1
|
Maharjan S, Gamper H, Yamaki Y, Christian T, Henley RY, Li NS, Suzuki T, Suzuki T, Piccirilli JA, Wanunu M, Seifert E, Wallace DC, Hou YM. Post-transcriptional methylation of mitochondrial-tRNA differentially contributes to mitochondrial pathology. Nat Commun 2024; 15:9008. [PMID: 39424798 PMCID: PMC11489592 DOI: 10.1038/s41467-024-53318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Human mitochondrial tRNAs (mt-tRNAs), critical for mitochondrial biogenesis, are frequently associated with pathogenic mutations. These mt-tRNAs have unusual sequence motifs and require post-transcriptional modifications to stabilize their fragile structures. However, whether a modification that stabilizes a wild-type (WT) mt-tRNA would also stabilize its pathogenic variants is unknown. Here we show that the N1-methylation of guanosine at position 9 (m1G9) of mt-Leu(UAA), while stabilizing the WT tRNA, has a destabilizing effect on variants associated with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). This differential effect is further demonstrated, as removal of the m1G9 methylation, while damaging to the WT tRNA, is beneficial to the major pathogenic variant, improving the structure and activity of the variant. These results have therapeutic implications, suggesting that the N1-methylation of mt-tRNAs at position 9 is a determinant of pathogenicity and that controlling the methylation level is an important modulator of mt-tRNA-associated diseases.
Collapse
Affiliation(s)
- Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yuka Yamaki
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Y Henley
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Nan-Sheng Li
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Takeo Suzuki
- Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, University of Tokyo, Tokyo, Japan
| | | | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Erin Seifert
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Watkins RR, Kavoor A, Musier-Forsyth K. Strategies for detecting aminoacylation and aminoacyl-tRNA editing in vitro and in cells. Isr J Chem 2024; 64:e202400009. [PMID: 40066018 PMCID: PMC11892019 DOI: 10.1002/ijch.202400009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 03/14/2025]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) maintain translational fidelity by ensuring the formation of correct aminoacyl-tRNA pairs. Numerous point mutations in human aaRSs have been linked to disease phenotypes. Structural studies of aaRSs from human pathogens encoding unique domains support these enzymes as potential candidates for therapeutics. Studies have shown that the identity of tRNA pools in cells changes between different cell types and under stress conditions. While traditional radioactive aminoacylation analyses can determine the effect of disease-causing mutations on aaRS function, these assays are not amenable to drug discovery campaigns and do not take into account the variability of the intracellular tRNA pools. Here, we review modern techniques to characterize aaRS activity in vitro and in cells. The cell-based approaches analyse the aminoacyl-tRNA pool to observe trends in aaRS activity and fidelity. Taken together, these approaches allow high-throughput drug screening of aaRS inhibitors and systems-level analyses of the dynamic tRNA population under a variety of conditions and disease states.
Collapse
Affiliation(s)
- Rylan R. Watkins
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
4
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
5
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024; 76:505-522. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
6
|
Watkins RR, Vradi A, Shulgina I, Musier-Forsyth K. Trypanosoma brucei multi-aminoacyl-tRNA synthetase complex formation limits promiscuous tRNA proofreading. Front Microbiol 2024; 15:1445687. [PMID: 39081885 PMCID: PMC11286415 DOI: 10.3389/fmicb.2024.1445687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Faithful mRNA decoding depends on the accuracy of aminoacyl-tRNA synthetases (ARSs). Aminoacyl-tRNA proofreading mechanisms have been well-described in bacteria, humans, and plants. However, our knowledge of translational fidelity in protozoans is limited. Trypanosoma brucei (Tb) is a eukaryotic, protozoan pathogen that causes Human African Trypanosomiasis, a fatal