1
|
Zhang H, Jackson SE. Folding of a tandemly knotted protein: Evidence that a polypeptide chain can get out of deep kinetic traps. Protein Sci 2025; 34:e70048. [PMID: 39969078 PMCID: PMC11837048 DOI: 10.1002/pro.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
It is hard to imagine how proteins can thread and form knots in their polypeptide chains, but they do. These topologically complex structures have challenged the traditional protein folding views of simple funnel-shaped energy landscapes. Previous experimental studies on the folding mechanisms of deeply knotted proteins with a single trefoil knot have yielded evidence that this topology has a more complicated folding landscape than other simpler proteins. However, to date, there have been no attempts to study the folding of any protein in which multiple threading events are needed to create more than one knot within a single polypeptide chain. Here, we report the construction and characterization of an artificial tandemly knotted protein. We find compelling evidence that both domains of the protein form trefoil knots with similar structures and stabilities to the parent single trefoil-knotted protein. In addition, we show that this tandemly knotted protein has a complex folding pathway in which there are additional very slow folding phases that we propose correspond to the formation of the second knot within the system. We also find evidence that during folding this protein gets transiently trapped in deep kinetic traps, however, the majority of protein chains (>90%) manage to partially unfold and acquire the native tandem-knot topology. This work highlights the fact that Nature can tolerate more complex protein topologies than we thought, and despite considerable misfolding during folding, protein chains can find their way to the native state even in the absence of molecular chaperones.
Collapse
Affiliation(s)
- Hongyu Zhang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Present address:
Zhanyuan Therapeutics Ltd.ZhejiangHangzhouChina
| | - Sophie E. Jackson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
2
|
Hsu STD. Folding and functions of knotted proteins. Curr Opin Struct Biol 2023; 83:102709. [PMID: 37778185 DOI: 10.1016/j.sbi.2023.102709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Topologically knotted proteins have entangled structural elements within their native structures that cannot be disentangled simply by pulling from the N- and C-termini. Systematic surveys have identified different types of knotted protein structures, constituting as much as 1% of the total entries within the Protein Data Bank. Many knotted proteins rely on their knotted structural elements to carry out evolutionarily conserved biological functions. Being knotted may also provide mechanical stability to withstand unfolding-coupled proteolysis. Reconfiguring a knotted protein topology by circular permutation or cyclization provides insights into the importance of being knotted in the context of folding and functions. With the explosion of predicted protein structures by artificial intelligence, we are now entering a new era of exploring the entangled protein universe.
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
3
|
Tripathi P, Mehrafrooz B, Aksimentiev A, Jackson SE, Gruebele M, Wanunu M. A Marcus-Type Inverted Region in the Translocation Kinetics of a Knotted Protein. J Phys Chem Lett 2023; 14:10719-10726. [PMID: 38009629 PMCID: PMC11176711 DOI: 10.1021/acs.jpclett.3c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Knotted proteins are rare but important species, yet how their complex topologies affect their physical properties is not fully understood. Here we combine single molecule nanopore experiments and all-atom MD simulations to study the electric-field-driven unfolding during the translocation through a model pore of individual protein knots important for methylating tRNA. One of these knots shows an unusual behavior that resembles the behavior of electrons hopping between two potential surfaces: as the electric potential driving the translocation reaction is increased, the rate eventually plateaus or slows back down in the "Marcus inverted regime". Our results shed light on the influence of topology in knotted proteins on their forced translocation through a pore connecting two electrostatic potential wells.
Collapse
Affiliation(s)
- Prabhat Tripathi
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP-221005, India
| | - Behzad Mehrafrooz
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Sophie E. Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield `Road, Cambridge CB2 1EW, UK
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA-02115, USA
| |
Collapse
|
4
|
Dahlstrom TJ, Capraro DT, Jennings PA, Finke JM. Knotting Optimization and Folding Pathways of a Go-Model with a Deep Knot. J Phys Chem B 2022; 126:10221-10236. [PMID: 36424347 DOI: 10.1021/acs.jpcb.2c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Formation of protein knots is an intriguing offshoot of the protein folding problem. Since experimental resolution on knot formation is limited, theoretical methods currently provide the most detailed insights into the knotting process. While suitable for shallow knots, molecular dynamics simulations have faced challenges capturing the formation of deep knots in proteins such as the minimally tied trefoil α/β methyltransferase from Thermotoga maritima (MTTTM). To improve the efficiency of MTTTM knotting in Cα Go-model simulations, mutant variants of the MTTTM Go-model were investigated. Through a structure-based analysis of knotted and unknotted states, four residues (K71, R72, E75, V76) were identified to increase the knotting efficiency from 2% to 83% when their contact energies were doubled and dihedral strength around the knot loop increased. The key features of this model are (i) a C-terminal slipknot intermediate that threads the knot in a highly unstructured intermediate, (ii) the inability to knot in native-like intermediate states, and (iii) a minor population in a long-lived trap that cannot knot. Examination of residue 71-76 contacts provides a small set of potential mutants that can directly test the model's validity. In addition, the knotting optimization process developed here has broad applicability in generating knotting-efficient models of other knotted proteins.
Collapse
Affiliation(s)
- Thomas J Dahlstrom
- Division of Sciences and Mathematics, Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington98402, United States
| | - Dominique T Capraro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California92093, United States
| | - Particia A Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California92093, United States
| | - John M Finke
- Division of Sciences and Mathematics, Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington98402, United States
| |
Collapse
|
5
|
Brems MA, Runkel R, Yeates TO, Virnau P. AlphaFold predicts the most complex protein knot and composite protein knots. Protein Sci 2022; 31:e4380. [PMID: 35900026 PMCID: PMC9278004 DOI: 10.1002/pro.4380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/06/2022]
Abstract
The computer artificial intelligence system AlphaFold has recently predicted previously unknown three-dimensional structures of thousands of proteins. Focusing on the subset with high-confidence scores, we algorithmically analyze these predictions for cases where the protein backbone exhibits rare topological complexity, that is, knotting. Amongst others, we discovered a 71 -knot, the most topologically complex knot ever found in a protein, as well several six-crossing composite knots comprised of two methyltransferase or carbonic anhydrase domains, each containing a simple trefoil knot. These deeply embedded composite knots occur evidently by gene duplication and interconnection of knotted dimers. Finally, we report two new five-crossing knots including the first 51 -knot. Our list of analyzed structures forms the basis for future experimental studies to confirm these novel-knotted topologies and to explore their complex folding mechanisms.
