1
|
Lenhard S, Gerlich S, Khan A, Rödl S, Bökenkamp JE, Peker E, Zarges C, Faust J, Storchova Z, Räschle M, Riemer J, Herrmann JM. The Orf9b protein of SARS-CoV-2 modulates mitochondrial protein biogenesis. J Cell Biol 2023; 222:e202303002. [PMID: 37682539 PMCID: PMC10491932 DOI: 10.1083/jcb.202303002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expresses high amounts of the protein Orf9b to target the mitochondrial outer membrane protein Tom70. Tom70 serves as an import receptor for mitochondrial precursors and, independently of this function, is critical for the cellular antiviral response. Previous studies suggested that Orf9b interferes with Tom70-mediated antiviral signaling, but its implication for mitochondrial biogenesis is unknown. In this study, we expressed Orf9b in human HEK293 cells and observed an Orf9b-mediated depletion of mitochondrial proteins, particularly in respiring cells. To exclude that the observed depletion was caused by the antiviral response, we generated a yeast system in which the function of human Tom70 could be recapitulated. Upon expression of Orf9b in these cells, we again observed a specific decline of a subset of mitochondrial proteins and a general reduction of mitochondrial volume. Thus, the SARS-CoV-2 virus is able to modulate the mitochondrial proteome by a direct effect of Orf9b on mitochondrial Tom70-dependent protein import.
Collapse
Affiliation(s)
- Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sarah Gerlich
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Azkia Khan
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan-Eric Bökenkamp
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Esra Peker
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Christine Zarges
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | - Janina Faust
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Zuzana Storchova
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan Riemer
- Biochemistry, University of Cologne, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| | | |
Collapse
|
2
|
Schneider A. Evolution and diversification of mitochondrial protein import systems. Curr Opin Cell Biol 2022; 75:102077. [PMID: 35390639 DOI: 10.1016/j.ceb.2022.102077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
More than 95% of mitochondrial proteins are encoded in the nucleus, synthesised in the cytosol and imported into the organelle. The evolution of mitochondrial protein import systems was therefore a prerequisite for the conversion of the α-proteobacterial mitochondrial ancestor into an organelle. Here, I review that the origin of the mitochondrial outer membrane import receptors can best be understood by convergent evolution. Subsequently, I discuss an evolutionary scenario that was proposed to explain the diversification of the inner membrane carrier protein translocases between yeast and mammals. Finally, I illustrate a scenario that can explain how the two specialised inner membrane protein translocase complexes found in most eukaryotes were reduced to a single multifunctional one in trypanosomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Kumar A, Matta SK, Vigneshwaran R, D'Silva P. A journey through the gateway of polytopic inner membrane proteins: The carrier translocase machinery. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
5
|
Walter C, Marada A, Suhm T, Ernsberger R, Muders V, Kücükköse C, Sánchez-Martín P, Hu Z, Aich A, Loroch S, Solari FA, Poveda-Huertes D, Schwierzok A, Pommerening H, Matic S, Brix J, Sickmann A, Kraft C, Dengjel J, Dennerlein S, Brummer T, Vögtle FN, Meisinger C. Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery. Nat Commun 2021; 12:4284. [PMID: 34257281 PMCID: PMC8277783 DOI: 10.1038/s41467-021-24426-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
The translocase of the outer mitochondrial membrane TOM constitutes the organellar entry gate for nearly all precursor proteins synthesized on cytosolic ribosomes. Thus, TOM presents the ideal target to adjust the mitochondrial proteome upon changing cellular demands. Here, we identify that the import receptor TOM70 is targeted by the kinase DYRK1A and that this modification plays a critical role in the activation of the carrier import pathway. Phosphorylation of TOM70Ser91 by DYRK1A stimulates interaction of TOM70 with the core TOM translocase. This enables transfer of receptor-bound precursors to the translocation pore and initiates their import. Consequently, loss of TOM70Ser91 phosphorylation results in a strong decrease in import capacity of metabolite carriers. Inhibition of DYRK1A impairs mitochondrial structure and function and elicits a protective transcriptional response to maintain a functional import machinery. The DYRK1A-TOM70 axis will enable insights into disease mechanisms caused by dysfunctional DYRK1A, including autism spectrum disorder, microcephaly and Down syndrome.
Collapse
Affiliation(s)
- Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf Ernsberger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vera Muders
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cansu Kücükköse
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Loroch
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | | | - Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra Schwierzok
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henrike Pommerening
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stanka Matic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Brix
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Miserey‐Lenkei S, Trajkovic K, D'Ambrosio JM, Patel AJ, Čopič A, Mathur P, Schauer K, Goud B, Albanèse V, Gautier R, Subra M, Kovacs D, Barelli H, Antonny B. A comprehensive library of fluorescent constructs of SARS-CoV-2 proteins and their initial characterisation in different cell types. Biol Cell 2021; 113:311-328. [PMID: 33666950 PMCID: PMC8014678 DOI: 10.1111/boc.202000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND INFORMATION Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE This library should facilitate further cellular investigations, notably by imaging techniques.
Collapse
Affiliation(s)
- Stéphanie Miserey‐Lenkei
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | | | | | - Amanda J Patel
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Alenka Čopič
- Institut Jacques MonodUniversité de ParisCNRS, UMR7592ParisF‐75006France
| | - Pallavi Mathur
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Kristine Schauer
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Véronique Albanèse
- Institut Jacques MonodUniversité de ParisCNRS, UMR7592ParisF‐75006France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Melody Subra
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - David Kovacs
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| |
Collapse
|
7
|
Backes S, Bykov YS, Flohr T, Räschle M, Zhou J, Lenhard S, Krämer L, Mühlhaus T, Bibi C, Jann C, Smith JD, Steinmetz LM, Rapaport D, Storchová Z, Schuldiner M, Boos F, Herrmann JM. The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Rep 2021; 35:108936. [PMID: 33826901 PMCID: PMC7615001 DOI: 10.1016/j.celrep.2021.108936] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Most mitochondrial proteins are synthesized as precursors in the cytosol and post-translationally transported into mitochondria. The mitochondrial surface protein Tom70 acts at the interface of the cytosol and mitochondria. In vitro import experiments identified Tom70 as targeting receptor, particularly for hydrophobic carriers. Using in vivo methods and high-content screens, we revisit the question of Tom70 function and considerably expand the set of Tom70-dependent mitochondrial proteins. We demonstrate that the crucial activity of Tom70 is its ability to recruit cytosolic chaperones to the outer membrane. Indeed, tethering an unrelated chaperone-binding domain onto the mitochondrial surface complements most of the defects caused by Tom70 deletion. Tom70-mediated chaperone recruitment reduces the proteotoxicity of mitochondrial precursor proteins, particularly of hydrophobic inner membrane proteins. Thus, our work suggests that the predominant function of Tom70 is to tether cytosolic chaperones to the outer mitochondrial membrane, rather than to serve as a mitochondrion-specifying targeting receptor.