disease if untreated. Tb undergoes many physiological changes that are dictated by nutrient availability throughout its insect-mammal lifecycle. In the glucose-deprived insect vector, the tsetse fly, Tb use proline to make ATP via mitochondrial respiration. Alanine is one of the major by-products of proline consumption. We hypothesize that the elevated alanine pool challenges Tb prolyl-tRNA synthetase (ProRS), an ARS known to misactivate alanine in all three domains of life, resulting in high levels of misaminoacylated Ala-tRNAPro. Tb encodes two domains that are members of the INS superfamily of aminoacyl-tRNA deacylases. One homolog is appended to the N-terminus of Tb ProRS, and a second is the major domain of multi-aminoacyl-tRNA synthetase complex (MSC)-associated protein 3 (MCP3). Both ProRS and MCP3 are housed in the Tb MSC. Here, we purified Tb ProRS and MCP3 and observed robust Ala-tRNAPro deacylation activity from both enzymes in vitro. Size-exclusion chromatography multi-angle light scattering used to probe the oligomerization state of MCP3 revealed that although its unique N-terminal extension confers homodimerization in the absence of tRNA, the protein binds to tRNA as a monomer. Kinetic assays showed MCP3 alone has relaxed tRNA specificity and promiscuously hydrolyzes cognate Ala-tRNAAla; this activity is significantly reduced in the presence of Tb alanyl-tRNA synthetase, also housed in the MSC. Taken together, our results provide insight into translational fidelity mechanisms in Tb and lay the foundation for exploring MSC-associated proteins as novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Maharjan S, Gamper H, Yamaki Y, Henley RY, Li NS, Suzuki T, Suzuki T, Piccirilli JA, Wanunu M, Seifert E, Wallace DC, Hou YM. Post-Transcriptional Methylation of Mitochondrial-tRNA Differentially Contributes to Mitochondrial Pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.09.569632. [PMID: 38106193 PMCID: PMC10723379 DOI: 10.1101/2023.12.09.569632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Human mitochondrial tRNAs (mt-tRNAs), critical for mitochondrial biogenesis, are frequently associated with pathogenic mutations. These mt-tRNAs have unusual sequence motifs and require post-transcriptional modifications to stabilize their fragile structures. However, whether a modification that stabilizes a wild-type (WT) mt-tRNA structure would also stabilize its pathogenic variants is unknown. Here we show that the N 1 -methylation of guanosine at position 9 (m 1 G9) of mt-Leu(UAA), while stabilizing the WT tRNA, has an opposite and destabilizing effect on variants associated with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). This differential effect is further demonstrated by the observation that demethylation of m 1 G9, while damaging to the WT tRNA, is beneficial to the major pathogenic variant, improving its structure and activity. These results have new therapeutic implications, suggesting that the N 1 -methylation of mt-tRNAs at position 9 is a determinant of pathogenicity and that controlling the methylation level is an important modulator of mt-tRNA-associated diseases.
Collapse
|
8
|
Dulic M, Krpan N, Gruic-Sovulj I. Gly56 in the synthetic site of isoleucyl-tRNA synthetase confers specificity and maintains communication with the editing site. FEBS Lett 2023; 597:3114-3124. [PMID: 38015921 DOI: 10.1002/1873-3468.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Isoleucyl-tRNA synthetase (IleRS) links isoleucine to cognate tRNA via the Ile-AMP intermediate. Non-cognate valine is often mistakenly recognized as the IleRS substrate; therefore, to maintain the accuracy of translation, IleRS hydrolyzes Val-AMP within the synthetic site (pre-transfer editing). As this activity is not efficient enough, Val-tRNAIle is formed and hydrolyzed in the distant post-transfer editing site. A strictly conserved synthetic site residue Gly56 was previously shown to safeguard Ile-to-Val discrimination during aminoacyl (aa)-AMP formation. Here, we show that the Gly56Ala variant lost its specificity in pre-transfer editing, confirming that this residue ensures the selectivity of all synthetic site reactions. Moreover, we found that the Gly56Ala mutation affects IleRS interaction with aa-tRNA likely by disturbing tRNA-dependent communication between the two active sites.
