of the multienzyme RNA degradosome.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique and Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | | | | |
Collapse
|
29
|
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones D, Kim PM, Kriwacki R, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright P, Babu MM. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631. [PMID: 24773235 PMCID: PMC4095912 DOI: 10.1021/cr400525m] [Citation(s) in RCA: 1568] [Impact Index Per Article: 142.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Robin van der Lee
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Centre
for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The
Netherlands
| | - Marija Buljan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Benjamin Lang
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gary W. Daughdrill
- Department
of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 3720 Spectrum Boulevard, Suite 321, Tampa, Florida 33612, United States
| | - A. Keith Dunker
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - Julian Gough
- Department
of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, United Kingdom
| | - Joerg Gsponer
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David
T. Jones
- Bioinformatics
Group, Department of Computer Science, University
College London, London, WC1E 6BT, United Kingdom
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular
Genetics, and Department of Computer Science, University
of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Richard
W. Kriwacki
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Christopher J. Oldfield
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Peter Tompa
- VIB Department
of Structural Biology, Vrije Universiteit
Brussel, Brussels, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vladimir N. Uversky
- Department
of Molecular Medicine and USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation,
Russian Academy of Sciences, Pushchino,
Moscow Region, Russia
| | - Peter
E. Wright
- Department
of Integrative Structural and Computational Biology and Skaggs Institute
of Chemical Biology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Madan Babu
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
30
|
Martínez VPM, Dehò G, Simons RW, García-Mena J. Ribonuclease PH interacts with an acidic ribonuclease E site through a basic 80-amino acid domain. FEMS Microbiol Lett 2014; 355:51-60. [PMID: 24766456 DOI: 10.1111/1574-6968.12448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
In this work, we characterize the domains for the in vivo interaction between ribonuclease E (RNase E) and ribonuclease PH (RNase PH). We initially explored the interaction using pull-down assays with full wild-type proteins expressed from a chromosomal monocopy gene. Once the interaction was confirmed, we narrowed down the sites of interaction in each enzyme to an acidic 16-amino acid region in the carboxy-terminal domain of RNase E and a basic 80-amino acid region in RNase PH including an α3 helix. Our results suggest two novel functional domains of interaction between ribonucleases.
Collapse
Affiliation(s)
- Víctor Pérez-Medina Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del IPN, Mexico DF, Mexico
| | | | | | | |
Collapse
|
31
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
32
|
Pietras Z, Hardwick SW, Swiezewski S, Luisi BF. Potential regulatory interactions of Escherichia coli RraA protein with DEAD-box helicases. J Biol Chem 2013; 288:31919-29. [PMID: 24045937 PMCID: PMC3814787 DOI: 10.1074/jbc.m113.502146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Members of the DEAD-box family of RNA helicases contribute to virtually every aspect of RNA metabolism, in organisms from all domains of life. Many of these helicases are constituents of multicomponent assemblies, and their interactions with partner proteins within the complexes underpin their activities and biological function. In Escherichia coli the DEAD-box helicase RhlB is a component of the multienzyme RNA degradosome assembly, and its interaction with the core ribonuclease RNase E boosts the ATP-dependent activity of the helicase. Earlier studies have identified the regulator of ribonuclease activity A (RraA) as a potential interaction partner of both RNase E and RhlB. We present structural and biochemical evidence showing how RraA can bind to, and modulate the activity of RhlB and another E. coli DEAD-box enzyme, SrmB. Crystallographic structures are presented of RraA in complex with a portion of the natively unstructured C-terminal tail of RhlB at 2.8-Å resolution, and in complex with the C-terminal RecA-like domain of SrmB at 2.9 Å. The models suggest two distinct mechanisms by which RraA might modulate the activity of these and potentially other helicases.