Collapse
Affiliation(s)
- Sandra Backes
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jialin Zhou
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Lena Krämer
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Chen Bibi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Cosimo Jann
- Genome Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Justin D Smith
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Genome Biology Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
8
|
Rout S, Oeljeklaus S, Makki A, Tachezy J, Warscheid B, Schneider A. Determinism and contingencies shaped the evolution of mitochondrial protein import. Proc Natl Acad Sci U S A 2021; 118:e2017774118. [PMID: 33526678 PMCID: PMC8017667 DOI: 10.1073/pnas.2017774118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial protein import requires outer membrane receptors that evolved independently in different lineages. Here we used quantitative proteomics and in vitro binding assays to investigate the substrate preferences of ATOM46 and ATOM69, the two mitochondrial import receptors of Trypanosoma brucei The results show that ATOM46 prefers presequence-containing, hydrophilic proteins that lack transmembrane domains (TMDs), whereas ATOM69 prefers presequence-lacking, hydrophobic substrates that have TMDs. Thus, the ATOM46/yeast Tom20 and the ATOM69/yeast Tom70 pairs have similar substrate preferences. However, ATOM46 mainly uses electrostatic, and Tom20 hydrophobic, interactions for substrate binding. In vivo replacement of T. brucei ATOM46 by yeast Tom20 did not restore import. However, replacement of ATOM69 by the recently discovered Tom36 receptor of Trichomonas hydrogenosomes, while not allowing for growth, restored import of a large subset of trypanosomal proteins that lack TMDs. Thus, even though ATOM69 and Tom36 share the same domain structure and topology, they have different substrate preferences. The study establishes complementation experiments, combined with quantitative proteomics, as a highly versatile and sensitive method to compare in vivo preferences of protein import receptors. Moreover, it illustrates the role determinism and contingencies played in the evolution of mitochondrial protein import receptors.
Collapse
Affiliation(s)
- Samuel Rout
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 12843 Prague, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 12843 Prague, Czech Republic
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland;
| |
Collapse
|
9
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
10
|
Kreimendahl S, Rassow J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci 2020; 21:E7262. [PMID: 33019591 PMCID: PMC7583919 DOI: 10.3390/ijms21197262] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
11
|
Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem Sci 2020; 45:650-667. [DOI: 10.1016/j.tibs.2020.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023]
|
12
|
SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell Mol Immunol 2020; 17:998-1000. [PMID: 32728199 PMCID: PMC7387808 DOI: 10.1038/s41423-020-0514-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 01/02/2023] Open
|
13
|
Dutta D, Briere LC, Kanca O, Marcogliese PC, Walker MA, High FA, Vanderver A, Krier J, Carmichael N, Callahan C, Taft RJ, Simons C, Helman G, Network UD, Wangler MF, Yamamoto S, Sweetser DA, Bellen HJ. De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Hum Mol Genet 2020; 29:1568-1579. [PMID: 32356556 PMCID: PMC7268787 DOI: 10.1093/hmg/ddaa081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The translocase of outer mitochondrial membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both individuals exhibited shared symptoms including hypotonia, hyper-reflexia, ataxia, dystonia and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset. Both individuals were undiagnosed despite extensive genetics workups. Individual 1 was found to have a p.Thr607Ile variant while Individual 2 was found to have a p.Ile554Phe variant in TOMM70. To functionally assess both TOMM70 variants, we replaced the Drosophila Tom70 coding region with a Kozak-mini-GAL4 transgene using CRISPR-Cas9. Homozygous mutant animals die as pupae, but lethality is rescued by the mini-GAL4-driven expression of human UAS-TOMM70 cDNA. Both modeled variants lead to significantly less rescue indicating that they are loss-of-function alleles. Similarly, RNAi-mediated knockdown of Tom70 in the developing eye causes roughening and synaptic transmission defect, common findings in neurodegenerative and mitochondrial disorders. These phenotypes were rescued by the reference, but not the variants, of TOMM70. Altogether, our data indicate that de novo loss-of-function variants in TOMM70 result in variable white matter disease and neurological phenotypes in affected individuals.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lauren C Briere
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Melissa A Walker
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frances A High
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel Krier
- Brigham Genomic Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Nikkola Carmichael
- Brigham Genomic Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Christine Callahan
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Guy Helman
- Murdoch Children's Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Sweetser
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Llabrés S, Tsenkov MI, MacGowan SA, Barton GJ, Zachariae U. Disease related single point mutations alter the global dynamics of a tetratricopeptide (TPR) α-solenoid domain. J Struct Biol 2020; 209:107405. [PMID: 31628985 PMCID: PMC6961204 DOI: 10.1016/j.jsb.2019.107405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/18/2023]
Abstract
Tetratricopeptide repeat (TPR) proteins belong to the class of α-solenoid proteins, in which repetitive units of α-helical hairpin motifs stack to form superhelical, often highly flexible structures. TPR domains occur in a wide variety of proteins, and perform key functional roles including protein folding, protein trafficking, cell cycle control and post-translational modification. Here, we look at the TPR domain of the enzyme O-linked GlcNAc-transferase (OGT), which catalyses O-GlcNAcylation of a broad range of substrate proteins. A number of single-point mutations in the TPR domain of human OGT have been associated with the disease Intellectual Disability (ID). By extended steered and equilibrium atomistic simulations, we show that the OGT-TPR domain acts as an elastic nanospring, and that each of the ID-related local mutations substantially affect the global dynamics of the TPR domain. Since the nanospring character of the OGT-TPR domain is key to its function in binding and releasing OGT substrates, these changes of its biomechanics likely lead to defective substrate interaction. We find that neutral mutations in the human population, selected by analysis of the gnomAD database, do not incur these changes. Our findings may not only help to explain the ID phenotype of the mutants, but also aid the design of TPR proteins with tailored biomechanical properties.