Collapse
Affiliation(s)
- Maarten A. Brems
- Department of PhysicsJohannes Gutenberg University MainzMainzGermany
| | - Robert Runkel
- Department of PhysicsJohannes Gutenberg University MainzMainzGermany
| | - Todd O. Yeates
- UCLA‐DOE Institute for Genomics and ProteomicsUniversity of California Los AngelesLos AngelesCaliforniaUSA
- UCLA Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Peter Virnau
- Department of PhysicsJohannes Gutenberg University MainzMainzGermany
| |
Collapse
|
6
|
Puri S, Hsu STD. Elucidation of folding pathways of knotted proteins. Methods Enzymol 2022; 675:275-297. [DOI: 10.1016/bs.mie.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Wang H, Li H. Mechanically tightening, untying and retying a protein trefoil knot by single-molecule force spectroscopy. Chem Sci 2020; 11:12512-12521. [PMID: 34123232 PMCID: PMC8162576 DOI: 10.1039/d0sc02796k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Knotted conformation is one of the most surprising topological features found in proteins, and understanding the folding mechanism of such knotted proteins remains a challenge. Here, we used optical tweezers (OT) to investigate the mechanical unfolding and folding behavior of a knotted protein Escherichia coli tRNA (guanosine-1) methyltransferase (TrmD). We found that when stretched from its N- and C-termini, TrmD can be mechanically unfolded and stretched into a tightened trefoil knot, which is composed of ca. 17 residues. Stretching of the unfolded TrmD involved a compaction process of the trefoil knot at low forces. The unfolding pathways of the TrmD were bifurcated, involving two-state and three-state pathways. Upon relaxation, the tightened trefoil knot loosened up first, leading to the expansion of the knot, and the unfolded TrmD can then fold back to its native state efficiently. By using an engineered truncation TrmD variant, we stretched TrmD along a pulling direction to allow us to mechanically unfold TrmD and untie the trefoil knot. We found that the folding of TrmD from its unfolded polypeptide without the knot is significantly slower. The knotting is the rate-limiting step of the folding of TrmD. Our results highlighted the critical importance of the knot conformation for the folding and stability of TrmD, offering a new perspective to understand the role of the trefoil knot in the biological function of TrmD. Optical tweezers are used to stretch a knotted protein along different directions to probe its unfolding–folding behaviors, and the conformational change of its knot structure. ![]()
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
8
|
Rivera M, Hao Y, Maillard RA, Baez M. Mechanical unfolding of a knotted protein unveils the kinetic and thermodynamic consequences of threading a polypeptide chain. Sci Rep 2020; 10:9562. [PMID: 32533020 PMCID: PMC7292828 DOI: 10.1038/s41598-020-66258-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Knots are remarkable topological features in nature. The presence of knots in crystallographic structures of proteins have stimulated considerable research to determine the kinetic and thermodynamic consequences of threading a polypeptide chain. By mechanically manipulating MJ0366, a small single domain protein harboring a shallow trefoil knot, we allow the protein to refold from either the knotted or the unknotted denatured state to characterize the free energy profile associated to both folding pathways. By comparing the stability of the native state with reference to the knotted and unknotted denatured state we find that knotting the polypeptide chain of MJ0366 increase the folding energy barrier in a magnitude close to the energy cost of forming a knot randomly in the denatured state. These results support that a protein knot can be formed during a single cooperative step of folding but occurs at the expenses of a large increment on the free energy barrier.
Collapse
Affiliation(s)
- Maira Rivera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Yuxin Hao
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA.
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Perego C, Potestio R. Computational methods in the study of self-entangled proteins: a critical appraisal. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:443001. [PMID: 31269476 DOI: 10.1088/1361-648x/ab2f19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The existence of self-entangled proteins, the native structure of which features a complex topology, unveils puzzling, and thus fascinating, aspects of protein biology and evolution. The discovery that a polypeptide chain can encode the capability to self-entangle in an efficient and reproducible way during folding, has raised many questions, regarding the possible function of these knots, their conservation along evolution, and their role in the folding paradigm. Understanding the function and origin of these entanglements would lead to deep implications in protein science, and this has stimulated the scientific community to investigate self-entangled proteins for decades by now. In this endeavour, advanced experimental techniques are more and more supported by computational approaches, that can provide theoretical guidelines for the interpretation of experimental results, and for the effective design of new experiments. In this review we provide an introduction to the computational study of self-entangled proteins, focusing in particular on the methodological developments related to this research field. A comprehensive collection of techniques is gathered, ranging from knot theory algorithms, that allow detection and classification of protein topology, to Monte Carlo or molecular dynamics strategies, that constitute crucial instruments for investigating thermodynamics and kinetics of this class of proteins.
Collapse
Affiliation(s)
- Claudio Perego
- Max Panck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | | |
Collapse
|
10
|
Xu Y, Li S, Yan Z, Ge B, Huang F, Yue T. Revealing Cooperation between Knotted Conformation and Dimerization in Protein Stabilization by Molecular Dynamics Simulations. J Phys Chem Lett 2019; 10:5815-5822. [PMID: 31525988 DOI: 10.1021/acs.jpclett.9b02209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The topological knot is thought to play a stabilizing role in maintaining the global fold and nature of proteins with the underlying mechanism yet to be elucidated. Given that most proteins containing trefoil knots exist and function as homodimers with a large part of the dimer interface occupied by the knotted region, we reason that the knotted conformation cooperates with dimerization in protein stabilization. Here, we take YbeA from Escherichia coli as the knotted protein model, using molecular dynamics (MD) simulations to compare the stability of two pairs of dimeric proteins having the same sequence and secondary structures but differing in the presence or absence of a trefoil knot in each subunit. The dimer interface of YbeA is identified to involve favorable contacts among three α-helices (α1, α3, and α5), one of which (α5) is threaded through a loop connected with α3 to form the knot. Upon removal of the knot by appropriate change of the knot-making crossing of the polypeptide chain, relevant domains are less constrained and exhibit enhanced fluctuations to decrease contacts at the interface. Unknotted subunits are less compact and undergo structural changes to ease the dimer separation. Such a stabilizing effect is evidenced by steered MD simulations, showing that the mechanical force required for dimer separation is significantly reduced by removing the knot. In addition to the knotted conformation, dimerization further improves the protein stability by restricting the α1-α5 separation, which is defined as a leading step for protein unfolding. These results provide important insights into the structure-function relationship of dimerization in knotted proteins.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
- College of Electronic Engineering and Automation , Shandong University of Science and Technology , Qingdao 266590 , China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Zengshuai Yan
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
11
|
Ko KT, Hu IC, Huang KF, Lyu PC, Hsu STD. Untying a Knotted SPOUT RNA Methyltransferase by Circular Permutation Results in a Domain-Swapped Dimer. Structure 2019; 27:1224-1233.e4. [DOI: 10.1016/j.str.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/01/2019] [Accepted: 04/05/2019] [Indexed: 11/28/2022]
|
12
|
He C, Li S, Gao X, Xiao A, Hu C, Hu X, Hu X, Li H. Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers. NANOSCALE 2019; 11:3945-3951. [PMID: 30762052 DOI: 10.1039/c8nr10070e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the folding mechanism of knotted and slipknotted proteins has attracted considerable interest. Due to their topological complexity, knotted and slipknotted proteins are predicted to fold slowly and involve large topological barriers. Molecular dynamics simulation studies suggest that a slipknotted conformation can serve as an important intermediate to help greatly reduce the topological difficulty during the folding of some knotted proteins. Here we use a single molecule optical tweezers technique to directly probe the folding of a small slipknotted protein AFV3-109. We found that stretching AFV3-109 can lead to the untying of the slipknot and complete unfolding of AFV3-109. Upon relaxation, AFV3-109 can readily refold back to its native slipknot conformation with high fidelity when the stretching force is lower than 6 pN. The refolding of AFV3-109 occurs in a sharp two-state like transition. Our results indicate that, different from knotted proteins, the folding of a slipknotted protein like AFV3-109 can be fast, and may not necessarily involve a high topological barrier.
