1
|
Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V. Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins. Front Mol Biosci 2024; 11:1503709. [PMID: 39606035 PMCID: PMC11599742 DOI: 10.3389/fmolb.2024.1503709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The primary goal of our work is to provide structural insights into the influence of the hydrophobic lipid environment on the membrane proteins (MPs) structure and function. Our work will not cover the well-studied hydrophobic mismatch between the lipid bilayer and MPs. Instead, we will focus on the less-studied direct molecular interactions of lipids with the hydrophobic surfaces of MPs. To visualize the first layer of amphiphiles surrounding MPs and analyze their interaction with the proteins, we use the available highest-quality crystallographic structures of microbial rhodopsins. The results of the structure-based analysis allowed us to formulate the hypothetical concept of the role of the nearest layer of the lipids as an integral part of the MPs that are important for their structure and function. We then discuss how the lipid-MPs interaction is influenced by exogenous hydrophobic molecules, noble gases, which can compete with lipids for the surface of MPs and can be used in the systematic approach to verify the proposed concept experimentally. Finally, we raise the problems of currently available structural data that should be overcome to obtain a more profound picture of the lipid-MP interactions.
Collapse
Affiliation(s)
- S. Bukhdruker
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - I. Melnikov
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - C. Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - T. Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - V. Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| |
Collapse
|
2
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
3
|
Kouyama T, Ihara K. Two substates in the O intermediate of the light-driven proton pump archaerhodopsin-2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183919. [PMID: 35304864 DOI: 10.1016/j.bbamem.2022.183919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The proton pumping cycle of archaerhodopsin-2 (aR2) was investigated over a wide pH range and at different salt concentrations. We have found that two substates, which are spectroscopically and kinetically distinguishable, occur in the O intermediate. The first O-intermediate (O1) absorbs maximumly at ~580 nm, whereas the late O-intermediate (O2) absorbs maximumly at 605 nm. At neutral pH, O1 is in rapid equilibrium with the N intermediate. When the medium pH is increased, O1 becomes less stable than N and, in proportion to the amount of O1 in the dynamic equilibrium between N and O1, the formation rate of O2 decreases. By contrast, the decay rate of O2 increases ~100 folds when the pH of a low-salt membrane suspension is increased from 5.5 to 7.5 or when the salt concentration is increased to 2 M KCl. Together with our recent study on two substates in the O intermediate of bacteriorhodopsin (bR), the present study suggests that the thermally activated re-isomerization of the retinylidene chromophore into the initial all-trans configuration takes place in the O1-to-O2 transition; that is, O1 contains a distorted 13-cis chromophore. It is also found that the pKa value of the key ionizable residue (Asp101aR2, Asp96bR) in the proton uptake channel is elevated in the O1 state of aR2 as compared to the O1 state of bR. This implies that the structural property of O1 in the aR2 photocycle can be investigated over a wide pH range.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Lazaratos M, Siemers M, Brown LS, Bondar AN. Conserved hydrogen-bond motifs of membrane transporters and receptors. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183896. [PMID: 35217000 DOI: 10.1016/j.bbamem.2022.183896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023]
Abstract
Membrane transporters and receptors often rely on conserved hydrogen bonds to assemble transient paths for ion transfer or long-distance conformational couplings. For transporters and receptors that use proton binding and proton transfer for function, inter-helical hydrogen bonds of titratable protein sidechains that could change protonation are of central interest to formulate hypotheses about reaction mechanisms. Knowledge of hydrogen bonds common at sites of potential interest for proton binding could thus inform and guide studies on functional mechanisms of protonation-coupled membrane proteins. Here we apply graph-theory approaches to identify hydrogen-bond motifs of carboxylate and histidine sidechains in a large data set of static membrane protein structures. We find that carboxylate-hydroxyl hydrogen bonds are present in numerous structures of the dataset, and can be part of more extended H-bond clusters that could be relevant to conformational coupling. Carboxylate-carboxyamide and imidazole-imidazole hydrogen bonds are represented in comparably fewer protein structures of the dataset. Atomistic simulations on two membrane transporters in lipid membranes suggest that many of the hydrogen bond motifs present in static protein structures tend to be robust, and can be part of larger hydrogen-bond clusters that recruit additional hydrogen bonds.
Collapse
Affiliation(s)
- Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Leonid S Brown
- University of Guelph, Department of Physics, 50 Stone Road E., Guelph, Ontario N1G 2W1, Canada
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany.
| |
Collapse
|
5
|
Kishi KE, Kim YS, Fukuda M, Inoue M, Kusakizako T, Wang PY, Ramakrishnan C, Byrne EFX, Thadhani E, Paggi JM, Matsui TE, Yamashita K, Nagata T, Konno M, Quirin S, Lo M, Benster T, Uemura T, Liu K, Shibata M, Nomura N, Iwata S, Nureki O, Dror RO, Inoue K, Deisseroth K, Kato HE. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 2022; 185:672-689.e23. [PMID: 35114111 PMCID: PMC7612760 DOI: 10.1016/j.cell.2022.01.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.
Collapse
Affiliation(s)
- Koichiro E Kishi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Fukuda
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Peter Y Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Eamon F X Byrne
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Elina Thadhani
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Toshiki E Matsui
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Takashi Nagata
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masae Konno
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Maisie Lo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tyler Benster
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tomoko Uemura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Japan; High-Speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan; RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Keiichi Inoue
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; CNC Program, Stanford University, Palo Alto, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Hideaki E Kato
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
6
|
Abstract
Microbial rhodopsins are light-sensitive transmembrane proteins, evolutionary adapted by various organisms like archaea, bacteria, simple eukaryote, and viruses to utilize solar energy for their survival. A complete understanding of functional mechanisms of these proteins is not possible without the knowledge of their high-resolution structures, which can be primarily obtained by X-ray crystallography. This technique, however, requires high-quality crystals, growing of which is a great challenge especially in case of membrane proteins. In this chapter, we summarize methods applied for crystallization of microbial rhodopsins with the emphasis on crystallization in lipidic mesophases, also known as in meso approach. In particular, we describe in detail the methods of crystallization using lipidic cubic phase to grow both large crystals optimized for traditional crystallographic data collection and microcrystals for serial crystallography.