Collapse
Affiliation(s)
- Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Maxim I Tsenkov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Stuart A MacGowan
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Geoffrey J Barton
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK; Physics, School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
15
|
Backes S, Hess S, Boos F, Woellhaf MW, Gödel S, Jung M, Mühlhaus T, Herrmann JM. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J Cell Biol 2018; 217:1369-1382. [PMID: 29382700 PMCID: PMC5881500 DOI: 10.1083/jcb.201708044] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/12/2017] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
N-terminal matrix-targeting signals (MTSs) are critical for mitochondrial protein import. Backes et al. identified additional internal MTS-like sequences scattered along the sequences of mitochondrial proteins. By binding to Tom70 on the mitochondrial surface, these sequences support the import process. The biogenesis of mitochondria depends on the import of hundreds of preproteins. N-terminal matrix-targeting signals (MTSs) direct preproteins to the surface receptors Tom20, Tom22, and Tom70. In this study, we show that many preproteins contain additional internal MTS-like signals (iMTS-Ls) in their mature region that share the characteristic properties of presequences. These features allow the in silico prediction of iMTS-Ls. Using Atp1 as model substrate, we show that iMTS-Ls mediate the binding to Tom70 and have the potential to target the protein to mitochondria if they are presented at its N terminus. The import of preproteins with high iMTS-L content is significantly impaired in the absence of Tom70, whereas preproteins with low iMTS-L scores are less dependent on Tom70. We propose a stepping stone model according to which the Tom70-mediated interaction with internal binding sites improves the import competence of preproteins and increases the efficiency of their translocation into the mitochondrial matrix.
Collapse
Affiliation(s)
- Sandra Backes
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Steffen Hess
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Sabrina Gödel
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Martin Jung
- Medical Biochemistry, Saarland University, Homburg, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
16
|
Protein trafficking in the mitochondrial intermembrane space: mechanisms and links to human disease. Biochem J 2017; 474:2533-2545. [PMID: 28701417 PMCID: PMC5509380 DOI: 10.1042/bcj20160627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 01/20/2023]
Abstract
Mitochondria fulfill a diverse range of functions in cells including oxygen metabolism, homeostasis of inorganic ions and execution of apoptosis. Biogenesis of mitochondria relies on protein import pathways that are ensured by dedicated multiprotein translocase complexes localized in all sub-compartments of these organelles. The key components and pathways involved in protein targeting and assembly have been characterized in great detail over the last three decades. This includes the oxidative folding machinery in the intermembrane space, which contributes to the redox-dependent control of proteostasis. Here, we focus on several components of this system and discuss recent evidence suggesting links to human proteopathy.
Collapse
|
17
|
Harsman A, Schneider A. Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic 2017; 18:96-109. [PMID: 27976830 DOI: 10.1111/tra.12463] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero-oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence-containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Manganas P, MacPherson L, Tokatlidis K. Oxidative protein biogenesis and redox regulation in the mitochondrial intermembrane space. Cell Tissue Res 2016; 367:43-57. [PMID: 27632163 PMCID: PMC5203823 DOI: 10.1007/s00441-016-2488-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are organelles that play a central role in cellular metabolism, as they are responsible for processes such as iron/sulfur cluster biogenesis, respiration and apoptosis. Here, we describe briefly the various protein import pathways for sorting of mitochondrial proteins into the different subcompartments, with an emphasis on the targeting to the intermembrane space. The discovery of a dedicated redox-controlled pathway in the intermembrane space that links protein import to oxidative protein folding raises important questions on the redox regulation of this process. We discuss the salient features of redox regulation in the intermembrane space and how such mechanisms may be linked to the more general redox homeostasis balance that is crucial not only for normal cell physiology but also for cellular dysfunction.
Collapse
Affiliation(s)
- Phanee Manganas
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lisa MacPherson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
López-Chávez MY, Guillén-Navarro K, Bertolini V, Encarnación S, Hernández-Ortiz M, Sánchez-Moreno I, Damon A. Proteomic and morphometric study of the in vitro interaction between Oncidium sphacelatum Lindl. (Orchidaceae) and Thanatephorus sp. RG26 (Ceratobasidiaceae). MYCORRHIZA 2016; 26:353-65. [PMID: 26732875 DOI: 10.1007/s00572-015-0676-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/17/2015] [Indexed: 05/12/2023]
Abstract
Orchidaceae establish symbiotic relationships with fungi in the Rhizoctonia group, resulting in interactions beneficial to both organisms or in cell destruction in one of them (pathogenicity). Previous studies have focused mostly on terrestrial species with a few, preliminary studies, on epiphytes. To further our understanding of the molecular mechanisms involved in these symbioses, we evaluated the interaction between Oncidium sphacelatum Lindl. and the mycorrhizal fungus Thanatephorus sp. strain RG26 (isolated from a different orchid species) in vitro using morphometric and proteomic analyses. Evidence from the morphometric and microscopic analysis showed that the fungus promoted linear growth and differentiation of orchid protocorms during 98 days interaction. On day 63, protocorm development was evident, so we analyzed the physiological response of both organisms at that moment. Proteome results suggest that orchid development stimulated by the fungus apparently involves cell cycle proteins, purine recycling, ribosome biogenesis, energy metabolism, and secretion that were up-regulated in the orchid; whereas in the fungus, a high expression of proteins implicated in stress response, protein-protein interaction, and saccharides and protein biosynthesis were found in the symbiotic interaction. This is the first work reporting proteins differentially expressed in the epiphytic orchid-fungus interaction and will contribute to the search for molecular markers that will facilitate the study of this symbiosis in both wild orchids and those in danger of extinction.