Collapse
Affiliation(s)
- Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | - Nina Krpan
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
9
|
Jones JA, Wei N, Cui H, Shi Y, Fu G, Rauniyar N, Shapiro R, Morodomi Y, Berenst N, Dumitru CD, Kanaji S, Yates JR, Kanaji T, Yang XL. Nuclear translocation of an aminoacyl-tRNA synthetase may mediate a chronic "integrated stress response". Cell Rep 2023; 42:112632. [PMID: 37314928 PMCID: PMC10592355 DOI: 10.1016/j.celrep.2023.112632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Various stress conditions are signaled through phosphorylation of translation initiation factor eukaryotic initiation factor 2α (eIF2α) to inhibit global translation while selectively activating transcription factor ATF4 to aid cell survival and recovery. However, this integrated stress response is acute and cannot resolve lasting stress. Here, we report that tyrosyl-tRNA synthetase (TyrRS), a member of the aminoacyl-tRNA synthetase family that responds to diverse stress conditions through cytosol-nucleus translocation to activate stress-response genes, also inhibits global translation. However, it occurs at a later stage than eIF2α/ATF4 and mammalian target of rapamycin (mTOR) responses. Excluding TyrRS from the nucleus over-activates translation and increases apoptosis in cells under prolonged oxidative stress. Nuclear TyrRS transcriptionally represses translation genes by recruiting TRIM28 and/or NuRD complex. We propose that TyrRS, possibly along with other family members, can sense a variety of stress signals through intrinsic properties of this enzyme and strategically located nuclear localization signal and integrate them by nucleus translocation to effect protective responses against chronic stress.
Collapse
Affiliation(s)
- Julia A Jones
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Na Wei
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haissi Cui
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Shi
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guangsen Fu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Navin Rauniyar
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nadine Berenst
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Calin Dan Dumitru
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Ma X, Bakhtina M, Shulgina I, Cantara WA, Kuzmishin Nagy A, Goto Y, Suga H, Foster MP, Musier-Forsyth K. Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain. Nucleic Acids Res 2023; 51:3988-3999. [PMID: 36951109 PMCID: PMC10164551 DOI: 10.1093/nar/gkad192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Irina Shulgina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Dutta S, Chandra A. A Multiple Proton Transfer Mechanism for the Charging Step of the Aminoacylation Reaction at the Active Site of Aspartyl tRNA Synthetase. J Chem Inf Model 2023; 63:1819-1832. [PMID: 36893463 DOI: 10.1021/acs.jcim.2c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Aspartyl-tRNA synthetase catalyzes the attachment of aspartic acid to its cognate tRNA by the aminoacylation reaction during the initiation of the protein biosynthesis process. In the second step of the aminoacylation reaction, known as the charging step, the aspartate moiety is transferred from aspartyl-adenylate to the 3'-OH of A76 of tRNA through a proton transfer process. We have investigated different pathways for the charging step through three separate QM/MM simulations combined with the enhanced sampling method of well-sliced metadynamics and found out the most feasible pathway for the reaction at the active site of the enzyme. In the charging reaction, both the phosphate group and the ammonium group after deprotonation can potentially act as a base for proton transfer in the substrate-assisted mechanism. We have considered three possible mechanisms involving different pathways of proton transfer, and only one of them is determined to be enzymatically feasible. The free energy landscape along reaction coordinates where the phosphate group acts as the general base showed that, in the absence of water, the barrier height is 52.6 kcal/mol. The free energy barrier is reduced to 39.7 kcal/mol when the active site water molecules are also treated quantum mechanically, thus allowing a water mediated proton transfer. The charging reaction involving the ammonium group of the aspartyl adenylate is found to follow a path where first a proton from the ammonium group moves to a water in the vicinity forming a hydronium ion (H3O+) and NH2 group. The hydronium ion subsequently passes the proton to the Asp233 residue, thus minimizing the chance of back proton transfer from hydronium to the NH2 group. The neutral NH2 group subsequently takes the proton from the O3' of A76 with a free energy barrier of 10.7 kcal/mol. In the next step, the deprotonated O3' makes a nucleophilic attack to the carbonyl carbon forming a tetrahedral transition state with a free energy barrier of 24.8 kcal/mol. Thus, the present work shows that the charging step proceeds through a multiple proton transfer mechanism where the amino group formed after deprotonation acts as the base to capture a proton from O3' of A76 rather than the phosphate group. The current study also shows the important role played by Asp233 in the proton transfer process.
Collapse
Affiliation(s)
- Saheb Dutta
- Department of Chemistry, Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
12
|
Pang L, Zanki V, Strelkov SV, Van Aerschot A, Gruic-Sovulj I, Weeks SD. Partitioning of the initial catalytic steps of leucyl-tRNA synthetase is driven by an active site peptide-plane flip. Commun Biol 2022; 5:883. [PMID: 36038645 PMCID: PMC9424281 DOI: 10.1038/s42003-022-03825-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.