Collapse
Affiliation(s)
- Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bada Juarez JF, Judge PJ, Adam S, Axford D, Vinals J, Birch J, Kwan TOC, Hoi KK, Yen HY, Vial A, Milhiet PE, Robinson CV, Schapiro I, Moraes I, Watts A. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat Commun 2021; 12:629. [PMID: 33504778 PMCID: PMC7840839 DOI: 10.1038/s41467-020-20596-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Many transmembrane receptors have a desensitized state, in which they are unable to respond to external stimuli. The family of microbial rhodopsin proteins includes one such group of receptors, whose inactive or dark-adapted (DA) state is established in the prolonged absence of light. Here, we present high-resolution crystal structures of the ground (light-adapted) and DA states of Archaerhodopsin-3 (AR3), solved to 1.1 Å and 1.3 Å resolution respectively. We observe significant differences between the two states in the dynamics of water molecules that are coupled via H-bonds to the retinal Schiff Base. Supporting QM/MM calculations reveal how the DA state permits a thermodynamic equilibrium between retinal isomers to be established, and how this same change is prevented in the ground state in the absence of light. We suggest that the different arrangement of internal water networks in AR3 is responsible for the faster photocycle kinetics compared to homologs.
Collapse
Affiliation(s)
- Juan F Bada Juarez
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Judge
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Javier Vinals
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK
| | - James Birch
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Tristan O C Kwan
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- National Physical Laboratory, Hampton Road, Teddington, London, TW11 0LW, UK
| | - Kin Kuan Hoi
- Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hsin-Yung Yen
- OMass Therapeutics, The Schrodinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Anthony Vial
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Carol V Robinson
- Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Isabel Moraes
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.
- National Physical Laboratory, Hampton Road, Teddington, London, TW11 0LW, UK.
| | - Anthony Watts
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
8
|
Li A, Tanzi RE. <p>Optogenetic Pacing: Current Insights and Future Potential</p>. RESEARCH REPORTS IN CLINICAL CARDIOLOGY 2020. [DOI: 10.2147/rrcc.s242650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, Ernst OP. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem 2020; 295:14793-14804. [PMID: 32703899 DOI: 10.1074/jbc.ra120.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Juan D Sanchez Vasquez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica H Y Chu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Wickstrand C, Nogly P, Nango E, Iwata S, Standfuss J, Neutze R. Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Annu Rev Biochem 2019; 88:59-83. [DOI: 10.1146/annurev-biochem-013118-111327] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directional transport of protons across an energy transducing membrane—proton pumping—is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all- trans retinal chromophore being photoisomerized to a 13- cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Przemyslaw Nogly
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
11
|
Pedraza-González L, De Vico L, del Carmen Marín M, Fanelli F, Olivucci M. a-ARM: Automatic Rhodopsin Modeling with Chromophore Cavity Generation, Ionization State Selection, and External Counterion Placement. J Chem Theory Comput 2019; 15:3134-3152. [PMID: 30916955 PMCID: PMC7141608 DOI: 10.1021/acs.jctc.9b00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Automatic Rhodopsin Modeling (ARM) protocol has recently been proposed as a tool for the fast and parallel generation of basic hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild type and mutant rhodopsins. However, in its present version, input preparation requires a few hours long user's manipulation of the template protein structure, which also impairs the reproducibility of the generated models. This limitation, which makes model building semiautomatic rather than fully automatic, comprises four tasks: definition of the retinal chromophore cavity, assignment of protonation states of the ionizable residues, neutralization of the protein with external counterions, and finally congruous generation of single or multiple mutations. In this work, we show that the automation of the original ARM protocol can be extended to a level suitable for performing the above tasks without user's manipulation and with an input preparation time of minutes. The new protocol, called a-ARM, delivers fully reproducible (i.e., user independent) rhodopsin QM/MM models as well as an improved model quality. More specifically, we show that the trend in vertical excitation energies observed for a set of 25 wild type and 14 mutant rhodopsins is predicted by the new protocol better than when using the original. Such an agreement is reflected by an estimated (relative to the probed set) trend deviation of 0.7 ± 0.5 kcal mol-1 (0.03 ± 0.02 eV) and mean absolute error of 1.0 kcal mol-1 (0.04 eV).
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - María del Carmen Marín
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, I-41125 Modena, Italy
| | - Massimo Olivucci
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
12
|
Ganapathy S, Kratz S, Chen Q, Hellingwerf KJ, de Groot HJM, Rothschild KJ, de Grip WJ. Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. Photochem Photobiol 2019; 95:959-968. [PMID: 30860604 PMCID: PMC6849744 DOI: 10.1111/php.13093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
Archaerhodopsin‐3 (AR3) is a member of the microbial rhodopsin family of hepta‐helical transmembrane proteins, containing a covalently bound molecule of all‐trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light‐driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all‐trans retinal A1 on the spectral properties and proton‐pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3‐methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3‐methylamino‐16‐nor‐1,2,3,4‐didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near‐infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near‐infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near‐infrared exploitation as fluorescent voltage‐gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy‐based applications.
Collapse
Affiliation(s)
- Srividya Ganapathy
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Svenja Kratz
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Que Chen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| | - Willem J de Grip
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Geng X, Dai G, Chao L, Wen D, Kikukawa T, Iwasa T. Two Consecutive Polar Amino Acids at the End of Helix E are Important for Fast Turnover of the Archaerhodopsin Photocycle. Photochem Photobiol 2018; 95:980-989. [PMID: 30548616 DOI: 10.1111/php.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/09/2018] [Indexed: 11/27/2022]
Abstract
Archaerhodopsins (ARs) is one of the members of microbial rhodopsins. Threonine 164 (T164) and serine 165 (S165) residues of the AR from Halorubrum sp. ejinoor (HeAR) are fully conserved in ARs, although they are far from the proton transfer channel and the retinal Schiff base, and are likely involved in a hydrogen-bonding network at the end of the Helix E where most microbial rhodopsins assume a "bent structure". In the present work, T164 and/or S165 were replaced with an alanine (A), and the photocycles of the mutants were analyzed with flash photolysis. The amino acid replacements caused profound changes to the photocycle of HeAR including prolonged photocycle, accelerated decay of M intermediate and appearance of additional two intermediates which were evident in T164A- and T164A/S165A-HeAR photocyles. These results suggest that although T164 and S165 are located at the far end of the photoactive center, these two amino acid residues are important for maintaining the fast turnover of the HeAR photocycle. The underlying molecular mechanisms are discussed in relation to hydrogen-bonding networks involving these two amino acids. Present study may arouse our interests to explore the functional role of the well-conserved "bent structure" in different types of microbial rhodopsin.