Collapse
Affiliation(s)
| | - Karina Guillén-Navarro
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700, Tapachula, Chiapas, Mexico.
| | - Vincenzo Bertolini
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700, Tapachula, Chiapas, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Magdalena Hernández-Ortiz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Irene Sánchez-Moreno
- El Colegio de la Frontera Sur, Carretera Panamericana y Periférico Sur s/n, Barrio de María Auxiliadora, C.P. 29290, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Anne Damon
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700, Tapachula, Chiapas, Mexico
| |
Collapse
|
20
|
Mani J, Meisinger C, Schneider A. Peeping at TOMs-Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of Eukaryotes. Mol Biol Evol 2015; 33:337-51. [PMID: 26474847 DOI: 10.1093/molbev/msv219] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential for eukaryotic life and more than 95% of their proteins are imported as precursors from the cytosol. The targeting signals for this posttranslational import are conserved in all eukaryotes. However, this conservation does not hold true for the protein translocase of the mitochondrial outer membrane that serves as entry gate for essentially all precursor proteins. Only two of its subunits, Tom40 and Tom22, are conserved and thus likely were present in the last eukaryotic common ancestor. Tom7 is found in representatives of all supergroups except the Excavates. This suggests that it was added to the core of the translocase after the Excavates segregated from all other eukaryotes. A comparative analysis of the biochemically and functionally characterized outer membrane translocases of yeast, plants, and trypanosomes, which represent three eukaryotic supergroups, shows that the receptors that recognize the conserved import signals differ strongly between the different systems. They present a remarkable example of convergent evolution at the molecular level. The structural diversity of the functionally conserved import receptors therefore provides insight into the early evolutionary history of mitochondria.
Collapse
Affiliation(s)
- Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
22
|
Wojtkowska M, Buczek D, Stobienia O, Karachitos A, Antoniewicz M, Slocinska M, Makałowski W, Kmita H. The TOM Complex of Amoebozoans: the Cases of the Amoeba Acanthamoeba castellanii and the Slime Mold Dictyostelium discoideum. Protist 2015; 166:349-62. [PMID: 26074248 DOI: 10.1016/j.protis.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/29/2022]
Abstract
Protein import into mitochondria requires a wide variety of proteins, forming complexes in both mitochondrial membranes. The TOM complex (translocase of the outer membrane) is responsible for decoding of targeting signals, translocation of imported proteins across or into the outer membrane, and their subsequent sorting. Thus the TOM complex is regarded as the main gate into mitochondria for imported proteins. Available data indicate that mitochondria of representative organisms from across the major phylogenetic lineages of eukaryotes differ in subunit organization of the TOM complex. The subunit organization of the TOM complex in the Amoebozoa is still elusive, so we decided to investigate its organization in the soil amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. They represent two major subclades of the Amoebozoa: the Lobosa and Conosa, respectively. Our results confirm the presence of Tom70, Tom40 and Tom7 in the A. castellanii and D. discoideum TOM complex, while the presence of Tom22 and Tom20 is less supported. Interestingly, the Tom proteins display the highest similarity to Opisthokonta cognate proteins, with the exception of Tom40. Thus representatives of two major subclades of the Amoebozoa appear to be similar in organization of the TOM complex, despite differences in their lifestyle.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland.
| | - Dorota Buczek
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland; University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Olgierd Stobienia
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Andonis Karachitos
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Monika Antoniewicz
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Małgorzata Slocinska
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Animal Physiology and Development, Poznań, Poland
| | - Wojciech Makałowski
- University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Hanna Kmita
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| |
Collapse
|
23
|
Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S, Pusnik M, Schmidt O, Gerbeth C, Meisinger C, Warscheid B, Schneider A. Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat Commun 2015; 6:6646. [PMID: 25808593 PMCID: PMC4389251 DOI: 10.1038/ncomms7646] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/13/2015] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial protein import is essential for all eukaryotes and mediated by hetero-oligomeric protein translocases thought to be conserved within all eukaryotes. We have identified and analysed the function and architecture of the non-conventional outer membrane (OM) protein translocase in the early diverging eukaryote Trypanosoma brucei. It consists of six subunits that show no obvious homology to translocase components of other species. Two subunits are import receptors that have a unique topology and unique protein domains and thus evolved independently of the prototype receptors Tom20 and Tom70. Our study suggests that protein import receptors were recruited to the core of the OM translocase after the divergence of the major eukaryotic supergroups. Moreover, it links the evolutionary history of mitochondrial protein import receptors to the origin of the eukaryotic supergroups.
Collapse
Affiliation(s)
- Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Silvia Desy
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Astrid Chanfon
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Mascha Pusnik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Oliver Schmidt
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg 79104, Germany
| | - Carolin Gerbeth
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg 79104, Germany
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg 79104, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| |
Collapse
|
24
|
Schweiger R, Soll J, Jung K, Heermann R, Schwenkert S. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins. J Biol Chem 2013; 288:30614-30625. [PMID: 24036116 DOI: 10.1074/jbc.m113.493015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three tetratricopeptide repeat domain-containing docking proteins Toc64, OM64, and AtTPR7 reside in the chloroplast, mitochondrion, and endoplasmic reticulum of Arabidopsis thaliana, respectively. They are suggested to act during post-translational protein import by association with chaperone-bound preprotein complexes. Here, we performed a detailed biochemical, biophysical, and computational analysis of the interaction between Toc64, OM64, and AtTPR7 and the five cytosolic chaperones HSP70.1, HSP90.1, HSP90.2, HSP90.3, and HSP90.4. We used surface plasmon resonance spectroscopy in combination with Interaction Map® analysis to distinguish between chaperone oligomerization and docking protein-chaperone interactions and to calculate binding affinities for all tested interactions. Complementary to this, we applied pulldown assays as well as microscale thermophoresis as surface immobilization independent techniques. The data revealed that OM64 prefers HSP70 over HSP90, whereas Toc64 binds all chaperones with comparable affinities. We could further show that AtTPR7 is able to bind HSP90 in addition to HSP70. Moreover, differences between the HSP90 isoforms were detected and revealed a weaker binding for HSP90.1 to AtTPR7 and OM64, showing that slight differences in the amino acid composition or structure of the chaperones influence binding to the tetratricopeptide repeat domain. The combinatory approach of several methods provided a powerful toolkit to determine binding affinities of similar interaction partners in a highly quantitative manner.