Collapse
Affiliation(s)
- Chengzhi He
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China. and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Shuai Li
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China. and Nanchang Institute for Microtechnology of Tianjin University, Tianjin, 300072, P.R. China
| | - Xiaoqing Gao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China. and Nanchang Institute for Microtechnology of Tianjin University, Tianjin, 300072, P.R. China
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China. and Nanchang Institute for Microtechnology of Tianjin University, Tianjin, 300072, P.R. China
| | - Xiaodong Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China. and Nanchang Institute for Microtechnology of Tianjin University, Tianjin, 300072, P.R. China
| | - Xiaotang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China. and Nanchang Institute for Microtechnology of Tianjin University, Tianjin, 300072, P.R. China
| | - Hongbin Li
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, P. R. China. and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
13
|
Sivertsson EM, Jackson SE, Itzhaki LS. The AAA+ protease ClpXP can easily degrade a 3 1 and a 5 2-knotted protein. Sci Rep 2019; 9:2421. [PMID: 30787316 PMCID: PMC6382783 DOI: 10.1038/s41598-018-38173-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Knots in proteins are hypothesized to make them resistant to enzymatic degradation by ATP-dependent proteases and recent studies have shown that whereas ClpXP can easily degrade a protein with a shallow 31 knot, it cannot degrade 52-knotted proteins if degradation is initiated at the C-terminus. Here, we present detailed studies of the degradation of both 31- and 52-knotted proteins by ClpXP using numerous constructs where proteins are tagged for degradation at both N- and C-termini. Our results confirm and extend earlier work and show that ClpXP can easily degrade a deeply 31-knotted protein. In contrast to recently published work on the degradation of 52-knotted proteins, our results show that the ClpXP machinery can also easily degrade these proteins. However, the degradation depends critically on the location of the degradation tag and the local stability near the tag. Our results are consistent with mechanisms in which either the knot simply slips along the polypeptide chain and falls off the free terminus, or one in which the tightened knot enters the translocation pore of ClpXP. Results of experiments on knotted protein fusions with a highly stable domain show partial degradation and the formation of degradation intermediates.
Collapse
Affiliation(s)
- Elin M Sivertsson
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Sophie E Jackson
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Laura S Itzhaki
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
14
|
Untying a Protein Knot by Circular Permutation. J Mol Biol 2019; 431:857-863. [DOI: 10.1016/j.jmb.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 01/13/2023]
|
15
|
Xu Y, Li S, Yan Z, Luo Z, Ren H, Ge B, Huang F, Yue T. Stabilizing Effect of Inherent Knots on Proteins Revealed by Molecular Dynamics Simulations. Biophys J 2018; 115:1681-1689. [PMID: 30314655 PMCID: PMC6225051 DOI: 10.1016/j.bpj.2018.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022] Open
Abstract
A growing number of proteins have been identified as knotted in their native structures, with such entangled topological features being expected to play stabilizing roles maintaining both the global fold and the nature of proteins. However, the molecular mechanism underlying the stabilizing effect is ambiguous. Here, we combine unbiased and mechanical atomistic molecular dynamics simulations to investigate how a protein is stabilized by an inherent knot by directly comparing chemical, thermal, and mechanical denaturing properties of two proteins having the same sequence and secondary structures but differing in the presence or absence of an inherent knot. One protein is YbeA from Escherichia coli, containing a deep trefoil knot within the sequence, and the other is the modified protein with the knot of YbeA being removed. Under certain chemical denaturing conditions, the unknotted protein fully unfolds whereas the knotted protein does not, suggesting a higher intrinsic stability for the protein having a knot. Both proteins unfold under enhanced thermal fluctuations but at different rates and with distinct pathways. Opening the hydrophobic core via separation between two α-helices is identified as a crucial step initiating the protein unfolding, which, however, is restrained for the knotted protein by topological and geometrical frustrations. Energy barriers for denaturing the protein are reduced by removing the knot, as evidenced by mechanical unfolding simulations. Finally, yet importantly, no obvious change in size or location of the knot was observed during denaturing processes, indicating that YbeA may remain knotted for a relatively long time during and after denaturation.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Shixin Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zengshuai Yan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zhen Luo
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hao Ren
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Baosheng Ge
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China; Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China.
| |
Collapse
|
16
|
Everts JC, Ravnik M. Complex electric double layers in charged topological colloids. Sci Rep 2018; 8:14119. [PMID: 30237464 PMCID: PMC6147863 DOI: 10.1038/s41598-018-32550-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
Charged surfaces in contact with liquids containing ions are accompanied in equilibrium by an electric double layer consisting of a layer of electric charge on the surface that is screened by a diffuse ion cloud in the bulk fluid. This screening cloud determines not only the interactions between charged colloidal particles or polyelectrolytes and their self-assembly into ordered structures, but it is also pivotal in understanding energy storage devices, such as electrochemical cells and supercapacitors. However, little is known to what spatial complexity the electric double layers can be designed. Here, we show that electric double layers of non-trivial topology and geometry -including tori, multi-tori and knots- can be realised in charged topological colloidal particles, using numerical modelling within a mean-field Poisson-Boltzmann theory. We show that the complexity of double layers -including geometry and topology- can be tuned by changing the Debye screening length of the medium, or by changing the shape and topology of the (colloidal) particle. More generally, this work is an attempt to introduce concepts of topology in the field of charged colloids, which could lead to novel exciting material design paradigms.