Collapse
Affiliation(s)
- Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Gang Dai
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, China
| | - Luomeng Chao
- College of Animal Science and Technology, Inner Mongolia University for The Nationalities, Tong Liao, China
| | - Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
14
|
Singh M, Inoue K, Pushkarev A, Béjà O, Kandori H. Mutation Study of Heliorhodopsin 48C12. Biochemistry 2018; 57:5041-5049. [PMID: 30036039 DOI: 10.1021/acs.biochem.8b00637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rhodopsins are heptahelical transmembrane photoactive protein families: type 1 (microbial rhodopsins) and type 2 (animal rhodopsins). Both families share similar topologies and chromophore retinal, which is linked covalently as a protonated Schiff base to a Lys at the transmembrane 7 helix. Recently, through functional metagenomics analysis, we reported an unnoticed diverse family, heliorhodopsins (HeRs), which are abundant and distributed globally in archaea, bacteria, eukarya, and viruses. The sequence identity is <15% between HeRs and type 1 rhodopsins, so that many aspects of the molecular properties of HeRs remain unknown. Herein, to gain information about the residues responsible for the interaction with the chromophore, we applied Ala scanning to 30 candidate residues in HeR 48C12. As a result, 12 mutants showed no absorption change, eight exhibited a spectral blue-shift, six exhibited a spectral red-shift, and four did not form a pigment. R104, Y108, G145, and K241 play crucial roles in pigment formation. A combination of single mutants successfully engineered pigments absorbing at 523 nm (S112A/M141A) and 571 nm (H80A/S237A), covering more than ∼50 nm. These results provide fundamental knowledge about the molecular properties of HeRs.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,Frontier Research Institute for Material Science , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,PRESTO , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Alina Pushkarev
- Faculty of Biology , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Oded Béjà
- Faculty of Biology , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| |
Collapse
|
15
|
Sun C, Ding X, Cui H, Yang Y, Chen S, Watts A, Zhao X. In Situ Study of the Function of Bacterioruberin in the Dual-Chromophore Photoreceptor Archaerhodopsin-4. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Sun
- Department of Physics; East China Normal University; Shanghai 200062 P. R. China
| | - Xiaoyan Ding
- Department of Physics; East China Normal University; Shanghai 200062 P. R. China
- Department of Biochemistry and Molecular Biology; Penn State College of Medicine; Hershey PA 17033-0850 USA
| | - Haolin Cui
- Department of Physics; East China Normal University; Shanghai 200062 P. R. China
| | - Yanan Yang
- Department of Physics; East China Normal University; Shanghai 200062 P. R. China
| | - Sijin Chen
- Department of Physics; East China Normal University; Shanghai 200062 P. R. China
| | - Anthony Watts
- Department of Biochemistry; University of Oxford; Oxford OX1 3QU UK
| | - Xin Zhao
- Department of Physics; East China Normal University; Shanghai 200062 P. R. China
| |
Collapse
|
16
|
Sun C, Ding X, Cui H, Yang Y, Chen S, Watts A, Zhao X. In Situ Study of the Function of Bacterioruberin in the Dual-Chromophore Photoreceptor Archaerhodopsin-4. Angew Chem Int Ed Engl 2018; 57:8937-8941. [PMID: 29781190 DOI: 10.1002/anie.201803195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 11/11/2022]
Abstract
While certain archaeal ion pumps have been shown to contain two chromophores, retinal and the carotenoid bacterioruberin, the functions of bacterioruberin have not been well explored. To address this research gap, recombinant archaerhodopsin-4 (aR4), either with retinal only or with both retinal and bacterioruberin chromophores, was successfully expressed together with endogenous lipids in H. salinarum L33 and MPK409 respectively. In situ solid-state NMR, supported by molecular spectroscopy and functional assays, revealed for the first time that the retinal thermal equilibrium in the dark-adapted state is modulated by bacterioruberin binding through a cluster of aromatic residues on helix E. Bacterioruberin not only stabilizes the protein trimeric structure but also affects the photocycle kinetics and the ATP formation rate. These new insights may be generalized to other receptors and proteins in which metastable thermal equilibria and functions are perturbed by ligand binding.
Collapse
Affiliation(s)
- Chao Sun
- Department of Physics, East China Normal University, Shanghai, 200062, P. R. China
| | - Xiaoyan Ding
- Department of Physics, East China Normal University, Shanghai, 200062, P. R. China.,Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| | - Haolin Cui
- Department of Physics, East China Normal University, Shanghai, 200062, P. R. China
| | - Yanan Yang
- Department of Physics, East China Normal University, Shanghai, 200062, P. R. China
| | - Sijin Chen
- Department of Physics, East China Normal University, Shanghai, 200062, P. R. China
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Xin Zhao
- Department of Physics, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
17
|
Engelhard C, Chizhov I, Siebert F, Engelhard M. Microbial Halorhodopsins: Light-Driven Chloride Pumps. Chem Rev 2018; 118:10629-10645. [DOI: 10.1021/acs.chemrev.7b00715] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, OE8830 Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Albert-Ludwigs-Universität Freiburg, Hermann-Herderstr. 9, 79104 Freiburg, Germany
| | - Martin Engelhard
- Max Planck Institute for Molecular Physiology, Otto Hahn Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
18
|
Ding X, Sun C, Cui H, Chen S, Gao Y, Yang Y, Wang J, He X, Iuga D, Tian F, Watts A, Zhao X. Functional roles of tyrosine 185 during the bacteriorhodopsin photocycle as revealed by in situ spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1006-1014. [PMID: 29800547 DOI: 10.1016/j.bbabio.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/15/2018] [Accepted: 05/20/2018] [Indexed: 01/22/2023]
Abstract
Tyrosine 185 (Y185), one of the aromatic residues within the retinal (Ret) chromophore binding pocket in helix F of bacteriorhodopsin (bR), is highly conserved among the microbial rhodopsin family proteins. Many studies have investigated the functions of Y185, but its underlying mechanism during the bR photocycle remains unclear. To address this research gap, in situ two-dimensional (2D) magic-angle spinning (MAS) solid-state NMR (ssNMR) of specifically labelled bR, combined with light-induced transient absorption change measurements, dynamic light scattering (DLS) measurements, titration analysis and site-directed mutagenesis, was used to elucidate the functional roles of Y185 during the bR photocycle in the native membrane environment. Different interaction modes were identified between Y185 and the Ret chromophore in the dark-adapted (inactive) state and M (active) state, indicating that Y185 may serve as a rotamer switch maintaining the protein dynamics, and plays an important role in the efficient proton-pumping mechanism in the bR purple membrane.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, PA 17033-0850, USA
| | - Chao Sun
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Haolin Cui
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Sijin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Yujiao Gao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Yanan Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Juan Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Xiao He
- Shang Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Dinu Iuga
- The UK 850 MHz Solid-State NMR Facility, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, PA 17033-0850, USA.