Collapse
Affiliation(s)
- Zbigniew Pietras
- From the Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom and
| | | | | | | |
Collapse
|
33
|
Bandyra KJ, Bouvier M, Carpousis AJ, Luisi BF. The social fabric of the RNA degradosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:514-22. [PMID: 23459248 PMCID: PMC3991390 DOI: 10.1016/j.bbagrm.2013.02.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/22/2022]
Abstract
Bacterial transcripts each have a characteristic half-life, suggesting that the processes of RNA degradation work in an active and selective manner. Moreover, the processes are well controlled, thereby ensuring that degradation is orderly and coordinated. Throughout much of the bacterial kingdom, RNA degradation processes originate through the actions of assemblies of key RNA enzymes, known as RNA degradosomes. Neither conserved in composition, nor unified by common evolutionary ancestry, RNA degradosomes nonetheless can be found in divergent bacterial lineages, implicating a common requirement for the co-localisation of RNA metabolic activities. We describe how the cooperation of components in the representative degradosome of Escherichia coli may enable controlled access to transcripts, so that they have defined and programmable lifetimes. We also discuss how this cooperation contributes to precursor processing and to the riboregulation of intricate post-transcriptional networks in the control of gene expression. The E. coli degradosome interacts with the cytoplasmic membrane, and we discuss how this interaction may spatially organise the assembly and contribute to subunit cooperation and substrate capture. This article is part of a Special Issue entitled: RNA Decay mechanisms. The organisation of the bacterial RNA degradosome The role in riboregulation and proposal for mechanism Discussion of access to substrates Discussion of the function of compartmentalisation
Collapse
|
34
|
Chen J, Waltenspiel B, Warren WD, Wagner EJ. Functional analysis of the integrator subunit 12 identifies a microdomain that mediates activation of the Drosophila integrator complex. J Biol Chem 2013; 288:4867-77. [PMID: 23288851 DOI: 10.1074/jbc.m112.425892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Drosophila integrator complex consists of 14 subunits that associate with the C terminus of Rpb1 and catalyze the endonucleolytic cleavage of nascent snRNAs near their 3' ends. Although disruption of almost any integrator subunit causes snRNA misprocessing, very little is known about the role of the individual subunits or the network of structural and functional interactions that exist within the complex. Here we developed an RNAi rescue assay in Drosophila S2 cells to identify functional domains within integrator subunit 12 (IntS12) required for snRNA 3' end formation. Surprisingly, the defining feature of the Ints12 protein, a highly conserved and centrally located plant homeodomain finger domain, is not required for reporter snRNA 3' end cleavage. Rather, we find a small, 45-amino acid N-terminal microdomain to be both necessary and nearly sufficient for snRNA biogenesis in cells depleted of endogenous IntS12 protein. This IntS12 microdomain can function autonomously, restoring full integrator processing activity when introduced into a heterologous protein. Moreover, mutations within the microdomain not only disrupt IntS12 function but also abolish binding to other integrator subunits. Finally, the IntS12 microdomain is sufficient to interact and stabilize the putative scaffold integrator subunit, IntS1. Collectively, these results identify an unexpected interaction between the largest and smallest integrator subunits that is essential for the 3' end formation of Drosophila snRNA.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
35
|
Mackie GA. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 2012; 11:45-57. [DOI: 10.1038/nrmicro2930] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Hardwick SW, Luisi BF. Rarely at rest: RNA helicases and their busy contributions to RNA degradation, regulation and quality control. RNA Biol 2012; 10:56-70. [PMID: 23064154 DOI: 10.4161/rna.22270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA helicases are compact, machine-like proteins that can harness the energy of nucleoside triphosphate binding and hydrolysis to dynamically remodel RNA structures and protein-RNA complexes. Through such activities, helicases participate in virtually every process associated with the expression of genetic information. Often found as components of multi-enzyme assemblies, RNA helicases facilitate the processivity of RNA degradation, the remodeling of protein interactions during maturation of structured RNA precursors, and fidelity checks of RNA quality. In turn, the assemblies modulate and guide the activities of the helicases. We describe the roles of RNA helicases with a conserved "DExD/H box" sequence motif in representative examples of such machineries from bacteria, archaea and eukaryotes. The recurrent occurrence of such helicases in complex assemblies throughout the course of evolution suggests a common requirement for their activities to meet cellular demands for the dynamic control of RNA metabolism.