Collapse
Affiliation(s)
| | - Jürgen Soll
- From the Departments of Biology I, Botany, and
| | - Kirsten Jung
- Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | - Ralf Heermann
- Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
25
|
Benz M, Soll J, Ankele E. Arabidopsis thaliana Oxa proteins locate to mitochondria and fulfill essential roles during embryo development. PLANTA 2013; 237:573-88. [PMID: 23179441 DOI: 10.1007/s00425-012-1793-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 05/12/2023]
Abstract
Members of the Alb3/Oxa1/YidC protein family function as insertases in chloroplasts, mitochondria, and bacteria. Due to independent gene duplications, all organisms possess two isoforms, Oxa1 and Oxa2 except gram-negative bacteria, which encode only for one YidC-like protein. The genome of Arabidopsis thaliana however, encodes for eight different isoforms. The localization of three of these isoforms has been identified earlier: Alb3 and Alb4 located in thylakoid membranes of chloroplasts while AtOxa1 was found in the inner membrane of mitochondria. Here, we show that the second Oxa1 protein, Oxa1b as well as two Oxa2 proteins are also localized in mitochondria. The last two isoforms most likely encode truncated versions of Oxa-like proteins, which might be inoperable pseudogenes. Homozygous mutant lines were only obtained for Oxa1b, which did not reveal any significant phenotypes, while T-DNA insertion lines of Oxa1a, Oxa2a and Oxa2b resulted only in heterozygous plants indicating that these genes are indispensable for plant development. Phenotyping heterozygous lines showed that embryos are either retarded in growth, display an albino phenotype or embryo formation was entirely abolished suggesting that Oxa1a and both Oxa2 proteins function in embryo formation although at different developmental stages as indicated by the various phenotypes observed.
Collapse
Affiliation(s)
- Monique Benz
- Energy Biosciences Institute, University of California, 2151 Berkeley Way, Berkeley, CA 94720-5230, USA.
| | | | | |
Collapse
|
26
|
Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. The mitochondrial protein import machinery has multiple connections to the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:612-26. [PMID: 23274250 DOI: 10.1016/j.bbabio.2012.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
28
|
Pusnik M, Mani J, Schmidt O, Niemann M, Oeljeklaus S, Schnarwiler F, Warscheid B, Lithgow T, Meisinger C, Schneider A. An essential novel component of the noncanonical mitochondrial outer membrane protein import system of trypanosomatids. Mol Biol Cell 2012; 23:3420-8. [PMID: 22787278 PMCID: PMC3431924 DOI: 10.1091/mbc.e12-02-0107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitochondrial outer membrane protein Tom40 is the general entry gate for imported proteins in essentially all eukaryotes. Trypanosomatids lack Tom40, however, and use instead a protein termed the archaic translocase of the outer mitochondrial membrane (ATOM). Here we report the discovery of pATOM36, a novel essential component of the trypanosomal outer membrane protein import system that interacts with ATOM. pATOM36 is not related to known Tom proteins from other organisms and mediates the import of matrix proteins. However, there is a group of precursor proteins whose import is independent of pATOM36. Domain-swapping experiments indicate that the N-terminal presequence-containing domain of the substrate proteins at least in part determines the dependence on pATOM36. Secondary structure profiling suggests that pATOM36 is composed largely of α-helices and its assembly into the outer membrane is independent of the sorting and assembly machinery complex. Taken together, these results show that pATOM36 is a novel component associated with the ATOM complex that promotes the import of a subpopulation of proteins into the mitochondrial matrix.
Collapse
Affiliation(s)
- Mascha Pusnik
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dudek J, Rehling P, van der Laan M. Mitochondrial protein import: common principles and physiological networks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:274-85. [PMID: 22683763 DOI: 10.1016/j.bbamcr.2012.05.028] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 11/28/2022]
Abstract
Most mitochondrial proteins are encoded in the nucleus. They are synthesized as precursor forms in the cytosol and must be imported into mitochondria with the help of different protein translocases. Distinct import signals within precursors direct each protein to the mitochondrial surface and subsequently onto specific transport routes to its final destination within these organelles. In this review we highlight common principles of mitochondrial protein import and address different mechanisms of protein integration into mitochondrial membranes. Over the last years it has become clear that mitochondrial protein translocases are not independently operating units, but in fact closely cooperate with each other. We discuss recent studies that indicate how the pathways for mitochondrial protein biogenesis are embedded into a functional network of various other physiological processes, such as energy metabolism, signal transduction, and maintenance of mitochondrial morphology. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Jan Dudek
- Abteilung Biochemie II, Universität Göttingen, 37073 Göttingen, Germany
| | | | | |
Collapse
|
30
|
Heinz E, Lithgow T. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:295-303. [PMID: 22366436 DOI: 10.1016/j.bbamcr.2012.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 12/31/2022]
Abstract
Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne 3800, Australia.
| | | |
Collapse
|
31
|
Kriechbaumer V, von Löffelholz O, Abell BM. Chaperone receptors: guiding proteins to intracellular compartments. PROTOPLASMA 2012; 249:21-30. [PMID: 21461941 DOI: 10.1007/s00709-011-0270-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 05/04/2023]
Abstract
Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519-530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529-535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41-50, 2003; Qbadou et al., EMBO J 25:1836-1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.
Collapse
|
32
|
Bay DC, Hafez M, Young MJ, Court DA. Phylogenetic and coevolutionary analysis of the β-barrel protein family comprised of mitochondrial porin (VDAC) and Tom40. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1502-19. [PMID: 22178864 DOI: 10.1016/j.bbamem.2011.11.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 12/21/2022]
Abstract
Beta-barrel proteins are the main transit points across the mitochondrial outer membrane. Mitochondrial porin, the voltage-dependent, anion-selective channel (VDAC), is responsible for the passage of small molecules between the mitochondrion and the cytosol. Through interactions with other mitochondrial and cellular proteins, it is involved in regulating organellar and cellular metabolism and likely contributes to mitochondrial structure. Tom40 is part of the translocase of the outer membrane, and acts as the channel for passage of preproteins during their import into the organelle. These proteins appear to share a common evolutionary origin and structure. In the current study, the evolutionary relationships between and within both proteins were investigated through phylogenetic analysis. The two groups have a common origin and have followed independent, complex evolutionary pathways, leading to the generation of paralogues in animals and plants. Structures of diverse representatives were modeled, revealing common themes rather than sites of high identity in both groups. Within each group, intramolecular coevolution was assessed, revealing a new set of sites potentially involved in structure-function relationships in these molecules. A weak link between Tom40 and proteins related to the mitochondrial distribution and morphology protein, Mdm10, was identified. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Denice C Bay
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
33
|
Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC. Crystal structure of BamD: an essential component of the β-Barrel assembly machinery of gram-negative bacteria. J Mol Biol 2011; 409:348-57. [PMID: 21463635 PMCID: PMC3098899 DOI: 10.1016/j.jmb.2011.03.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/28/2023]
Abstract
Folding and insertion of integral β-barrel proteins in the outer membrane (OM) is an essential process for Gram-negative bacteria that requires the β-barrel assembly machinery (BAM). Efficient OM protein (OMP) folding and insertion appears to require a consensus C-terminal signal in OMPs characterized by terminal F or W residues. The BAM complex is embedded in the OM and, in Escherichia coli, consists of the β-barrel BamA and four lipoproteins BamBCDE. BamA and BamD are broadly distributed across all species of Gram-negative bacteria, whereas the other components are present in only a subset of species. BamA and BamD are also essential for viability, suggesting that these two proteins constitute the functional core of the bacterial BAM complex. Here, we present the crystal structure of BamD from the thermophilic bacteria Rhodothermus marinus refined to 2.15 Å resolution. The protein contains five tetratricopeptide repeats (TPRs) organized into two offset tandems, each capped by a terminal helix. The N-terminal domain contains three TPRs and displays remarkable structural similarity with proteins that recognize targeting signals in extended conformations. The C-terminal domain harbors the remaining two TPRs and previously described mutations that impair binding to other BAM components map to this domain. Therefore, the structure suggests a model where the C-terminal domain provides a scaffold for interaction with BAM components, while the N-terminal domain participates in interaction with the substrates, either recognizing the C-terminal consensus sequence or binding unfolded OMP intermediates.