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Xin Zhao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
19
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
20
|
Ding X, Wang H, Peng B, Cui H, Gao Y, Iuga D, Judge PJ, Li G, Watts A, Zhao X. Mediation mechanism of tyrosine 185 on the retinal isomerization equilibrium and the proton release channel in the seven-transmembrane receptor bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1786-1795. [DOI: 10.1016/j.bbabio.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 01/17/2023]
|
21
|
Gushchin I, Shevchenko V, Polovinkin V, Borshchevskiy V, Buslaev P, Bamberg E, Gordeliy V. Structure of the light-driven sodium pump KR2 and its implications for optogenetics. FEBS J 2015; 283:1232-8. [DOI: 10.1111/febs.13585] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/22/2015] [Accepted: 10/30/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Ivan Gushchin
- Institute of Complex Systems (ICS); ICS-6: Structural Biochemistry; Research Centre Jülich; Germany
- Moscow Institute of Physics and Technology; Dolgoprudniy Russia
| | - Vitaly Shevchenko
- Institute of Complex Systems (ICS); ICS-6: Structural Biochemistry; Research Centre Jülich; Germany
- Moscow Institute of Physics and Technology; Dolgoprudniy Russia
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS); ICS-6: Structural Biochemistry; Research Centre Jülich; Germany
- Moscow Institute of Physics and Technology; Dolgoprudniy Russia
- Institut de Biologie Structurale; Université Grenoble Alpes; France
- Institut de Biologie Structurale; Centre National de la Recherche Scientifique; Grenoble France
- Institut de Biologie Structurale; Direction des Sciences du Vivant; Commissariat à l'Énergie Atomique; Grenoble France
| | - Valentin Borshchevskiy
- Institute of Complex Systems (ICS); ICS-6: Structural Biochemistry; Research Centre Jülich; Germany
- Moscow Institute of Physics and Technology; Dolgoprudniy Russia
| | - Pavel Buslaev
- Moscow Institute of Physics and Technology; Dolgoprudniy Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS); ICS-6: Structural Biochemistry; Research Centre Jülich; Germany
- Moscow Institute of Physics and Technology; Dolgoprudniy Russia
- Institut de Biologie Structurale; Université Grenoble Alpes; France
- Institut de Biologie Structurale; Centre National de la Recherche Scientifique; Grenoble France
- Institut de Biologie Structurale; Direction des Sciences du Vivant; Commissariat à l'Énergie Atomique; Grenoble France
| |
Collapse
|
22
|
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AHJ. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 2015; 290:29567-77. [PMID: 26483542 PMCID: PMC4705956 DOI: 10.1074/jbc.m115.685065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.
Collapse
Affiliation(s)
- Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| | - Hsu-Yuan Fu
- the Department of Biochemical Science and Technology, College of Life Science, Yen Tjing Ling Industrial Research Institute, and
| | - Chun-Jie Cai
- the Department of Biochemical Science and Technology, College of Life Science
| | - Hsiu-Pin Yi
- the Department of Biochemical Science and Technology, College of Life Science
| | - Chii-Shen Yang
- the Department of Biochemical Science and Technology, College of Life Science, Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Andrew H-J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| |
Collapse
|
23
|
Dai G, Kikukawa T, Ihara K, Iwasa T. Microbial rhodopsins of Halorubrum species isolated from Ejinoor salt lake in Inner Mongolia of China. Photochem Photobiol Sci 2015; 14:1974-82. [PMID: 26328780 DOI: 10.1039/c5pp00161g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are photoactive proteins that use a retinal molecule as the photoactive center. Because of structural simplicity and functional diversity, microbial rhodopsins have been an excellent model system for structural biology. In this study, a halophilic archaea that has three microbial rhodopsin-type genes in its genome was isolated from Ejinoor salt lake in Inner Mongolia of China. A sequence of 16S rRNA showed that the strain belongs to Halorubrum genus and named Halorubrum sp. ejinoor (He). The translated amino acid sequences of its microbial rhodopsin-type genes suggest that they are homologs of archaerhodopsin (HeAR), halorhodopsin (HeHR) and sensory rhodopsin II (HeSRII). The mRNAs of three types of genes were detected by RT-PCR and their amounts were investigated by Real-Time RT-PCR. The amount of mRNA of HeSRII was the smallest and the amounts of of HeAR and HeHR were 30 times and 10 times greater than that of HeSRII. The results of light-induced pH changes suggested the presence of a light-driven proton pump and a light-driven chloride ion pump in the membrane vesicles of He. Flash induced absorbance changes of the He membrane fraction indicated that HeAR and HeHR are photoactive and undergo their own photocycles. This study revealed that three microbial rhodopsin-type genes are all expressed in the strain and at least two of them, HeAR and HeHR, are photochemically and physiologically active like BR and HR of Halobacterium salinarum, respectively. To our knowledge, this is the first report of physiological activity of HR-homolog of Halorubrum species.
Collapse
|
24
|
Shevchenko V, Gushchin I, Polovinkin V, Round E, Borshchevskiy V, Utrobin P, Popov A, Balandin T, Büldt G, Gordeliy V. Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form. PLoS One 2014; 9:e112873. [PMID: 25479443 PMCID: PMC4257550 DOI: 10.1371/journal.pone.0112873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/17/2014] [Indexed: 12/02/2022] Open
Abstract
Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The protein's fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies.