Collapse
|
37
|
Abstract
Enolase is a conserved cytoplasmic metalloenzyme existing universally in both eukaryotic and prokaryotic cells. The enzyme can also locate on the cell surface and bind to plasminogen, via which contributing to the mucosal surface localization of the bacterial pathogens and assisting the invasion into the host cells. The functions of the eukaryotic enzymes on the cell surface expression (including T cells, B cells, neutrophils, monocytoes, neuronal cells and epithelial cells) are not known. Streptococcus suis serotype 2 (S. suis 2, SS2) is an important zoonotic pathogen which has recently caused two large-scale outbreaks in southern China with severe streptococcal toxic shock syndrome (STSS) never seen before in human sufferers. We recently identified the SS2 enolase as an important protective antigen which could protect mice from fatal S.suis 2 infection. In this study, a 2.4-angstrom structure of the SS2 enolase is solved, revealing an octameric arrangement in the crystal. We further demonstrated that the enzyme exists exclusively as an octamer in solution via a sedimentation assay. These results indicate that the octamer is the biological unit of SS2 enolase at least in vitro and most likely in vivo as well. This is, to our knowledge, the first comprehensive characterization of the SS2 enolase octamer both structurally and biophysically, and the second octamer enolase structure in addition to that of Streptococcus pneumoniae. We also investigated the plasminogen binding property of the SS2 enzyme.
Collapse
|
38
|
Norris V, Menu-Bouaouiche L, Becu JM, Legendre R, Norman R, Rosenzweig JA. Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Appl Microbiol Biotechnol 2012; 96:23-36. [PMID: 22949045 DOI: 10.1007/s00253-012-4325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023]
Abstract
A paradigm shift in our thinking about the intricacies of the host-parasite interaction is required that considers bacterial structures and their relationship to bacterial pathogenesis. It has been proposed that interactions between extended macromolecular assemblies, termed hyperstructures (which include multiprotein complexes), determine bacterial phenotypes. In particular, it has been proposed that hyperstructures can alter virulence. Two such hyperstructures have been characterized in both pathogenic and nonpathogenic bacteria. Present within a number of both human and plant Gram-negative pathogens is the type 3 secretion system (T3SS) injectisome which in some bacteria serves to inject toxic effector proteins directly into targeted host cells resulting in their paralysis and eventual death (but which in other bacteria prevents the death of the host). The injectisome itself comprises multiple protein subunits, which are all essential for its function. The degradosome is another multiprotein complex thought to be involved in cooperative RNA decay and processing of mRNA transcripts and has been very well characterized in nonpathogenic Escherichia coli. Recently, experimental evidence has suggested that a degradosome exists in the yersiniae as well and that its interactions within the pathogens modulate their virulence. Here, we explore the possibility that certain interactions between hyperstructures, like the T3SS and the degradosome, can ultimately influence the virulence potential of the pathogen based upon the physical locations of hyperstructures within the cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Biology, University of Rouen, 76821 Mont-Saint-Aignan, Rouen, France.
| | | | | | | | | | | |
Collapse
|
39
|
Sergiev PV, Golovina AY, Sergeeva OV, Osterman IA, Nesterchuk MV, Bogdanov AA, Dontsova OA. How much can we learn about the function of bacterial rRNA modification by mining large-scale experimental datasets? Nucleic Acids Res 2012; 40:5694-705. [PMID: 22411911 PMCID: PMC3384335 DOI: 10.1093/nar/gks219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modification of ribosomal RNA is ubiquitous among living organisms. Its functional role is well established for only a limited number of modified nucleotides. There are examples of rRNA modification involvement in the gene expression regulation in the cell. There is a need for large data set analysis in the search for potential functional partners for rRNA modification. In this study, we extracted phylogenetic profile, genome neighbourhood, co-expression and phenotype profile and co-purification data regarding Escherichia coli rRNA modification enzymes from public databases. Results were visualized as graphs using Cytoscape and analysed. Majority linked genes/proteins belong to translation apparatus. Among co-purification partners of rRNA modification enzymes are several candidates for experimental validation. Phylogenetic profiling revealed links of pseudouridine synthetases with RF2, RsmH with translation factors IF2, RF1 and LepA and RlmM with RdgC. Genome neighbourhood connections revealed several putative functionally linked genes, e.g. rlmH with genes coding for cell wall biosynthetic proteins and others. Comparative analysis of expression profiles (Gene Expression Omnibus) revealed two main associations, a group of genes expressed during fast growth and association of rrmJ with heat shock genes. This study might be used as a roadmap for further experimental verification of predicted functional interactions.