Collapse
Affiliation(s)
- Luping Pang
- grid.5596.f0000 0001 0668 7884Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 – Box 822, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 – Box 1041, 3000 Leuven, Belgium ,grid.207374.50000 0001 2189 3846Research Center of Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Vladimir Zanki
- grid.4808.40000 0001 0657 4636Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sergei V. Strelkov
- grid.5596.f0000 0001 0668 7884Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 – Box 822, 3000 Leuven, Belgium
| | - Arthur Van Aerschot
- grid.5596.f0000 0001 0668 7884Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 – Box 1041, 3000 Leuven, Belgium
| | - Ita Gruic-Sovulj
- grid.4808.40000 0001 0657 4636Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Stephen D. Weeks
- grid.5596.f0000 0001 0668 7884Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 – Box 822, 3000 Leuven, Belgium ,Pledge Therapeutics, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Krahn N, Söll D, Vargas-Rodriguez O. Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Front Physiol 2022; 13:983245. [PMID: 36060688 PMCID: PMC9437257 DOI: 10.3389/fphys.2022.983245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
14
|
Zivkovic I, Ivkovic K, Cvetesic N, Marsavelski A, Gruic-Sovulj I. Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases. Nucleic Acids Res 2022; 50:4029-4041. [PMID: 35357484 PMCID: PMC9023258 DOI: 10.1093/nar/gkac207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) translate the genetic code by loading tRNAs with the cognate amino acids. The errors in amino acid recognition are cleared at the AARS editing domain through hydrolysis of misaminoacyl-tRNAs. This ensures faithful protein synthesis and cellular fitness. Using Escherichia coli isoleucyl-tRNA synthetase (IleRS) as a model enzyme, we demonstrated that the class I editing domain clears the non-cognate amino acids well-discriminated at the synthetic site with the same rates as the weakly-discriminated fidelity threats. This unveiled low selectivity suggests that evolutionary pressure to optimize the rates against the amino acids that jeopardize translational fidelity did not shape the editing site. Instead, we propose that editing was shaped to safeguard cognate aminoacyl-tRNAs against hydrolysis. Misediting is prevented by the residues that promote negative catalysis through destabilisation of the transition state comprising cognate amino acid. Such powerful design allows broad substrate acceptance of the editing domain along with its exquisite specificity in the cognate aminoacyl-tRNA rejection. Editing proceeds by direct substrate delivery to the editing domain (in cis pathway). However, we found that class I IleRS also releases misaminoacyl-tRNAIle and edits it in trans. This minor editing pathway was up to now recognized only for class II AARSs.
Collapse
Affiliation(s)
- Igor Zivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Kate Ivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Nevena Cvetesic
- Institute for Clinical Sciences, Faculty of Medicine, Imperial College London and MRC London Institute of Medical Sciences, London, SW7 2AZ, UK
| | - Aleksandra Marsavelski
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
15
|
Masuda I, Hwang JY, Christian T, Maharjan S, Mohammad F, Gamper H, Buskirk AR, Hou YM. Loss of N1-methylation of G37 in tRNA induces ribosome stalling and reprograms gene expression. eLife 2021; 10:70619. [PMID: 34382933 PMCID: PMC8384417 DOI: 10.7554/elife.70619] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
N1-methylation of G37 is required for a subset of tRNAs to maintain the translational reading-frame. While loss of m1G37 increases ribosomal +1 frameshifting, whether it incurs additional translational defects is unknown. Here, we address this question by applying ribosome profiling to gain a genome-wide view of the effects of m1G37 deficiency on protein synthesis. Using E coli as a model, we show that m1G37 deficiency induces ribosome stalling at codons that are normally translated by m1G37-containing tRNAs. Stalling occurs during decoding of affected codons at the ribosomal A site, indicating a distinct mechanism than that of +1 frameshifting, which occurs after the affected codons leave the A site. Enzyme- and cell-based assays show that m1G37 deficiency reduces tRNA aminoacylation and in some cases peptide-bond formation. We observe changes of gene expression in m1G37 deficiency similar to those in the stringent response that is typically induced by deficiency of amino acids. This work demonstrates a previously unrecognized function of m1G37 that emphasizes its role throughout the entire elongation cycle of protein synthesis, providing new insight into its essentiality for bacterial growth and survival.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Jae-Yeon Hwang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Fuad Mohammad
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
16
|
Abstract
In this chapter we consider the catalytic approaches used by aminoacyl-tRNA synthetase (AARS) enzymes to synthesize aminoacyl-tRNA from cognate amino acid and tRNA. This ligase reaction proceeds through an activated aminoacyl-adenylate (aa-AMP). Common themes among AARSs include use of induced fit to drive catalysis and transition state stabilization by class-conserved sequence and structure motifs. Active site metal ions contribute to the amino acid activation step, while amino acid transfer to tRNA is generally a substrate-assisted concerted mechanism. A distinction between classes is the rate-limiting step for aminoacylation. We present some examples for each aspect of aminoacylation catalysis, including the experimental approaches developed to address questions of AARS chemistry.