Collapse
Affiliation(s)
- Vitaly Shevchenko
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
| | - Ivan Gushchin
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Vitaly Polovinkin
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Ekaterina Round
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
| | - Petr Utrobin
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | | | - Taras Balandin
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Georg Büldt
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
25
|
Tsukamoto T, Demura M, Sudo Y. Irreversible trimer to monomer transition of thermophilic rhodopsin upon thermal stimulation. J Phys Chem B 2014; 118:12383-94. [PMID: 25279934 DOI: 10.1021/jp507374q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Assembly is one of the keys to understand biological molecules, and it takes place in spatial and temporal domains upon stimulation. Microbial rhodopsin (also called retinal protein) is a membrane-embedded protein that has a retinal chromophore within seven-transmembrane α-helices and shows homo-, di-, tri-, penta-, and hexameric assemblies. Those assemblies are closely related to critical physiological properties such as stabilizing the protein structure and regulating their photoreaction dynamics. Here we investigated the assembly and disassembly of thermophilic rhodopsin (TR), which is a novel proton-pumping rhodopsin derived from a thermophile living at 75 °C. TR was characterized using size-exclusion chromatography and circular dichroism spectroscopy, and formed a trimer at 25 °C, but irreversibly dissociated into monomers upon thermal stimulation. The transition temperature was estimated to be 68 °C. The irreversible nature made it possible to investigate the photochemical properties of both the trimer and the monomer independently. Compared with the trimer, the absorption maximum of the monomer is blue-shifted by 6 nm without any changes in the retinal composition, pKa value for the counterion or the sequence of the proton movement. The photocycling rate of the monomeric TR was similar to that of the trimeric TR. A similar trimer-monomer transition upon thermal stimulation was observed for another eubacterial rhodopsin GR but not for the archaeal rhodopsins AR3 and HwBR, suggesting that the transition is conserved in bacterial rhodopsins. Thus, the thermal stimulation of TR induces the irreversible disassembly of the trimer.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | |
Collapse
|
26
|
Kouyama T, Fujii R, Kanada S, Nakanishi T, Chan SK, Murakami M. Structure of archaerhodopsin-2 at 1.8 Å resolution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2692-701. [PMID: 25286853 PMCID: PMC4188009 DOI: 10.1107/s1399004714017313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022]
Abstract
Archaerhodopsin-2 (aR2), the sole protein found in the claret membrane of Halorubrum sp. Aus-2, functions as a light-driven proton pump. In this study, structural analysis of aR2 was performed using a novel three-dimensional crystal prepared by the successive fusion of claret membranes. The crystal is made up of stacked membranes, in each of which aR2 trimers are arranged on a hexagonal lattice. This lattice structure resembles that found in the purple membrane of H. salinarum, except that lipid molecules trapped within the trimeric structure are not distributed with perfect threefold symmetry. Nonetheless, diffraction data at 1.8 Å resolution provide accurate structural information about functionally important residues. It is shown that two glutamates in the proton-release channel form a paired structure that is maintained by a low-barrier hydrogen bond. Although the structure of the proton-release pathway is highly conserved among proton-pumping archaeal rhodopsins, aR2 possesses the following peculiar structural features: (i) the motional freedom of the tryptophan residue that makes contact with the C13 methyl group of retinal is restricted, affecting the formation/decay kinetics of the L state, and (ii) the N-terminal polypeptide folds into an Ω-loop, which may play a role in organizing the higher-order structure.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, Japan
| | - Ryudo Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Soun Kanada
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taichi Nakanishi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Siu Kit Chan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
27
|
Chan SK, Kitajima-Ihara T, Fujii R, Gotoh T, Murakami M, Ihara K, Kouyama T. Crystal structure of Cruxrhodopsin-3 from Haloarcula vallismortis. PLoS One 2014; 9:e108362. [PMID: 25268964 PMCID: PMC4182453 DOI: 10.1371/journal.pone.0108362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023] Open
Abstract
Cruxrhodopsin-3 (cR3), a retinylidene protein found in the claret membrane of Haloarcula vallismortis, functions as a light-driven proton pump. In this study, the membrane fusion method was applied to crystallize cR3 into a crystal belonging to space group P321. Diffraction data at 2.1 Å resolution show that cR3 forms a trimeric assembly with bacterioruberin bound to the crevice between neighboring subunits. Although the structure of the proton-release pathway is conserved among proton-pumping archaeal rhodopsins, cR3 possesses the following peculiar structural features: 1) The DE loop is long enough to interact with a neighboring subunit, strengthening the trimeric assembly; 2) Three positive charges are distributed at the cytoplasmic end of helix F, affecting the higher order structure of cR3; 3) The cytoplasmic vicinity of retinal is more rigid in cR3 than in bacteriorhodopsin, affecting the early reaction step in the proton-pumping cycle; 4) the cytoplasmic part of helix E is greatly bent, influencing the proton uptake process. Meanwhile, it was observed that the photobleaching of retinal, which scarcely occurred in the membrane state, became significant when the trimeric assembly of cR3 was dissociated into monomers in the presence of an excess amount of detergent. On the basis of these observations, we discuss structural factors affecting the photostabilities of ion-pumping rhodopsins.
Collapse
Affiliation(s)
- Siu Kit Chan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Ryudoh Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiaki Gotoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- RIKEN Harima Institute/SPring-8, Mikazuki, Sayo, Hyogo, Japan
- * E-mail:
| |
Collapse
|
28
|
Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D, Werley CA, Harrison DJ, Campbell RE, Cohen AE. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun 2014; 5:4625. [PMID: 25118186 PMCID: PMC4134104 DOI: 10.1038/ncomms5625] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Genetically encoded fluorescent reporters of membrane potential promise to reveal aspects of neural function not detectable by other means. We present a palette of multi-colored brightly fluorescent genetically encoded voltage indicators with sensitivities from 8 – 13% ΔF/F per 100 mV, and half-maximal response times from 4 – 7 ms. A fluorescent protein is fused to an Archaerhodopsin-derived voltage sensor. Voltage-induced shifts in the absorption spectrum of the rhodopsin lead to voltage-dependent nonradiative quenching of the appended fluorescent protein. Through a library screen, we identify linkers and fluorescent protein combinations which report neuronal action potentials in cultured rat hippocampal neurons with a single-trial signal-to-noise ratio from 7 to 9 in a 1 kHz imaging bandwidth at modest illumination intensity. The freedom to choose a voltage indicator from an array of colors facilitates multicolor voltage imaging, as well as combination with other optical reporters and optogenetic actuators.