Collapse
Affiliation(s)
- Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.
| | | | | | | | | | | | | |
Collapse
|
40
|
LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria. Int J Microbiol 2012; 2012:454065. [PMID: 22518143 PMCID: PMC3299231 DOI: 10.1155/2012/454065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/16/2011] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF) and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxycycline, alone or combined with LiF were performed by microdilution method. MICs were determined visually following 18–20 h of incubation at 37°C. We observed reduced MICs of antibiotics associated with LiF ranging from two-fold to sixteen-fold. The strongest decreases of MICs observed were for streptomycin and erythromycin associated with LiF against Acinetobacter baumannii and Streptococcus pneumoniae. An eight-fold reduction was recorded for streptomycin against S. pneumoniae whereas an eight-fold and a sixteen-fold reduction were obtained for erythromycin against A. baumannii and S. pneumoniae. This suggests that LiF exhibits a synergistic effect with a wide range of antibiotics and is indicative of its potential as an adjuvant in antibiotic therapy.
Collapse
|
41
|
Newman JA, Hewitt L, Rodrigues C, Solovyova AS, Harwood CR, Lewis RJ. Dissection of the network of interactions that links RNA processing with glycolysis in the Bacillus subtilis degradosome. J Mol Biol 2012; 416:121-36. [PMID: 22198292 DOI: 10.1016/j.jmb.2011.12.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 11/16/2022]
Abstract
The RNA degradosome is a multiprotein macromolecular complex that is involved in the degradation of messenger RNA in bacteria. The composition of this complex has been found to display a high degree of evolutionary divergence, which may reflect the adaptation of species to different environments. Recently, a degradosome-like complex identified in Bacillus subtilis was found to be distinct from those found in proteobacteria, the degradosomes of which are assembled around the unstructured C-terminus of ribonuclease E, a protein not present in B. subtilis. In this report, we have investigated in vitro the binary interactions between degradosome components and have characterized interactions between glycolytic enzymes, RNA-degrading enzymes, and those that appear to link these two cellular processes. The crystal structures of the glycolytic enzymes phosphofructokinase and enolase are presented and discussed in relation to their roles in the mediation of complex protein assemblies. Taken together, these data provide valuable insights into the structure and dynamics of the RNA degradosome, a fascinating and complex macromolecular assembly that links RNA degradation with central carbon metabolism.
Collapse
Affiliation(s)
- Joseph A Newman
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
42
|
Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Chemother 2012; 56:1714-24. [PMID: 22290970 DOI: 10.1128/aac.05558-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation and also to shed some light on the complex AMP mechanism of action. Here, the antibiotic resistance of Escherichia coli ATCC 8739 to magainin I was evaluated in the cytosolic subproteome. Magainin-resistant strains were selected after 10 subsequent spreads at subinhibitory concentrations of magainin I (37.5 mg · liter⁻¹), and their cytosolic proteomes were further compared to those of magainin-susceptible strains through two-dimensional electrophoresis analysis. As a result, 41 differentially expressed proteins were detected by in silico analysis and further identified by tandem mass spectrometry de novo sequencing. Functional categorization indicated an intense metabolic response mainly in energy and nitrogen uptake, stress response, amino acid conversion, and cell wall thickness. Indeed, data reported here show that resistance to cationic antimicrobial peptides possesses a greater molecular complexity than previously supposed, resulting in cell commitment to several metabolic pathways.
Collapse
|
43
|
From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q Rev Biophys 2011; 45:105-45. [DOI: 10.1017/s003358351100014x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe RNA degradosome is a massive multi-enzyme assembly that occupies a nexus in RNA metabolism and post-transcriptional control of gene expression inEscherichia coliand many other bacteria. Powering RNA turnover and quality control, the degradosome serves also as a machine for processing structured RNA precursors during their maturation. The capacity to switch between destructive and processing modes involves cooperation between degradosome components and is analogous to the process of RNA surveillance in other domains of life. Recruitment of components and cellular compartmentalisation of the degradosome are mediated through small recognition domains that punctuate a natively unstructured segment within a scaffolding core. Dynamic in conformation, variable in composition and non-essential under certain laboratory conditions, the degradosome has nonetheless been maintained throughout the evolution of many bacterial species, due most likely to its diverse contributions in global cellular regulation. We describe the role of the degradosome and its components in RNA decay pathways inE. coli, and we broadly compare these pathways in other bacteria as well as archaea and eukaryotes. We discuss the modular architecture and molecular evolution of the degradosome, its roles in RNA degradation, processing and quality control surveillance, and how its activity is regulated by non-coding RNA. Parallels are drawn with analogous machinery in organisms from all life domains. Finally, we conjecture on roles of the degradosome as a regulatory hub for complex cellular processes.