Collapse
|
17
|
Sun L, Wei N, Kuhle B, Blocquel D, Novick S, Matuszek Z, Zhou H, He W, Zhang J, Weber T, Horvath R, Latour P, Pan T, Schimmel P, Griffin PR, Yang XL. CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proc Natl Acad Sci U S A 2021; 118:e2012898118. [PMID: 33753480 PMCID: PMC8020758 DOI: 10.1073/pnas.2012898118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.
Collapse
Affiliation(s)
- Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David Blocquel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Scott Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Zaneta Matuszek
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Huihao Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiwei He
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, China
| | - Jingjing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, 510006 Guangzhou, China
| | - Thomas Weber
- Dynamic Biosensors GmbH, 82152 Martinsried, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Philippe Latour
- Biology and Pathology Department, Hospices Civils, 68500 Lyon, France
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
18
|
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int J Mol Sci 2021; 22:1750. [PMID: 33578647 PMCID: PMC7916415 DOI: 10.3390/ijms22041750] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.
Collapse
Affiliation(s)
- Luping Pang
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
- KU Leuven, Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49–box 822, 3000 Leuven, Belgium
| | | | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
| |
Collapse
|
19
|
Gamper H, Li H, Masuda I, Miklos Robkis D, Christian T, Conn AB, Blaha G, Petersson EJ, Gonzalez RL, Hou YM. Insights into genome recoding from the mechanism of a classic +1-frameshifting tRNA. Nat Commun 2021; 12:328. [PMID: 33436566 PMCID: PMC7803779 DOI: 10.1038/s41467-020-20373-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding. Genome recoding with quadruplet codons requires a +1-frameshift-suppressor tRNA able to insert an amino acid at quadruplet codons of interest. Here the authors identify the mechanisms resulting in +1 frameshifting and the steps of the elongation cycle in which it occurs.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Haixing Li
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - D Miklos Robkis
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Adam B Conn
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
20
|
Avcilar-Kucukgoze I, Kashina A. Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology. Front Mol Biosci 2020; 7:610617. [PMID: 33392265 PMCID: PMC7773854 DOI: 10.3389/fmolb.2020.610617] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Transfer tRNAs (tRNAs) are small non-coding RNAs that are highly conserved in all kingdoms of life. Originally discovered as the molecules that deliver amino acids to the growing polypeptide chain during protein synthesis, tRNAs have been believed for a long time to play exclusive role in translation. However, recent studies have identified key roles for tRNAs and tRNA-derived small RNAs in multiple other processes, including regulation of transcription and translation, posttranslational modifications, stress response, and disease. These emerging roles suggest that tRNAs may be central players in the complex machinery of biological regulatory pathways. Here we overview these non-canonical roles of tRNA in normal physiology and disease, focusing largely on eukaryotic and mammalian systems.