Collapse
Affiliation(s)
- Peng Zou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yongxin Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132
| | - Daniel R Hochbaum
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Daan Brinks
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Christopher A Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - D Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.,Howard Hughes Medical Institute
| |
Collapse
|
29
|
Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, Saulnier JL, Boulting GL, Straub C, Cho YK, Melkonian M, Wong GKS, Harrison DJ, Murthy VN, Sabatini BL, Boyden ES, Campbell RE, Cohen AE. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 2014; 11:825-33. [PMID: 24952910 PMCID: PMC4117813 DOI: 10.1038/nmeth.3000] [Citation(s) in RCA: 540] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/17/2014] [Indexed: 01/27/2023]
Abstract
All-optical electrophysiology-spatially resolved simultaneous optical perturbation and measurement of membrane voltage-would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk-free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell-derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.
Collapse
Affiliation(s)
- Daniel R Hochbaum
- 1] Applied Physics Program, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, USA. [2]
| | - Yongxin Zhao
- 1] Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada. [2]
| | - Samouil L Farhi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nathan Klapoetke
- 1] The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
| | - Christopher A Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Vikrant Kapoor
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Peng Zou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Joel M Kralj
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Dougal Maclaurin
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | | | - Jessica L Saulnier
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Christoph Straub
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Ku Cho
- 1] The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gane Ka-Shu Wong
- 1] Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. [2] Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. [3] Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - D Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bernardo L Sabatini
- 1] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA. [2] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Edward S Boyden
- 1] The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA. [5]
| | - Robert E Campbell
- 1] Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada. [2]
| | - Adam E Cohen
- 1] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Department of Physics, Harvard University, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Effects of Triton X-100 on Proton Transfer and in the Photocycle of Archaerhodopsin 4. Biosci Biotechnol Biochem 2014; 76:250-6. [DOI: 10.1271/bbb.110508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
32
|
Gerwert K, Freier E, Wolf S. The role of protein-bound water molecules in microbial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:606-13. [PMID: 24055285 DOI: 10.1016/j.bbabio.2013.09.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023]
Abstract
Protein-bound internal water molecules are essential features of the structure and function of microbial rhodopsins. Besides structural stabilization, they act as proton conductors and even proton storage sites. Currently, the most understood model system exhibiting such features is bacteriorhodopsin (bR). During the last 20 years, the importance of water molecules for proton transport has been revealed through this protein. It has been shown that water molecules are as essential as amino acids for proton transport and biological function. In this review, we present an overview of the historical development of this research on bR. We furthermore summarize the recently discovered protein-bound water features associated with proton transport. Specifically, we discuss a pentameric water/amino acid arrangement close to the protonated Schiff base as central proton-binding site, a protonated water cluster as proton storage site at the proton-release site, and a transient linear water chain at the proton uptake site. We highlight how protein conformational changes reposition or reorient internal water molecules, thereby guiding proton transport. Last, we compare the water positions in bR with those in other microbial rhodopsins to elucidate how protein-bound water molecules guide the function of microbial rhodopsins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Klaus Gerwert
- Department of Biophysics, University of Bochum, ND 04 North, 44780 Bochum, Germany; Department of Biophysics, Chinese Academy of Sciences-Max-Planck Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences (SIBS), 320 Yue Yang Lu, 200031 Shanghai, PR China.
| | - Erik Freier
- Department of Biophysics, University of Bochum, ND 04 North, 44780 Bochum, Germany
| | - Steffen Wolf
- Department of Biophysics, Chinese Academy of Sciences-Max-Planck Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences (SIBS), 320 Yue Yang Lu, 200031 Shanghai, PR China
| |
Collapse
|
33
|
Nakanishi T, Kanada S, Murakami M, Ihara K, Kouyama T. Large deformation of helix F during the photoreaction cycle of Pharaonis halorhodopsin in complex with azide. Biophys J 2013; 104:377-85. [PMID: 23442859 DOI: 10.1016/j.bpj.2012.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/08/2012] [Accepted: 12/11/2012] [Indexed: 02/01/2023] Open
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR), a retinylidene protein that functions as a light-driven chloride ion pump, is converted into a proton pump in the presence of azide ion. To clarify this conversion, we investigated light-induced structural changes in pHR using a C2 crystal that was prepared in the presence of Cl(-) and subsequently soaked in a solution containing azide ion. When the pHR-azide complex was illuminated at pH 9, a profound outward movement (∼4 Å) of the cytoplasmic half of helix F was observed in a subunit with the EF loop facing an open space. This movement created a long water channel between the retinal Schiff base and the cytoplasmic surface, along which a proton could be transported. Meanwhile, the middle moiety of helix C moved inward, leading to shrinkage of the primary anion-binding site (site I), and the azide molecule in site I was expelled out to the extracellular medium. The results suggest that the cytoplasmic half of helix F and the middle moiety of helix C act as different types of valves for active proton transport.
Collapse
|
34
|
Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc Natl Acad Sci U S A 2013; 110:12631-6. [PMID: 23872846 DOI: 10.1073/pnas.1221629110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-driven proton pumps are present in many organisms. Here, we present a high-resolution structure of a proteorhodopsin from a permafrost bacterium, Exiguobacterium sibiricum rhodopsin (ESR). Contrary to the proton pumps of known structure, ESR possesses three unique features. First, ESR's proton donor is a lysine side chain that is situated very close to the bulk solvent. Second, the α-helical structure in the middle of the helix F is replaced by 3(10)- and π-helix-like elements that are stabilized by the Trp-154 and Asn-224 side chains. This feature is characteristic for the proteorhodopsin family of proteins. Third, the proton release region is connected to the bulk solvent by a chain of water molecules already in the ground state. Despite these peculiarities, the positions of water molecule and amino acid side chains in the immediate Schiff base vicinity are very well conserved. These features make ESR a very unusual proton pump. The presented structure sheds light on the large family of proteorhodopsins, for which structural information was not available previously.