Collapse
|
44
|
Abstract
RNase E is an essential endoribonuclease with a preference for RNA substrates with 5'-monophosphate ends. Primary transcripts, which have 5' triphosphate ends, are thus protected from RNase E. Their conversion to 5'-monophosphate transcripts by RppH is a prerequisite for RNase E-mediated processing and degradation. 5'-monophosphate recognition involves binding to a subdomain in the catalytic core of RNase E known as the 5' sensor. There are, however, transcripts that can be attacked directly by RNase E in a 5'-end-independent pathway. Direct entry involves elements outside of the catalytic domain that are located in the carboxyl terminal half (CTH) of RNase E. Strains harbouring rne alleles that express variants of RNase E in which 5' sensing (rneR169Q) or direct entry (rneΔCTH) are inactivated, are viable. However, the rneR169Q/rneΔCTH and ΔrppH/rneΔCTH combinations are synthetic lethal suggesting that the essential function(s) of RNase E requires at least one of these pathways to be active. A striking result is the demonstration that mutations affecting Rho-dependent transcription termination can overcome synthetic lethality by a pathway that requires RNase H. It is hypothesized that R-loop formation and RNase H cleavage substitute for RNase E-dependent RNA processing and mRNA degradation.
Collapse
Affiliation(s)
- Marie Bouvier
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
45
|
Guo XE, Chen CF, Wang DDH, Modrek AS, Phan VH, Lee WH, Chen PL. Uncoupling the roles of the SUV3 helicase in maintenance of mitochondrial genome stability and RNA degradation. J Biol Chem 2011; 286:38783-38794. [PMID: 21911497 DOI: 10.1074/jbc.m111.257956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Yeast SUV3 is a nuclear encoded mitochondrial RNA helicase that complexes with an exoribonuclease, DSS1, to function as an RNA degradosome. Inactivation of SUV3 leads to mitochondrial dysfunctions, such as respiratory deficiency; accumulation of aberrant RNA species, including excised group I introns; and loss of mitochondrial DNA (mtDNA). Although intron toxicity has long been speculated to be the major reason for the observed phenotypes, direct evidence to support or refute this theory is lacking. Moreover, it remains unknown whether SUV3 plays a direct role in mtDNA maintenance independently of its degradosome activity. In this paper, we address these questions by employing an inducible knockdown system in Saccharomyces cerevisiae with either normal or intronless mtDNA background. Expressing mutants defective in ATPase (K245A) or RNA binding activities (V272L or ΔCC, which carries an 8-amino acid deletion at the C-terminal conserved region) resulted in not only respiratory deficiencies but also loss of mtDNA under normal mtDNA background. Surprisingly, V272L, but not other mutants, can rescue the said deficiencies under intronless background. These results provide genetic evidence supporting the notion that the functional requirements of SUV3 for degradosome activity and maintenance of mtDNA stability are separable. Furthermore, V272L mutants and wild-type SUV3 associated with an active mtDNA replication origin and facilitated mtDNA replication, whereas K245A and ΔCC failed to support mtDNA replication. These results indicate a direct role of SUV3 in maintaining mitochondrial genome stability that is independent of intron turnover but requires the intact ATPase activity and the CC conserved region.
Collapse
Affiliation(s)
- Xuning Emily Guo
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Chi-Fen Chen
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Dennis Ding-Hwa Wang
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | | | - Vy Hoai Phan
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Wen-Hwa Lee
- Department of Biological Chemistry, University of California, Irvine, California 92697.
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, California 92697.
| |
Collapse
|
46
|
Burger A, Whiteley C, Boshoff A. Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 2011; 33:2337-50. [DOI: 10.1007/s10529-011-0713-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
47
|
Characterization of components of the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. J Bacteriol 2011; 193:5520-6. [PMID: 21764917 DOI: 10.1128/jb.05485-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial two-hybrid analysis identified the Staphylococcus aureus RNA degradosome-like complex to include RNase J1, RNase J2, RNase Y, polynucleotide phosphorylase (PNPase), enolase, phosphofructokinase, and a DEAD box RNA helicase. Results also revealed that the recently recognized RNase RnpA interacts with the S. aureus degradosome and that this interaction is conserved in other Gram-positive organisms.