Collapse
Affiliation(s)
- Irem Avcilar-Kucukgoze
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Gamper H, Hou YM. A Label-Free Assay for Aminoacylation of tRNA. Genes (Basel) 2020; 11:genes11101173. [PMID: 33036365 PMCID: PMC7601589 DOI: 10.3390/genes11101173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Aminoacylation of tRNA generates an aminoacyl-tRNA (aa-tRNA) that is active for protein synthesis on the ribosome. Quantification of aminoacylation of tRNA is critical to understand the mechanism of specificity and the flux of the aa-tRNA into the protein synthesis machinery, which determines the rate of cell growth. Traditional assays for the quantification of tRNA aminoacylation involve radioactivity, either with a radioactive amino acid or with a [3′-32P]-labeled tRNA. We describe here a label-free assay that monitors aminoacylation by biotinylation-streptavidin (SA) conjugation to the α-amine or the α-imine of the aminoacyl group on the aa-tRNA. The conjugated aa-tRNA product is readily separated from the unreacted tRNA by a denaturing polyacrylamide gel, allowing for quantitative measurement of aminoacylation. This label-free assay is applicable to a wide range of amino acids and tRNA sequences and to both classes of aminoacylation. It is more sensitive and robust than the assay with a radioactive amino acid and has the potential to explore a wider range of tRNA than the assay with a [3′-32P]-labeled tRNA. This label-free assay reports kinetic parameters of aminoacylation quantitatively similar to those reported by using a radioactive amino acid, suggesting its broad applicability to research relevant to human health and disease.
Collapse
|
22
|
Wills PR, Carter CW. Impedance Matching and the Choice Between Alternative Pathways for the Origin of Genetic Coding. Int J Mol Sci 2020; 21:E7392. [PMID: 33036401 PMCID: PMC7582391 DOI: 10.3390/ijms21197392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
We recently observed that errors in gene replication and translation could be seen qualitatively to behave analogously to the impedances in acoustical and electronic energy transducing systems. We develop here quantitative relationships necessary to confirm that analogy and to place it into the context of the minimization of dissipative losses of both chemical free energy and information. The formal developments include expressions for the information transferred from a template to a new polymer, Iσ; an impedance parameter, Z; and an effective alphabet size, neff; all of which have non-linear dependences on the fidelity parameter, q, and the alphabet size, n. Surfaces of these functions over the {n,q} plane reveal key new insights into the origin of coding. Our conclusion is that the emergence and evolutionary refinement of information transfer in biology follow principles previously identified to govern physical energy flows, strengthening analogies (i) between chemical self-organization and biological natural selection, and (ii) between the course of evolutionary trajectories and the most probable pathways for time-dependent transitions in physics. Matching the informational impedance of translation to the four-letter alphabet of genes uncovers a pivotal role for the redundancy of triplet codons in preserving as much intrinsic genetic information as possible, especially in early stages when the coding alphabet size was small.
Collapse
Affiliation(s)
- Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
23
|
Kuzmishin Nagy AB, Bakhtina M, Musier-Forsyth K. Trans-editing by aminoacyl-tRNA synthetase-like editing domains. Enzymes 2020; 48:69-115. [PMID: 33837712 DOI: 10.1016/bs.enz.2020.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are ubiquitous enzymes responsible for aminoacyl-tRNA (aa-tRNA) synthesis. Correctly formed aa-tRNAs are necessary for proper decoding of mRNA and accurate protein synthesis. tRNAs possess specific nucleobases that promote selective recognition by cognate aaRSs. Selecting the cognate amino acid can be more challenging because all amino acids share the same peptide backbone and several are isosteric or have similar side chains. Thus, aaRSs can misactivate non-cognate amino acids and produce mischarged aa-tRNAs. If left uncorrected, mischarged aa-tRNAs deliver their non-cognate amino acid to the ribosome resulting in misincorporation into the nascent polypeptide chain. This changes the primary protein sequence and potentially causes misfolding or formation of non-functional proteins that impair cell survival. A variety of proofreading or editing pathways exist to prevent and correct mistakes in aa-tRNA formation. Editing may occur before the amino acid transfer step of aminoacylation via hydrolysis of the aminoacyl-adenylate. Alternatively, post-transfer editing, which occurs after the mischarged aa-tRNA is formed, may be carried out via a distinct editing site on the aaRS where the mischarged aa-tRNA is deacylated. In recent years, it has become clear that most organisms also encode factors that lack aminoacylation activity but resemble aaRS editing domains and function to clear mischarged aa-tRNAs in trans. This review focuses on these trans-editing factors, which are encoded in all three domains of life and function together with editing domains present within aaRSs to ensure that the accuracy of protein synthesis is sufficient for cell survival.