Collapse
Affiliation(s)
- Cristina M. Sandoval
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Susan L. Baker
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Katarina Jansen
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Sandra I. Metzner
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| | - Marcelo C. Sousa
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309
| |
Collapse
|
34
|
Delage L, Leblanc C, Nyvall Collén P, Gschloessl B, Oudot MP, Sterck L, Poulain J, Aury JM, Cock JM. In silico survey of the mitochondrial protein uptake and maturation systems in the brown alga Ectocarpus siliculosus. PLoS One 2011; 6:e19540. [PMID: 21611166 PMCID: PMC3097184 DOI: 10.1371/journal.pone.0019540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/31/2011] [Indexed: 01/24/2023] Open
Abstract
The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.
Collapse
Affiliation(s)
- Ludovic Delage
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Catherine Leblanc
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Pi Nyvall Collén
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Bernhard Gschloessl
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Marie-Pierre Oudot
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lieven Sterck
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Julie Poulain
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - J. Mark Cock
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
35
|
Fan AC, Young JC. Function of cytosolic chaperones in Tom70-mediated mitochondrial import. Protein Pept Lett 2011; 18:122-31. [PMID: 20955164 PMCID: PMC5026486 DOI: 10.2174/092986611794475020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 09/17/2010] [Indexed: 11/22/2022]
Abstract
The great majority of mitochondrial proteins are synthesized by cytosolic ribosomes and then imported into the organelle post-translationally. The translocase of the outer membrane (TOM) is a proteinaceous machinery that contains surface receptors for preprotein recognition and also serves as the main entry gateway into mitochondria. Mitochondrial targeting requires various cytosolic factors, in particular the molecular chaperones Hsc70/Hsp70 and Hsp90. The chaperone activity of Hsc70/Hsp70 and Hsp90 occurs in coordinated cycles of ATP hydrolysis and substrate binding, and is regulated by a number of co-chaperone proteins. The import receptor Tom70 is a member of the tetratricopeptide repeat (TPR) co-chaperone family and contains a conserved TPR clamp domain for interaction with Hsc70 and Hsp90. Such interaction is essential for the initiation of the import process. This review will discuss the roles of Hsc70 and Hsp90 in mitochondrial import and summarize recent progress in understanding these pathways.
Collapse
Affiliation(s)
- Anna C.Y. Fan
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1; Groupe de Recherche Axé sur la Structure des Protéines (GRASP)
| | - Jason C. Young
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1; Groupe de Recherche Axé sur la Structure des Protéines (GRASP)
| |
Collapse
|
36
|
Carrie C, Murcha MW, Whelan J. An in silico analysis of the mitochondrial protein import apparatus of plants. BMC PLANT BIOLOGY 2010; 10:249. [PMID: 21078193 PMCID: PMC3095331 DOI: 10.1186/1471-2229-10-249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/16/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND An in silico analysis of the mitochondrial protein import apparatus from a variety of species; including Chlamydomonas reinhardtii, Chlorella variabilis, Ectocarpus siliculosus, Cyanidioschyzon merolae, Physcomitrella patens, Selaginella moellendorffii, Picea glauca, Oryza sativa and Arabidopsis thaliana was undertaken to determine if components differed within and between plant and non-plant species. RESULTS The channel forming subunits of the outer membrane components Tom40 and Sam50 are conserved between plant groups and other eukaryotes. In contrast, the receptor component(s) in green plants, particularly Tom20, (C. reinhardtii, C. variabilis, P. patens, S. moellendorffii, P. glauca, O. sativa and A. thaliana) are specific to this lineage. Red algae contain a Tom22 receptor that is orthologous to yeast Tom22. Furthermore, plant mitochondrial receptors display differences between various plant lineages. These are evidenced by distinctive motifs in all plant Metaxins, which are absent in red algae, and the presence of the outer membrane receptor OM64 in Angiosperms (rice and Arabidopsis), but not in lycophytes (S. moellendorffii) and gymnosperms (P. glauca). Furthermore, although the intermembrane space receptor Mia40 is conserved across a wide phylogenetic range, its function differs between lineages. In all plant lineages, Tim17 contains a C-terminal extension, which may act as a receptor component for the import of nucleic acids into plant mitochondria. CONCLUSIONS It is proposed that the observed functional divergences are due to the selective pressure to sort proteins between mitochondria and chloroplasts, resulting in differences in protein receptor components between plant groups and other organisms. Additionally, diversity of receptor components is observed within the plant kingdom. Even when receptor components are orthologous across plant and non-plant species, it appears that the functions of these have expanded or diverged in a lineage specific manner.
Collapse
Affiliation(s)
- Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling, Crawley 6009, WA, Australia
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling, Crawley 6009, WA, Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling, Crawley 6009, WA, Australia
| |
Collapse
|
37
|
Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, Buchanan SK, Gabriel K, Lithgow T. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol 2010; 28:1581-91. [PMID: 21081480 DOI: 10.1093/molbev/msq305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.