Collapse
|
48
|
Hernández-Pérez L, Depardón F, Fernández-Ramírez F, Sánchez-Trujillo A, Bermúdez-Crúz RM, Dangott L, Montañez C. α-Enolase binds to RNA. Biochimie 2011; 93:1520-8. [PMID: 21621582 DOI: 10.1016/j.biochi.2011.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 05/11/2011] [Indexed: 11/18/2022]
Abstract
To detect proteins binding to CUG triplet repeats, we performed magnetic bead affinity assays and North-Western analysis using a (CUG)(10) ssRNA probe and either nuclear or total extracts from rat L6 myoblasts. We report the isolation and identification by mass spectrometry and immunodetection of α-enolase, as a novel (CUG)n triplet repeat binding protein. To confirm our findings, rat recombinant α-enolase was cloned, expressed and purified; the RNA binding activity was verified by electrophoretic mobility shift assays using radiolabeled RNA probes. Enolase may play other roles in addition to its well described function in glycolysis.
Collapse
Affiliation(s)
- Liliana Hernández-Pérez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN., Avenida Instituto Politécnico Nacional 2508, Apartado postal 14-740, DF CP 07360, Mexico
| | | | | | | | | | | | | |
Collapse
|
49
|
Nurmohamed S, Vincent HA, Titman CM, Chandran V, Pears MR, Du D, Griffin JL, Callaghan AJ, Luisi BF. Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli. J Biol Chem 2011; 286:14315-23. [PMID: 21324911 PMCID: PMC3077632 DOI: 10.1074/jbc.m110.200741] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/14/2011] [Indexed: 11/30/2022] Open
Abstract
RNA turnover is an essential element of cellular homeostasis and response to environmental change. Whether the ribonucleases that mediate RNA turnover can respond to cellular metabolic status is an unresolved question. Here we present evidence that the Krebs cycle metabolite citrate affects the activity of Escherichia coli polynucleotide phosphorylase (PNPase) and, conversely, that cellular metabolism is affected widely by PNPase activity. An E. coli strain that requires PNPase for viability has suppressed growth in the presence of increased citrate concentration. Transcriptome analysis reveals a PNPase-mediated response to citrate, and PNPase deletion broadly impacts on the metabolome. In vitro, citrate directly binds and modulates PNPase activity, as predicted by crystallographic data. Binding of metal-chelated citrate in the active site at physiological concentrations appears to inhibit enzyme activity. However, metal-free citrate is bound at a vestigial active site, where it stimulates PNPase activity. Mutagenesis data confirmed a potential role of this vestigial site as an allosteric binding pocket that recognizes metal-free citrate. Collectively, these findings suggest that RNA degradative pathways communicate with central metabolism. This communication appears to be part of a feedback network that may contribute to global regulation of metabolism and cellular energy efficiency.
Collapse
Affiliation(s)
- Salima Nurmohamed
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Helen A. Vincent
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Christopher M. Titman
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Vidya Chandran
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Michael R. Pears
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Dijun Du
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Julian L. Griffin
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Anastasia J. Callaghan
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Ben F. Luisi
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| |
Collapse
|
50
|
Kaberdin VR, Singh D, Lin-Chao S. Composition and conservation of the mRNA-degrading machinery in bacteria. J Biomed Sci 2011; 18:23. [PMID: 21418661 PMCID: PMC3071783 DOI: 10.1186/1423-0127-18-23] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022] Open
Abstract
RNA synthesis and decay counteract each other and therefore inversely regulate gene expression in pro- and eukaryotic cells by controlling the steady-state level of individual transcripts. Genetic and biochemical data together with recent in depth annotation of bacterial genomes indicate that many components of the bacterial RNA decay machinery are evolutionarily conserved and that their functional analogues exist in organisms belonging to all kingdoms of life. Here we briefly review biological functions of essential enzymes, their evolutionary conservation and multienzyme complexes that are involved in mRNA decay in Escherichia coli and discuss their conservation in evolutionarily distant bacteria.
Collapse
|