Collapse
Affiliation(s)
- Jeffrey C Everts
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.
| | - Miha Ravnik
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.,Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Sriramoju MK, Chen Y, Lee YTC, Hsu STD. Topologically knotted deubiquitinases exhibit unprecedented mechanostability to withstand the proteolysis by an AAA+ protease. Sci Rep 2018; 8:7076. [PMID: 29728659 PMCID: PMC5935755 DOI: 10.1038/s41598-018-25470-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023] Open
Abstract
More than one thousand knotted protein structures have been identified so far, but the functional roles of these knots remain elusive. It has been postulated that backbone entanglement may provide additional mechanostability. Here, we employed a bacterial proteasome, ClpXP, to mechanically unfold 52-knotted human ubiquitin C-terminal hydrolase (UCH) paralogs from their C-termini, followed by processive translocation into the proteolytic chamber for degradation. Our results revealed unprecedentedly slow kinetics of ClpXP-mediated proteolysis for the proteasome-associated UCHL5: ten thousand times slower than that of a green fluorescence protein (GFP), which has a comparable size to the UCH domain but much higher chemical and thermal stabilities. The ClpXP-dependent mechanostability positively correlates with the intrinsic unfolding rates of the substrates, spanning over several orders of magnitude for the UCHs. The broad range of mechanostability within the same protein family may be associated with the functional requirements for their differential malleabilities.
Collapse
Affiliation(s)
| | - Yen Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun-Tzai Cloud Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
18
|
Goundaroulis D, Dorier J, Benedetti F, Stasiak A. Studies of global and local entanglements of individual protein chains using the concept of knotoids. Sci Rep 2017; 7:6309. [PMID: 28740166 PMCID: PMC5524787 DOI: 10.1038/s41598-017-06649-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/20/2017] [Indexed: 11/23/2022] Open
Abstract
We study here global and local entanglements of open protein chains by implementing the concept of knotoids. Knotoids have been introduced in 2012 by Vladimir Turaev as a generalization of knots in 3-dimensional space. More precisely, knotoids are diagrams representing projections of open curves in 3D space, in contrast to knot diagrams which represent projections of closed curves in 3D space. The intrinsic difference with classical knot theory is that the generalization provided by knotoids admits non-trivial topological entanglement of the open curves provided that their geometry is frozen as it is the case for crystallized proteins. Consequently, our approach doesn’t require the closure of chains into loops which implies that the geometry of analysed chains does not need to be changed by closure in order to characterize their topology. Our study revealed that the knotoid approach detects protein regions that were classified earlier as knotted and also new, topologically interesting regions that we classify as pre-knotted.
Collapse
Affiliation(s)
- Dimos Goundaroulis
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Zhang H, Jackson SE. Characterization of the Folding of a 5 2-Knotted Protein Using Engineered Single-Tryptophan Variants. Biophys J 2017; 111:2587-2599. [PMID: 28002735 DOI: 10.1016/j.bpj.2016.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022] Open
Abstract
An increasing number of proteins that contain topological knots have been identified over the past two decades; however, their folding mechanisms are still not well understood. UCH-L1 has a 52-knotted topology. Here, we constructed a series of variants that contain a single tryptophan at different locations along the polypeptide chain. A study of the thermodynamic properties of the variants shows that the structure of UCH-L1 is remarkably tolerant to incorporation of bulky tryptophan side chains. Comprehensive kinetic studies of the variants reveal that they fold via parallel pathways on which there are two intermediate states very similar to wild-type UCH-L1. The structures of the intermediate states do not change significantly with mutation and therefore occupy local minima on the energy landscape that have relatively narrow basins. The kinetic studies also establish that there are considerably more tertiary interactions in the intermediate states than results from previous NMR studies suggested. The two intermediates differ from each other in the extent to which tertiary interactions between the highly stable central β-sheet and flanking α-helices and loop regions are formed. There is strong evidence that these states are aggregation prone. The transition states from both I1 and I2 to the native state are plastic and change with mutation and denaturant concentration. Previous studies indicated that the threading event that creates the 52 knot occurs during these steps, suggesting that there is a broad energy barrier consistent with the chain undergoing some searching of conformational space as the threading takes place.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Chemistry, Cambridge University, Cambridge, United Kingdom; St. Edmund's College, Cambridge University, Cambridge, United Kingdom
| | - Sophie E Jackson
- Department of Chemistry, Cambridge University, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Topological transformations in proteins: effects of heating and proximity of an interface. Sci Rep 2017; 7:39851. [PMID: 28051124 PMCID: PMC5209716 DOI: 10.1038/srep39851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023] Open
Abstract
Using a structure-based coarse-grained model of proteins, we study the mechanism of unfolding of knotted proteins through heating. We find that the dominant mechanisms of unfolding depend on the temperature applied and are generally distinct from those identified for folding at its optimal temperature. In particular, for shallowly knotted proteins, folding usually involves formation of two loops whereas unfolding through high-temperature heating is dominated by untying of single loops. Untying the knots is found to generally precede unfolding unless the protein is deeply knotted and the heating temperature exceeds a threshold value. We then use a phenomenological model of the air-water interface to show that such an interface can untie shallow knots, but it can also make knots in proteins that are natively unknotted.
Collapse
|
21
|
Jackson SE, Suma A, Micheletti C. How to fold intricately: using theory and experiments to unravel the properties of knotted proteins. Curr Opin Struct Biol 2016; 42:6-14. [PMID: 27794211 DOI: 10.1016/j.sbi.2016.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 11/15/2022]
Abstract
Over the years, advances in experimental and computational methods have helped us to understand the role of thermodynamic, kinetic and active (chaperone-aided) effects in coordinating the folding steps required to achieving a knotted native state. Here, we review such developments by paying particular attention to the complementarity of experimental and computational studies. Key open issues that could be tackled with either or both approaches are finally pointed out.
Collapse
Affiliation(s)
- Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
| | - Antonio Suma
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy.
| |
Collapse
|
22
|
Stauch T, Dreuw A. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chem Rev 2016; 116:14137-14180. [PMID: 27767298 DOI: 10.1021/acs.chemrev.6b00458] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
Collapse
Affiliation(s)
- Tim Stauch
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Folding analysis of the most complex Stevedore's protein knot. Sci Rep 2016; 6:31514. [PMID: 27527519 PMCID: PMC4985754 DOI: 10.1038/srep31514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
DehI is a homodimeric haloacid dehalogenase from Pseudomonas putida that contains the most complex 61 Stevedore's protein knot within its folding topology. To examine how DehI attains such an intricate knotted topology we combined far-UV circular dichroism (CD), intrinsic fluorescence spectroscopy and small angle X-ray scattering (SAXS) to investigate its folding mechanism. Equilibrium unfolding of DehI by chemical denaturation indicated the presence of two highly populated folding intermediates, I and I'. While the two intermediates vary in secondary structure contents and tertiary packing according to CD and intrinsic fluorescence, respectively, their overall dimension and compactness are similar according to SAXS. Three single-tryptophan variants (W34, W53, and W196) were generated to probe non-cooperative unfolding events localized around the three fluorophores. Kinetic fluorescence measurements indicated that the transition from the intermediate I' to the unfolded state is rate limiting. Our multiparametric folding analyses suggest that DehI unfolds through a linear folding pathway with two distinct folding intermediates by initial hydrophobic collapse followed by nucleation condensation, and that knotting precedes the formation of secondary structures.