Collapse
Affiliation(s)
- Janette Tong
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T, Roger AJ. A functional Tom70 in the human parasite Blastocystis sp.: implications for the evolution of the mitochondrial import apparatus. Mol Biol Evol 2010; 28:781-91. [PMID: 20871025 DOI: 10.1093/molbev/msq252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Core proteins of mitochondrial protein import are found in all mitochondria, suggesting a common origin of this import machinery. Despite the presence of a universal core import mechanism, there are specific proteins found only in a few groups of organisms. One of these proteins is the translocase of outer membrane 70 (Tom70), a protein that is essential for the import of preproteins with internal targeting sequences into the mitochondrion. Until now, Tom70 has only been found in animals and Fungi. We have identified a tom70 gene in the human parasitic anaerobic stramenopile Blastocystis sp. that is neither an animal nor a fungus. Using a combination of bioinformatics, genetic complementation, and immunofluorescence microscopy analyses, we demonstrate that this protein functions as a typical Tom70 in Blastocystis mitochondrion-related organelles. Additionally, we identified putative tom70 genes in the genomes of other stramenopiles and a haptophyte, that, in phylogenies, form a monophyletic group distinct from the animal and the fungal homologues. The presence of Tom70 in these lineages significantly expands the evolutionary spectrum of eukaryotes that contain this protein and suggests that it may have been part of the core mitochondrial protein import apparatus of the last common ancestral eukaryote.
Collapse
Affiliation(s)
- Anastasios D Tsaousis
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Li J, Cui W, Sha B. The structural plasticity of Tom71 for mitochondrial precursor translocations. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:985-9. [PMID: 20823510 DOI: 10.1107/s1744309110025522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/29/2010] [Indexed: 11/10/2022]
Abstract
Mitochondrial precursors are transported through the translocase of the outer membrane (TOM) complex. Tom70/Tom71 is a major surface receptor of the TOM complex for mitochondrial precursors and facilitates Hsp70/Hsp90-escorted precursor translocation into the mitochondrion. Previous structural studies of Tom71 have revealed that it contains an N-terminal and a C-terminal domain and that the two domains may remain in an open conformation when binding to Hsp70/Hsp90. In a newly obtained crystal form of a complex of Tom71 and the Hsp70 C-terminus, the N-terminal domain was found to have rotated about 12 degrees towards the C-terminal domain compared with the previous determined crystal structure of Tom71 in the open conformation. This newly solved structure is defined as the ;intermediate conformation'. The domain rearrangements in Tom71 significantly change the surface hydrophobicity and the volume of the precursor-binding pocket. This work suggests that Tom70/Tom71-family members may exhibit structural plasticity from the intermediate conformation to the fully open conformation when complexed with Hsp70/Hsp90. This structural plasticity enables the precursor receptors to accommodate different precursor substrates for mitochondrial translocation.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
40
|
Abstract
The mitochondrial import receptor Tom70 (translocase of the mitochondrial outer membrane 70) interacts with chaperone-preprotein complexes through two domains: one that binds Hsp70 (heat-shock protein 70)/Hsc70 (heat-shock cognate 70) and Hsp90, and a second that binds preproteins. The oligomeric state of Tom70 has been controversial, with evidence for both monomeric and homodimeric forms. In the present paper, we report that the functional state of human Tom70 appears to be a monomer with mechanistic implications for its function in mitochondrial protein import. Based on analytical ultracentrifugation, cross-linking, size-exclusion chromatography and multi-angle light scattering, we found that the soluble cytosolic fragment of human Tom70 exists in equilibrium between monomer and dimer. A point mutation introduced at the predicted dimer interface increased the percentage of monomeric Tom70. Although chaperone docking to the mutant was the same as to the wild-type, the mutant was significantly more active in preprotein targeting. Cross-linking also demonstrated that the mutant formed stronger contacts with preprotein. However, cross-linking of full-length wild-type Tom70 on the mitochondrial membrane showed little evidence of homodimers. These results indicate that the Tom70 monomers are the functional form of the receptor, whereas the homodimers appear to be a minor population, and may represent an inactive state.
Collapse
Affiliation(s)
- Anna C. Y. Fan
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| | - Lisandra M. Gava
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Carlos H. I. Ramos
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jason C. Young
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| |
Collapse
|
41
|
Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:947-54. [PMID: 20659421 DOI: 10.1016/j.bbamem.2010.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
Abstract
Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy of this evolutionary tinkering can be seen in the homologies and structural similarities between mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
|
42
|
Webb CT, Lithgow T. Mitochondrial Biogenesis: Sorting Mechanisms Cooperate in ABC Transporter Assembly. Curr Biol 2010; 20:R564-7. [DOI: 10.1016/j.cub.2010.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Endo T, Yamano K. Transport of proteins across or into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:706-14. [DOI: 10.1016/j.bbamcr.2009.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/11/2009] [Accepted: 11/17/2009] [Indexed: 11/30/2022]
|
44
|
Traven A, Lo TL, Lithgow T, Heierhorst J. The yeast PUF protein Puf5 has Pop2-independent roles in response to DNA replication stress. PLoS One 2010; 5:e10651. [PMID: 20498834 PMCID: PMC2871046 DOI: 10.1371/journal.pone.0010651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 04/16/2010] [Indexed: 11/19/2022] Open
Abstract
PUFs are RNA binding proteins that promote mRNA deadenylation and decay and inhibit translation. Yeast Puf5 is the prototype for studying PUF-dependent gene repression. Puf5 binds to the Pop2 subunit of the Ccr4-Pop2-NOT mRNA deadenylase, recruiting the deadenylase and associated translational repressors to mRNAs. Here we used yeast genetics to show that Puf5 has additional roles in vivo that do not require Pop2. Deletion of PUF5 caused increased sensitivity to DNA replication stress in cells lacking Pop2, as well as in cells mutated for two activities recruited to mRNAs by the Puf5-Pop2 interaction, the deadenylase Ccr4 and the translational repressor Dhh1. A functional Puf5 RNA binding domain was required, and Puf5 cytoplasmic localisation was sufficient for resistance to replication stress, indicating posttranscriptional gene expression control is involved. In contrast to DNA replication stress, in response to the cell wall integrity pathway activator caffeine, PUF5 and POP2 acted in the same genetic pathway, indicating that functions of Puf5 in the caffeine response are mediated by Pop2-dependent gene repression. Our results support a model in which Puf5 uses multiple, Pop2-dependent and Pop2-independent mechanisms to control mRNA expression. The Pop2-independent roles for Puf5 could involve spatial control of gene expression, a proposition supported by our data indicating that the active form of Puf5 is localised to cytoplasmic foci.