Collapse
|
35
|
Zhang J, Mizuno K, Murata Y, Koide H, Murakami M, Ihara K, Kouyama T. Crystal structure of deltarhodopsin-3 from Haloterrigena thermotolerans. Proteins 2013; 81:1585-92. [DOI: 10.1002/prot.24316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Zhang
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Katsuhide Mizuno
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Yuki Murata
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Hideaki Koide
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Midori Murakami
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
| | - Kunio Ihara
- Center for Gene Research; Nagoya University; Nagoya Japan
| | - Tsutomu Kouyama
- Department of Physics; Graduate School of Science; Nagoya University; Nagoya Japan
- RIKEN Harima Institute/SPring-8, 1-1-1; Kouto Mikazuki, Sayo, Hyogo Japan
| |
Collapse
|
36
|
Saint Clair EC, Ogren JI, Mamaev S, Russano D, Kralj JM, Rothschild KJ. Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential. J Phys Chem B 2012. [PMID: 23189985 DOI: 10.1021/jp309996a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Archaerhodopsin 3 (AR3) is a light driven proton pump from Halorubrum sodomense that has been used as a genetically targetable neuronal silencer and an effective fluorescent sensor of transmembrane potential. Unlike the more extensively studied bacteriorhodopsin (BR) from Halobacterium salinarum, AR3 readily incorporates into the plasma membrane of both E. coli and mammalian cells. Here, we used near-IR resonance Raman confocal microscopy to study the effects of pH and membrane potential on the AR3 retinal chromophore structure. Measurements were performed both on AR3 reconstituted into E. coli polar lipids and in vivo in E. coli expressing AR3 in the absence and presence of a negative transmembrane potential. The retinal chromophore structure of AR3 is in an all-trans configuration almost identical to BR over the entire pH range from 3 to 11. Small changes are detected in the retinal ethylenic stretching frequency and Schiff Base (SB) hydrogen bonding strength relative to BR which may be related to a different water structure near the SB. In the case of the AR3 mutant D95N, at neutral pH an all-trans retinal O-like species (O(all-trans)) is found. At higher pH a second 13-cis retinal N-like species (N(13-cis)) is detected which is attributed to a slowly decaying intermediate in the red-light photocycle of D95N. However, the amount of N(13-cis) detected is less in E. coli cells but is restored upon addition of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or sonication, both of which dissipate the normal negative membrane potential. We postulate that these changes are due to the effect of membrane potential on the N(13-cis) to M(13-cis) levels accumulated in the D95N red-light photocycle and on a molecular level by the effects of the electric field on the protonation/deprotonation of the cytoplasmic accessible SB. This mechanism also provides a possible explanation for the observed fluorescence dependence of AR3 and other microbial rhodopsins on transmembrane potential.
Collapse
Affiliation(s)
- Erica C Saint Clair
- Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
37
|
LIGHT-DRIVEN PROTON PUMPS OF ARCHAERHODOPSIN AND BACTERIORHODOPSIN AND POLYMER-MATRIX COMPOSITE MATERIALS OF THOSE FUNCTIONAL PROTEINS. ACTA POLYM SIN 2012. [DOI: 10.3724/sp.j.1105.2012.12051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Chow BY, Han X, Boyden ES. Genetically encoded molecular tools for light-driven silencing of targeted neurons. PROGRESS IN BRAIN RESEARCH 2012; 196:49-61. [PMID: 22341320 PMCID: PMC3553588 DOI: 10.1016/b978-0-444-59426-6.00003-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to silence, in a temporally precise fashion, the electrical activity of specific neurons embedded within intact brain tissue, is important for understanding the role that those neurons play in behaviors, brain disorders, and neural computations. "Optogenetic" silencers, genetically encoded molecules that, when expressed in targeted cells within neural networks, enable their electrical activity to be quieted in response to pulses of light, are enabling these kinds of causal circuit analyses studies. Two major classes of optogenetic silencer are in broad use in species ranging from worm to monkey: light-driven inward chloride pumps, or halorhodopsins, and light-driven outward proton pumps, such as archaerhodopsins and fungal light-driven proton pumps. Both classes of molecule, when expressed in neurons via viral or other transgenic means, enable the targeted neurons to be hyperpolarized by light. We here review the current status of these sets of molecules, and discuss how they are being discovered and engineered. We also discuss their expression properties, ionic properties, spectral characteristics, and kinetics. Such tools may not only find many uses in the quieting of electrical activity for basic science studies but may also, in the future, find clinical uses for their ability to safely and transiently shut down cellular electrical activity in a precise fashion.
Collapse
Affiliation(s)
- Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
39
|
Clair ECS, Ogren JI, Mamaev S, Kralj JM, Rothschild KJ. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. J Biol Phys 2011; 38:153-68. [PMID: 23277676 DOI: 10.1007/s10867-011-9246-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022] Open
Abstract
Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing.
Collapse
Affiliation(s)
- Erica C Saint Clair
- Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, MA 02215 USA
| | | | | | | | | |
Collapse
|
40
|
Plazzo AP, De Franceschi N, Da Broi F, Zonta F, Sanasi MF, Filippini F, Mongillo M. Bioinformatic and mutational analysis of channelrhodopsin-2 protein cation-conducting pathway. J Biol Chem 2011; 287:4818-25. [PMID: 22139833 DOI: 10.1074/jbc.m111.326207] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Channelrhodopsin-2 (ChR2) is a light-gated cation channel widely used as a biotechnological tool to control membrane depolarization in various cell types and tissues. Although several ChR2 variants with modified properties have been generated, the structural determinants of the protein function are largely unresolved. We used bioinformatic modeling of the ChR2 structure to identify the putative cationic pathway within the channel, which is formed by a system of inner cavities that are uniquely present in this microbial rhodopsin. Site-directed mutagenesis combined with patch clamp analysis in HeLa cells was used to determine key residues involved in ChR2 conductance and selectivity. Among them, Gln-56 is important for ion conductance, whereas Ser-63, Thr-250, and Asn-258 are previously unrecognized residues involved in ion selectivity and photocurrent kinetics. This study widens the current structural information on ChR2 and can assist in the design of new improved variants for specific biological applications.