Collapse
|
24
|
Abstract
Spontaneous folding of a polypeptide chain into a knotted structure remains one of the most puzzling and fascinating features of protein folding. The folding of knotted proteins is on the timescale of minutes and thus hard to reproduce with atomistic simulations that have been able to reproduce features of ultrafast folding in great detail. Furthermore, it is generally not possible to control the topology of the unfolded state. Single-molecule force spectroscopy is an ideal tool for overcoming this problem: by variation of pulling directions, we controlled the knotting topology of the unfolded state of the 52-knotted protein ubiquitin C-terminal hydrolase isoenzyme L1 (UCH-L1) and have therefore been able to quantify the influence of knotting on its folding rate. Here, we provide direct evidence that a threading event associated with formation of either a 31 or 52 knot, or a step closely associated with it, significantly slows down the folding of UCH-L1. The results of the optical tweezers experiments highlight the complex nature of the folding pathway, many additional intermediate structures being detected that cannot be resolved by intrinsic fluorescence. Mechanical stretching of knotted proteins is also of importance for understanding the possible implications of knots in proteins for cellular degradation. Compared with a simple 31 knot, we measure a significantly larger size for the 52 knot in the unfolded state that can be further tightened with higher forces. Our results highlight the potential difficulties in degrading a 52 knot compared with a 31 knot.
Collapse
|
25
|
Lou SC, Wetzel S, Zhang H, Crone EW, Lee YT, Jackson SE, Hsu STD. The Knotted Protein UCH-L1 Exhibits Partially Unfolded Forms under Native Conditions that Share Common Structural Features with Its Kinetic Folding Intermediates. J Mol Biol 2016; 428:2507-2520. [PMID: 27067109 DOI: 10.1016/j.jmb.2016.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/02/2016] [Indexed: 10/22/2022]
Abstract
The human ubiquitin C-terminal hydrolase, UCH-L1, is an abundant neuronal deubiquitinase that is associated with Parkinson's disease. It contains a complex Gordian knot topology formed by the polypeptide chain alone. Using a combination of fluorescence-based kinetic measurements, we show that UCH-L1 has two distinct kinetic folding intermediates that are transiently populated on parallel pathways between the denatured and native states. NMR hydrogen-deuterium exchange (HDX) experiments indicate the presence of partially unfolded forms (PUFs) of UCH-L1 under native conditions. HDX measurements as a function of urea concentration were used to establish the structure of the PUFs and pulse-labelled HDX NMR was used to show that the PUFs and the folding intermediates are likely the same species. In both cases, a similar stable core encompassing most of the central β-sheet is highly structured and α-helix 3, which is partially formed, packs against it. In contrast to the stable β-sheet core, the peripheral α-helices display significant local fluctuations leading to rapid exchange. The results also suggest that the main difference between the two kinetic intermediates is structure and packing of α-helices 3 and 7 and the degree of structure in β-strand 5. Together, the fluorescence and NMR results establish that UCH-L1 neither folds through a continuum of pathways nor by a single discrete pathway. Its folding is complex, the β-sheet core forms early and is present in both intermediate states, and the rate-limiting step which is likely to involve the threading of the chain to form the 52-knot occurs late on the folding pathway.
Collapse
Affiliation(s)
- Shih-Chi Lou
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Institute of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Svava Wetzel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Hongyu Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Elizabeth W Crone
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Yun-Tzai Lee
- Institute of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Shang-Te Danny Hsu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Institute of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.
| |
Collapse
|
26
|
Gruber T, Balbach J. Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain. PLoS One 2015; 10:e0136922. [PMID: 26368922 PMCID: PMC4569573 DOI: 10.1371/journal.pone.0136922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022] Open
Abstract
The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.
Collapse
Affiliation(s)
- Tobias Gruber
- Martin-Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann Str. 7, 06120, Halle, Germany
| | - Jochen Balbach
- Martin-Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann Str. 7, 06120, Halle, Germany
- * E-mail:
| |
Collapse
|
27
|
Chwastyk M, Cieplak M. Cotranslational folding of deeply knotted proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354105. [PMID: 26292194 DOI: 10.1088/0953-8984/27/35/354105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot.
Collapse
Affiliation(s)
- Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|
28
|
Lim NCH, Jackson SE. Molecular knots in biology and chemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354101. [PMID: 26291690 DOI: 10.1088/0953-8984/27/35/354101] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | | |
Collapse
|
29
|
Faísca PF. Knotted proteins: A tangled tale of Structural Biology. Comput Struct Biotechnol J 2015; 13:459-68. [PMID: 26380658 PMCID: PMC4556803 DOI: 10.1016/j.csbj.2015.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 01/19/2023] Open
Abstract
Knotted proteins have their native structures arranged in the form of an open knot. In the last ten years researchers have been making significant efforts to reveal their folding mechanism and understand which functional advantage(s) knots convey to their carriers. Molecular simulations have been playing a fundamental role in this endeavor, and early computational predictions about the knotting mechanism have just been confirmed in wet lab experiments. Here we review a collection of simulation results that allow outlining the current status of the field of knotted proteins, and discuss directions for future research.