Collapse
Affiliation(s)
- Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
45
|
Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, Sedinová M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 2010; 6:e1000812. [PMID: 20333239 PMCID: PMC2841616 DOI: 10.1371/journal.ppat.1000812] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022] Open
Abstract
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica. All eukaryotic organisms have mitochondria, organelles cordoned by a double membrane, which are descendants of an ancestral bacterial endosymbiont. Nowadays, mitochondria are fully integrated into the context of diverse cellular processes and serve in providing energy, iron-containing prosthetic groups and some of the cellular building blocks like lipids and amino acids. In multi-cellular organisms, mitochondria play an additional vital role in cell signaling pathways and programmed cell death. In some unicellular eukaryotes which inhabit oxygen poor environments, intriguing mitochondrial adaptations have taken place resulting in the creation of specialized compartments known as mitosomes and hydrogenosomes. Several important human pathogens like Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis and microsporidia contain these organelles and in many cases the function and biogenesis of these organelles remain unknown. In this paper, we investigated the protein import pathways into the mitosomes of E. histolytica, which represent one of the simplest mitochondria-related compartment discovered yet. In accordance with the limited organellar proteome, we show that only core components of mitochondria-related protein import machines are present in E. histolytica to serve for the import of a small set of substrate proteins.
Collapse
Affiliation(s)
- Pavel Dolezal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus. PLoS One 2010; 5:e8619. [PMID: 20062535 PMCID: PMC2797634 DOI: 10.1371/journal.pone.0008619] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.
Collapse
|
47
|
Huang JH, Joseph AM, Ljubicic V, Iqbal S, Hood DA. Effect of age on the processing and import of matrix-destined mitochondrial proteins in skeletal muscle. J Gerontol A Biol Sci Med Sci 2010; 65:138-46. [PMID: 20045872 DOI: 10.1093/gerona/glp201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Deregulation of muscle mitochondrial biogenesis may explain the altered mitochondrial properties associated with aging. Maintenance of the mitochondrial network requires the continuous incorporation of nascent proteins into their subcompartments via the protein import pathway. We examined whether this pathway was impaired in muscle of aged animals, focusing on the subsarcolemmal and intermyofibrillar mitochondrial populations. Our results indicate that the import of proteins into the mitochondrial matrix was unaltered with age. Interestingly, import assays supplemented with the cytosolic fraction illustrated an attenuation of protein import, and this effect was similar between age groups. We observed a 2.5-fold increase in protein degradation in the presence of the cytosolic fraction obtained from aged animals. Thus, the reduction of mitochondrial content and/or function observed with aging may not rely on altered activity of the import pathway but rather on the availability of preproteins that are susceptible to elevated rates of degradation by cytosolic factors.
Collapse
Affiliation(s)
- Julianna H Huang
- School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Yamamoto H, Fukui K, Takahashi H, Kitamura S, Shiota T, Terao K, Uchida M, Esaki M, Nishikawa SI, Yoshihisa T, Yamano K, Endo T. Roles of Tom70 in import of presequence-containing mitochondrial proteins. J Biol Chem 2009; 284:31635-46. [PMID: 19767391 DOI: 10.1074/jbc.m109.041756] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial protein traffic requires precise recognition of the mitochondrial targeting signals by the import receptors on the mitochondrial surface including a general import receptor Tom20 and a receptor for presequence-less proteins, Tom70. Here we took a proteome-wide approach of mitochondrial protein import in vitro to find a set of presequence-containing precursor proteins for recognition by Tom70. The presequences of the Tom70-dependent precursor proteins were recognized by Tom20, whereas their mature parts exhibited Tom70-dependent import when attached to the presequence of Tom70-independent precursor proteins. The mature parts of the Tom70-dependent precursor proteins have the propensity to aggregate, and the presence of the receptor domain of Tom70 prevents their aggregate formation. Therefore Tom70 plays the role of a docking site for not only cytosolic chaperones but also aggregate-prone substrates to maintain their solubility for efficient transfer to downstream components of the mitochondrial import machineries.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- Department of Chemistry, Graduate School of Science, Japan Science and Technology Agency, Research Centre for Material Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rone MB, Liu J, Blonder J, Ye X, Veenstra TD, Young JC, Papadopoulos V. Targeting and insertion of the cholesterol-binding translocator protein into the outer mitochondrial membrane. Biochemistry 2009; 48:6909-20. [PMID: 19552401 PMCID: PMC2748833 DOI: 10.1021/bi900854z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translocator protein (18 kDa, TSPO), previously known as the peripheral-type benzodiazepine receptor, is an outer mitochondrial membrane (OMM) protein necessary for cholesterol import and steroid production. We reconstituted the mitochondrial targeting and insertion of TSPO into the OMM to analyze the signals and mechanisms required for this process. Initial studies indicated the formation of a mitochondrial 66 kDa complex through Blue Native-PAGE analysis. The formation of this complex was found to be dependent on the presence of ATP and the cytosolic chaperone Hsp90. Through mutational analysis we identified two areas necessary for TSPO targeting, import, and function: amino acids 103-108 (Schellman motif), which provide the necessary structural orientation for import, and the cholesterol-binding C-terminus required for insertion. Although the translocase of the outer mitochondrial membrane (TOM) complex proteins Tom22 and Tom40 were present in the OMM, the TOM complex did not interact with TSPO. In search of proteins involved in TSPO import, we analyzed complexes known to interact with TSPO by mass spectrometry. Formation of the 66 kDa complex was found to be dependent on an identified protein, Metaxin 1, for formation and TSPO import. The level of import of TSPO into steroidogenic cell mitochondria was increased following treatment of the cells with cAMP. These findings suggest that the initial targeting of TSPO to mitochondria is dependent upon the presence of cytosolic chaperones interacting with the import receptor Tom70. The C-terminus plays an important role in targeting TSPO to mitochondria, whereas its import into the OMM is dependent upon the presence of the Schellman motif. Final integration of TSPO into the OMM occurs via its interaction with Metaxin 1. Import of TSPO into steroidogenic cell mitochondria is regulated by cAMP.
Collapse
Affiliation(s)
- Malena B Rone
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|