Collapse
Affiliation(s)
- Anna Pia Plazzo
- Department of Biomedical Sciences, University of Padova, viale Colombo 3, 35100 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Chow BY, Chuong AS, Klapoetke NC, Boyden ES. Synthetic physiology strategies for adapting tools from nature for genetically targeted control of fast biological processes. Methods Enzymol 2011; 497:425-43. [PMID: 21601097 DOI: 10.1016/b978-0-12-385075-1.00018-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The life and operation of cells involve many physiological processes that take place over fast timescales of milliseconds to minutes. Genetically encoded technologies for driving or suppressing specific fast physiological processes in intact cells, perhaps embedded within intact tissues in living organisms, are critical for the ability to understand how these physiological processes contribute to emergent cellular and organismal functions and behaviors. Such "synthetic physiology" tools are often incredibly complex molecular machines, in part because they must operate at high speeds, without causing side effects. We here explore how synthetic physiology molecules can be identified and deployed in cells, and how the physiology of these molecules in cellular contexts can be assessed and optimized. For concreteness, we discuss these methods in the context of the "optogenetic" light-gated ion channels and pumps that we have developed over the past few years as synthetic physiology tools and widely disseminated for use in neuroscience for probing the role of specific brain cell types in neural computations, behaviors, and pathologies. We anticipate that some of the insights revealed here may be of general value for the field of synthetic physiology, as they raise issues that will be of importance for the development and use of high-performance, high-speed, side-effect free physiological control tools in heterologous expression systems.
Collapse
Affiliation(s)
- Brian Y Chow
- Synthetic Neurobiology Group, The Media Laboratory and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
42
|
Kouyama T, Murakami M. Structural divergence and functional versatility of the rhodopsin superfamily. Photochem Photobiol Sci 2010; 9:1458-65. [PMID: 20931138 DOI: 10.1039/c0pp00236d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven-transmembrane-helix retinylidene proteins, which constitute the rhodopsin superfamily, have been discovered in diverse species, including Archaea, Eubacteria, fungi, algae and animals. Some members of this super-family were specialized to function as light-driven proton pumps, light-driven chloride pumps, photoisomerases, or light-gated ion channels, where the photochemical reactions are self-completed without interactions with other proteins. Other members evolved to acquire the ability to modulate soluble cytoplasmic or membrane-embedded signal transducers. During the last decade, high-resolution crystal structures were reported for ten members of the rhodopsin superfamily; viz., four proton pumps, two chloride pumps, two microbial photosensors and two visual pigments. Comparison of these structures provides us with a hint to elucidate the common structural motif that is utilized to stabilize their tertiary structures as well as unique architectures that are relevant to specific functions.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| | | |
Collapse
|
43
|
Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010; 463:98-102. [PMID: 20054397 PMCID: PMC2939492 DOI: 10.1038/nature08652] [Citation(s) in RCA: 868] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/09/2009] [Indexed: 11/23/2022]
Abstract
The ability to silence the activity of genetically specified neurons in a temporally precise fashion would open up the ability to investigate the causal role of specific cell classes in neural computations, behaviors, and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate very powerful, safe, multiple-color silencing of neural activity. The gene archaerhodopsin-31 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. In addition, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally-relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2,3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue vs. red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of “optogenetic” voltage and ion modulator, which will broadly empower new neuroscientific, biological, neurological, and psychiatric investigations.
Collapse
Affiliation(s)
- Brian Y Chow
- The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Crystal structures of all-alpha type membrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:723-55. [DOI: 10.1007/s00249-009-0546-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 01/05/2023]
|
45
|
Bourgeois D, Weik M. Kinetic protein crystallography: a tool to watch proteins in action. CRYSTALLOGR REV 2009. [DOI: 10.1080/08893110802604868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Wu J, Ma D, Wang Y, Ming M, Balashov SP, Ding J. Efficient Approach to Determine the pKa of the Proton Release Complex in the Photocycle of Retinal Proteins. J Phys Chem B 2009; 113:4482-91. [DOI: 10.1021/jp804838h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia Wu
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China and Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | - Dewang Ma
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China and Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | - Yazhuo Wang
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China and Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | - Ming Ming
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China and Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | - Sergei P. Balashov
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China and Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | - Jiandong Ding
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China and Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| |
Collapse
|
47
|
Hayakawa N, Kasahara T, Hasegawa D, Yoshimura K, Murakami M, Kouyama T. Effect of Xenon Binding to a Hydrophobic Cavity on the Proton Pumping Cycle in Bacteriorhodopsin. J Mol Biol 2008; 384:812-23. [PMID: 18930734 DOI: 10.1016/j.jmb.2008.09.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/21/2008] [Accepted: 09/25/2008] [Indexed: 11/25/2022]
|
48
|
Yoshimura K, Kouyama T. Structural Role of Bacterioruberin in the Trimeric Structure of Archaerhodopsin-2. J Mol Biol 2008; 375:1267-81. [DOI: 10.1016/j.jmb.2007.11.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/08/2007] [Accepted: 11/14/2007] [Indexed: 02/05/2023]
|
49
|
De la Mora-Rey T, Wilmot CM. Synergy within structural biology of single crystal optical spectroscopy and X-ray crystallography. Curr Opin Struct Biol 2007; 17:580-6. [PMID: 17959373 PMCID: PMC2134968 DOI: 10.1016/j.sbi.2007.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/11/2007] [Indexed: 11/30/2022]
Abstract
Advances in the adaptation of optical spectroscopy to monitor photo-induced or enzyme-catalyzed reactions in the crystalline state have enabled X-ray crystal structures to be accurately linked with spectroscopically defined intermediates. This, in turn, has led to a deeper understanding of the role protein structural changes play in function. The integration of optical spectroscopy with X-ray crystallography is growing and now extends beyond linking crystal structure to reaction intermediate. Recent examples of this synergy include applications in protein crystallization, X-ray data acquisition, radiation damage, and acquisition of phase information important for structure determination.
Collapse
Affiliation(s)
- Teresa De la Mora-Rey
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
50
|
Klare JP, Chizhov I, Engelhard M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 2007; 45:73-122. [PMID: 17898961 DOI: 10.1007/400_2007_041] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Microbial rhodopsins have been intensively researched for the last three decades. Since the discovery of bacteriorhodopsin, the scope of microbial rhodopsins has been considerably extended, not only in view of the large number of family members, but also their functional properties as pumps, sensors, and channels. In this review, we give a short overview of old and newly discovered microbial rhodopsins, the mechanism of signal transfer and ion transfer, and we discuss structural and mechanistic aspects of phototaxis.
Collapse
Affiliation(s)
- Johann P Klare
- Fachbereich Physik, University Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | | | | |
Collapse
|