Collapse
|
30
|
Shih PM, Wang I, Lee YTC, Hsieh SJ, Chen SY, Wang LW, Huang CT, Chien CT, Chang CY, Hsu STD. Random-Coil Behavior of Chemically Denatured Topologically Knotted Proteins Revealed by Small-Angle X-ray Scattering. J Phys Chem B 2015; 119:5437-43. [DOI: 10.1021/acs.jpcb.5b01984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Po-Min Shih
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Iren Wang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Yun-Tzai Cloud Lee
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| | - Shu-Ju Hsieh
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Szu-Yu Chen
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Liang-Wei Wang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| | - Chih-Ting Huang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chih-Ta Chien
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chia-Yun Chang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| | - Shang-Te Danny Hsu
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
31
|
Wang I, Chen SY, Hsu STD. Unraveling the Folding Mechanism of the Smallest Knotted Protein, MJ0366. J Phys Chem B 2015; 119:4359-70. [DOI: 10.1021/jp511029s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Iren Wang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Szu-Yu Chen
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
| | - Shang-Te Danny Hsu
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, 1, Section
4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
32
|
Wu X, Xu P, Wang J, Xu Y, Fu T, Zhang D, Zhao M, Liu J, Shen H, Xiu Z, Li G. Folding mechanisms of Trefoil Knot proteins studied by molecular dynamics simulations and Go-model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:93-110. [PMID: 25387962 DOI: 10.1007/978-94-017-9245-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most proteins need to avoid the complex topologies when folding into the native structures, but some proteins with nontrivial topologies have been found in nature. Here we used protein unfolding simulations under high temperature and all-atom Gō-model to investigate the folding mechanisms for two trefoil knot proteins. Results show that, the contacts in β-sheet are important to the formation of knot protein, and if these contacts disappeared, the knot protein would be easy to untie. In the Gō-model simulations, the folding processes of the two knot proteins are similar. The compact structures of the two knot proteins with the native contacts in β-sheet are formed in transition state, and the intermediate state has loose C-terminal. This model also reveals the detailed folding mechanisms for the two proteins.
Collapse
Affiliation(s)
- Xue Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
35
|
Hsieh SJM, Mallam AL, Jackson SE, Hsu STD. Backbone 1H, 13C and 15N assignments of YibK and avariant containing a unique cysteine residue at C-terminus in 8 M urea-denatured states [corrected]. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:439-442. [PMID: 23853076 DOI: 10.1007/s12104-013-9510-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/29/2013] [Indexed: 06/02/2023]
Abstract
YibK is a tRNA methyltransferase from Haemophilus influenzae, which forms a stable homodimer in solution and contains a deep trefoil 31 knot encompassing the C-terminal helix that threads through a long loop. It has been a model system for investigating knotted protein folding pathways. Recent data have shown that the polypeptide chain of YibK remains loosely knotted under highly denaturing conditions. Here, we report (1)H, (13)C and (15)N chemical shift assignments for YibK and its variant in the presence of 8 M urea. This work forms the basis for further analysis using NMR techniques such as paramagnetic relaxation enhancement, residual dipolar couplings and spin-relaxation dynamics analysis.
Collapse
|
36
|
Lim NCH, Jackson SE. Mechanistic insights into the folding of knotted proteins in vitro and in vivo. J Mol Biol 2014; 427:248-58. [PMID: 25234087 DOI: 10.1016/j.jmb.2014.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
The importance of knots and entanglements in biological systems is increasingly being realized and the number of proteins with topologically complex knotted structures has risen. However, the mechanism as to how these proteins knot and fold efficiently remains unclear. Using a cell-free expression system and pulse-proteolysis experiments, we have investigated the mechanism of knotting and folding for two bacterial trefoil-knotted methyltransferases. This study provides the first experimental evidence for a knotting mechanism. Results on fusions of stable protein domains to N-terminus, C-terminus or both termini of the knotted proteins clearly demonstrate that threading of the nascent chain through a knotting loop occurs via the C-terminus. Our results strongly suggest that this mechanism occurs even when the C-terminus is severely hindered by the addition of a large stable structure, in contrast to some simulations indicating that even the folding pathways of knotted proteins have some plasticity. The same strategy was employed to probe the effects of GroEL-GroES. In this case, results suggest active mechanisms for the molecular chaperonin. We demonstrate that a simple model in which GroEL-GroES sterically confines the unknotted polypeptide chain thereby promoting knotting is unlikely, and we propose two alternatives: (a) the chaperonin facilitates unfolding of kinetically and topologically trapped intermediates or (b) the chaperonin stabilizes interactions that promote knotting. These findings provide mechanistic insights into the folding of knotted proteins both in vitro and in vivo, thus elucidating how they have withstood evolutionary pressures regardless of their complex topologies and intrinsically slow folding rates.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| |
Collapse
|
37
|
Soler MA, Nunes A, Faísca PFN. Effects of knot type in the folding of topologically complex lattice proteins. J Chem Phys 2014; 141:025101. [DOI: 10.1063/1.4886401] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
38
|
Stepanenko OV, Bublikov GS, Stepanenko OV, Shcherbakova DM, Verkhusha VV, Turoverov KK, Kuznetsova IM. A knot in the protein structure - probing the near-infrared fluorescent protein iRFP designed from a bacterial phytochrome. FEBS J 2014; 281:2284-98. [PMID: 24628916 DOI: 10.1111/febs.12781] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/18/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
The possibility of engineering near-infrared fluorescent proteins and biosensors from bacterial phytochrome photoreceptors (BphPs) has led to substantial interest in this family of proteins. The near-infrared fluorescent proteins have allowed non-invasive bio-imaging of deep tissues and whole organs in living animals. BphPs and derived near-infrared fluorescent proteins contain a structural element, called a knot, in their polypeptide chains. The formation of knot structures in proteins was refuted for a long time. Here, we studied the denaturation and renaturation processes of the near-infrared fluorescent probe iRFP, engineered from RpBphP2, which utilizes a heme-derived tetrapyrrole compound biliverdin as a chromophore. iRFP contains a unique figure-of-eight knot. The denaturation and renaturation curves of the iRFP apoform coincided well, suggesting efficient refolding. However, the iRFP holoform exhibited irreversible unfolding and aggregation associated with the bound chromophore. The knot structure in the apoform did not prevent subsequent binding of biliverdin, resulting in the functional iRFP holoform. We suggest that the irreversibility of protein unfolding is caused by post-translational protein modifications, such as chromophore binding, rather than the presence of the knot. These results are essential for future design of BphP-based near-infrared probes, and add important features to our knowledge of protein folding.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
This work explores the impact of knots, knot depth and motif of the threading terminus in protein folding properties (kinetics, thermodynamics and mechanism) via extensive Monte Carlo simulations of lattice models. A knotted backbone has no effect on protein thermodynamic stability but it may affect key aspects of folding kinetics. In this regard, we found clear evidence for a functional advantage of knots: knots enhance kinetic stability because a knotted protein unfolds at a distinctively slower rate than its unknotted counterpart. However, an increase in knot deepness does not necessarily lead to more effective changes in folding properties. In this regard, a terminus with a non-trivial conformation (e.g. hairpin) can have a more dramatic effect in enhancing kinetic stability than knot depth. Nevertheless, our results suggest that the probability of the denatured ensemble to keep knotted is higher for proteins with deeper knots, indicating that knot depth plays a role in determining the topology of the denatured state. Refolding simulations starting from denatured knotted conformations show that not every knot is able to nucleate folding and further indicate that the formation of the knotting loop is a key event in the folding of knotted trefoils. They also show that there are specific native contacts within the knotted core that are crucial to keep a native knotting loop in denatured conformations which otherwise have no detectable structure. The study of the knotting mechanism reveals that the threading of the knotting loop generally occurs towards late folding in conformations that exhibit a significant degree of structural consolidation.
Collapse
Affiliation(s)
- Miguel A. Soler
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Física, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia F. N. Faísca
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Física, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
40
|
Schlebach JP, Peng D, Kroncke BM, Mittendorf KF, Narayan M, Carter BD, Sanders CR. Reversible folding of human peripheral myelin protein 22, a tetraspan membrane protein. Biochemistry 2013; 52:3229-41. [PMID: 23639031 DOI: 10.1021/bi301635f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Misfolding of the α-helical membrane protein peripheral myelin protein 22 (PMP22) has been implicated in the pathogenesis of the common neurodegenerative disease known as Charcot-Marie-Tooth disease (CMTD) and also several other related peripheral neuropathies. Emerging evidence suggests that the propensity of PMP22 to misfold in the cell may be due to an intrinsic lack of conformational stability. Therefore, quantitative studies of the conformational equilibrium of PMP22 are needed to gain insight into the molecular basis of CMTD. In this work, we have investigated the folding and unfolding of wild type (WT) human PMP22 in mixed micelles. Both kinetic and thermodynamic measurements demonstrate that the denaturation of PMP22 by n-lauroyl sarcosine (LS) in dodecylphosphocholine (DPC) micelles is reversible. Assessment of the conformational equilibrium indicates that a significant fraction of unfolded PMP22 persists even in the absence of the denaturing detergent. However, we find the stability of PMP22 is increased by glycerol, which facilitates quantitation of thermodynamic parameters. To our knowledge, this work represents the first report of reversible unfolding of a eukaryotic multispan membrane protein. The results indicate that WT PMP22 possesses minimal conformational stability in micelles, which parallels its poor folding efficiency in the endoplasmic reticulum. Folding equilibrium measurements for PMP22 in micelles may provide an approach to assess the effects of cellular metabolites or potential therapeutic agents on its stability. Furthermore, these results pave the way for future investigation of the effects of pathogenic mutations on the conformational equilibrium of PMP22.
Collapse
Affiliation(s)
- Jonathan P Schlebach
- Department of Biochemistry and ‡Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Wang P, Yang L, Liu P, Gao YQ, Zhao XS. Single-molecule detection reveals knot sliding in TrmD denaturation. Chemistry 2013; 19:5909-16. [PMID: 23512842 DOI: 10.1002/chem.201203809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Indexed: 01/06/2023]
Abstract
An increasing number of proteins are found to contain a knot in their polypeptide chain. Although some studies have looked into the folding mechanism of knotted proteins, why and how these complex topologies form are still far from being fully answered. Moreover, no experimental information about how the knot moves during the protein-folding process is available. Herein, by combining single-molecule fluorescence resonance energy transfer (smFRET) experiments with molecular dynamics (MD) simulations, we performed a detailed study to characterize the knot in the denatured state of TrmD, a knotted tRNA (guanosine-1) methyltransferase from Escherichia coli, as a model system. We found that the knot still existed in the unfolded state of TrmD, consistent with the results for two other knotted proteins, YibK and YbeA. More interestingly, both smFRET experiments and MD simulations revealed that the knot slid towards the C-terminal during the unfolding process, which could be explained by the relatively strong interactions between the β-sheet core at the N terminal of the native knot region. The size of the knot in the unfolded state is not larger than that in the native state. In addition, the knot slid in a "downhill" mode with simultaneous chain collapse in the denatured state.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | |
Collapse
|
42
|
Mohazab AR, Plotkin SS. Polymer uncrossing and knotting in protein folding, and their role in minimal folding pathways. PLoS One 2013; 8:e53642. [PMID: 23365638 PMCID: PMC3554774 DOI: 10.1371/journal.pone.0053642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search algorithm is applied to find minimal transformations to fold [Formula: see text], [Formula: see text], [Formula: see text], and knotted proteins. In all cases, the extra uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is compared with other order parameters. It was seen that non-crossing distance over chain length provided the best discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-transformation "alignment". The consensus minimal pathway is constructed and shown schematically for representative cases of an [Formula: see text], [Formula: see text], and knotted protein. An overlap parameter is defined between pathways; we find that [Formula: see text] proteins have minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant pathway, and [Formula: see text] proteins are somewhere in between. Thus we have shown how topological chain constraints can induce dominant pathway mechanisms in protein folding.
Collapse
Affiliation(s)
- Ali R. Mohazab
- Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C, Canada
| | - Steven S. Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
43
|
Andrews BT, Capraro DT, Sulkowska JI, Onuchic JN, Jennings PA. Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins. J Phys Chem Lett 2013; 4:180-188. [PMID: 23525263 PMCID: PMC3601837 DOI: 10.1021/jz301893w] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Topologically complex proteins fold by multiple routes as a result of hard-to-fold regions of the proteins. Oftentimes these regions are introduced into the protein scaffold for function and increase frustration in the otherwise smooth-funneled landscape. Interestingly, while functional regions add complexity to folding landscapes, they may also contribute to a unique behavior referred to as hysteresis. While hysteresis is predicted to be rare, it is observed in various proteins, including proteins containing a unique peptide cyclization to form a fluorescent chromophore as well as proteins containing a knotted topology in their native fold. Here, hysteresis is demonstrated to be a consequence of the decoupling of unfolding events from the isomerization or hula-twist of a chromophore in one protein and the untying of the knot in a second protein system. The question now is- can hysteresis be a marker for the interplay of landscapes where complex folding and functional regions overlap?
Collapse
Affiliation(s)
| | - Dominique T. Capraro
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA
| | | | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston TX 77005
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA
| |
Collapse
|
44
|
Soler MA, Faísca PFN. How difficult is it to fold a knotted protein? In silico insights from surface-tethered folding experiments. PLoS One 2012; 7:e52343. [PMID: 23284997 PMCID: PMC3527535 DOI: 10.1371/journal.pone.0052343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/14/2012] [Indexed: 11/25/2022] Open
Abstract
We explore the effect of surface tethering on the folding process of a lattice protein that contains a trefoil knot in its native structure via Monte Carlo simulations. We show that the outcome of the tethering experiment depends critically on which terminus is used to link the protein to a chemically inert plane. In particular, if surface tethering occurs at the bead that is closer to the knotted core the folding rate becomes exceedingly slow and the protein is not able to find the native structure in all the attempted folding trajectories. Such low folding efficiency is also apparent from the analysis of the probability of knot formation, p(knot), as a function of nativeness. Indeed, p(knot) increases abruptly from ∼0 to ∼1 only when the protein has more than 80% of its native contacts formed, showing that a highly compact conformation must undergo substantial structural re-arrangement in order to get effectively knotted. When the protein is surface tethered by the bead that is placed more far away from the knotted core p(knot) is higher than in the other folding setups (including folding in the bulk), especially if conformations are highly native-like. These results show that the mobility of the terminus closest to the knotted core is critical for successful folding of trefoil proteins, which, in turn, highlights the importance of a knotting mechanism that is based on a threading movement of this terminus through a knotting loop. The results reported here predict that if this movement is blocked, knotting occurs via an alternative mechanism, the so-called spindle mechanism, which is prone to misfolding. Our simulations show that in the three considered folding setups the formation of the knot is typically a late event in the folding process. We discuss the implications of our findings for co-translational folding of knotted trefoils.
Collapse
Affiliation(s)
- Miguel A. Soler
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Física, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia F. N. Faísca
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Física, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
45
|
Aghera N, Udgaonkar JB. Kinetic Studies of the Folding of Heterodimeric Monellin: Evidence for Switching between Alternative Parallel Pathways. J Mol Biol 2012; 420:235-50. [DOI: 10.1016/j.jmb.2012.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
|
46
|
Škrbić T, Micheletti C, Faccioli P. The role of non-native interactions in the folding of knotted proteins. PLoS Comput Biol 2012; 8:e1002504. [PMID: 22719235 PMCID: PMC3375218 DOI: 10.1371/journal.pcbi.1002504] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/16/2012] [Indexed: 12/29/2022] Open
Abstract
Stochastic simulations of coarse-grained protein models are used to investigate the propensity to form knots in early stages of protein folding. The study is carried out comparatively for two homologous carbamoyltransferases, a natively-knotted N-acetylornithine carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase (OTCase). In addition, two different sets of pairwise amino acid interactions are considered: one promoting exclusively native interactions, and the other additionally including non-native quasi-chemical and electrostatic interactions. With the former model neither protein shows a propensity to form knots. With the additional non-native interactions, knotting propensity remains negligible for the natively-unknotted OTCase while for AOTCase it is much enhanced. Analysis of the trajectories suggests that the different entanglement of the two transcarbamylases follows from the tendency of the C-terminal to point away from (for OTCase) or approach and eventually thread (for AOTCase) other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair clarifies that natively-knotted proteins can spontaneously knot during early folding stages and that non-native sequence-dependent interactions are important for promoting and disfavouring early knotting events. Knotted proteins provide an ideal ground for examining how amino acid interactions (which are local) can favor their folding into a native state of non-trivial topology (which is a global property). Some of the mechanisms that can aid knot formation are investigated here by comparing coarse-grained folding simulations of two enzymes that are structurally similar, and yet have natively knotted and unknotted states, respectively. In folding simulations that exclusively promote the formation of native contacts, neither protein forms knots. Strikingly, when sequence-dependent non-native interactions between amino acids are introduced, one observes knotting events but only for the natively-knotted protein. The results support the importance of non-native interactions in favoring or disfavoring knotting events in the early stages of folding.
Collapse
Affiliation(s)
- Tatjana Škrbić
- ECT* - European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Villazzano (Trento), Italy
- LISC - Interdisciplinary Laboratory for Computational Science, Povo (Trento), Italy
| | - Cristian Micheletti
- SISSA - Scuola Internazionale Superiore di Studi Avanzati and CNR-IOM Democritos, Trieste, Italy
- * E-mail: (CM); (PF)
| | - Pietro Faccioli
- Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy
- INFN - Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento, Povo (Trento), Italy
- * E-mail: (CM); (PF)
| |
Collapse
|
47
|
Mallam AL, Jackson SE. Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nat Chem Biol 2011; 8:147-53. [PMID: 22179065 DOI: 10.1038/nchembio.742] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/27/2011] [Indexed: 12/20/2022]
Abstract
Topological knots are found in a considerable number of protein structures, but it is not clear how they knot and fold within the cellular environment. We investigated the behavior of knotted protein molecules as they are first synthesized by the ribosome using a cell-free translation system. We found that newly translated knotted proteins can spontaneously self-tie and do not require the assistance of molecular chaperones to fold correctly to their trefoil-knotted structures. This process is slow but efficient, and we found no evidence of misfolded species. A kinetic analysis indicates that the knotting process is rate limiting, occurs post-translationally, and is specifically and significantly (P < 0.001) accelerated by the GroEL-GroES chaperonin complex. This demonstrates a new active mechanism for this molecular chaperone and suggests that chaperonin-catalyzed knotting probably dominates in vivo. These results explain how knotted protein structures have withstood evolutionary pressures despite their topological complexity.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, The University of Cambridge, Cambridge, UK
| | | |
Collapse
|
48
|
Moreno-Vargas LM, Carrillo-Ibarra N, Arzeta-Pino L, Benítez-Cardoza CG. Thermal unfolding of apo- and holo-enolase from Saccharomyces cerevisiae: Different mechanisms, similar activation enthalpies. Int J Biol Macromol 2011; 49:871-8. [DOI: 10.1016/j.ijbiomac.2011.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/24/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
49
|
Sayre TC, Lee TM, King NP, Yeates TO. Protein stabilization in a highly knotted protein polymer. Protein Eng Des Sel 2011; 24:627-30. [PMID: 21669955 PMCID: PMC3165941 DOI: 10.1093/protein/gzr024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 11/13/2022] Open
Abstract
The polypeptide backbones of a few proteins are tied in a knot. The biophysical effects and potential biological roles of knots are not well understood. Here, we test the consequences of protein knotting by taking a monomeric protein, carbonic anhydrase II, whose native structure contains a shallow knot, and polymerizing it end-to-end to form a deeply and multiply knotted polymeric filament. Thermal stability experiments show that the polymer is stabilized against loss of structure and aggregation by the presence of deep knots.
Collapse
Affiliation(s)
- Tobias C. Sayre
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Toni M. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Neil P. King
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Virnau P, Mallam A, Jackson S. Structures and folding pathways of topologically knotted proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:033101. [PMID: 21406854 DOI: 10.1088/0953-8984/23/3/033101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last decade, a new class of proteins has emerged that contain a topological knot in their backbone. Although these structures are rare, they nevertheless challenge our understanding of protein folding. In this review, we provide a short overview of topologically knotted proteins with an emphasis on newly discovered structures. We discuss the current knowledge in the field, including recent developments in both experimental and computational studies that have shed light on how these intricate structures fold.
Collapse
Affiliation(s)
- Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany.
| | | | | |
Collapse
|