Collapse
Affiliation(s)
- Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
24
|
Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J 2020; 287:1284-1305. [PMID: 31891445 DOI: 10.1111/febs.15199] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/08/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) charge tRNA with their cognate amino acids. Many other enzymes use amino acids as substrates, yet discrimination against noncognate amino acids that threaten the accuracy of protein translation is a hallmark of AARSs. Comparing AARSs to these other enzymes allowed us to recognize patterns in molecular recognition and strategies used by evolution for exercising selectivity. Overall, AARSs are 2-3 orders of magnitude more selective than most other amino acid utilizing enzymes. AARSs also reveal the physicochemical limits of molecular discrimination. For example, amino acids smaller by a single methyl moiety present a discrimination ceiling of ~200, while larger ones can be discriminated by up to 105 -fold. In contrast, substrates larger by a hydroxyl group challenge AARS selectivity, due to promiscuous H-bonding with polar active site groups. This 'hydroxyl paradox' is resolved by editing. Indeed, when the physicochemical discrimination limits are reached, post-transfer editing - hydrolysis of tRNAs charged with noncognate amino acids, evolved. The editing site often selectively recognizes the edited noncognate substrate using the very same feature that the synthetic site could not efficiently discriminate against. Finally, the comparison to other enzymes also reveals that the selectivity of AARSs is an explicitly evolved trait, showing some clear examples of how selection acted not only to optimize catalytic efficiency with the target substrate, but also to abolish activity with noncognate threat substrates ('negative selection').
Collapse
Affiliation(s)
- Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
25
|
Adams LM, Andrews RJ, Hu QH, Schmit HL, Hati S, Bhattacharyya S. Crowder-Induced Conformational Ensemble Shift in Escherichia coli Prolyl-tRNA Synthetase. Biophys J 2019; 117:1269-1284. [PMID: 31542226 PMCID: PMC6818166 DOI: 10.1016/j.bpj.2019.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/27/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
The effect of molecular crowding on the structure and function of Escherichia coli prolyl-transfer RNA synthetase (Ec ProRS), a member of the aminoacyl-transfer RNA synthetase family, has been investigated using a combined experimental and theoretical method. Ec ProRS is a multidomain enzyme; coupled-domain dynamics are essential for efficient catalysis. To gain insight into the mechanistic detail of the crowding effect, kinetic studies were conducted with varying concentrations and sizes of crowders. In parallel, spectroscopic and quantum chemical studies were employed to probe the "soft interactions" between crowders and protein side chains. Finally, the dynamics of the dimeric protein was examined in the presence of crowders using a long-duration (70 ns) classical molecular dynamic simulations. The results of the simulations revealed a shift in the conformational ensemble, which is consistent with the preferential exclusion of cosolutes. The "soft interactions" model of the crowding effect also explained the alteration in kinetic parameters. In summary, the study found that the effects of molecular crowding on both conformational dynamics and catalytic function are correlated in the multidomain Ec ProRS, an enzyme that is central to protein synthesis in all living cells. This study affirmed that large and small cosolutes have considerable impacts on the structure, dynamics, and function of modular proteins and therefore must be considered for stabilizing protein-based pharmaceuticals and industrial enzymes.
Collapse
Affiliation(s)
- Lauren M Adams
- Department of Chemistry, University of Wisconsin at Eau Claire, Eau Claire, Wisconsin
| | - Ryan J Andrews
- Department of Chemistry, University of Wisconsin at Eau Claire, Eau Claire, Wisconsin
| | - Quin H Hu
- Department of Chemistry, University of Wisconsin at Eau Claire, Eau Claire, Wisconsin
| | - Heidi L Schmit
- Department of Chemistry, University of Wisconsin at Eau Claire, Eau Claire, Wisconsin
| | - Sanchita Hati
- Department of Chemistry, University of Wisconsin at Eau Claire, Eau Claire, Wisconsin.
| | - Sudeep Bhattacharyya
- Department of Chemistry, University of Wisconsin at Eau Claire, Eau Claire, Wisconsin.
| |
Collapse
|
26
|
Kumar A, Åqvist J, Satpati P. Principles of tRNA Ala Selection by Alanyl-tRNA Synthetase Based on the Critical G3·U70 Base Pair. ACS OMEGA 2019; 4:15539-15548. [PMID: 31572855 PMCID: PMC6761608 DOI: 10.1021/acsomega.9b01827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Throughout evolution, the presence of a single G3·U70 mismatch in the acceptor stem of tRNAAla is the major determinant for aminoacylation with alanine by alanyl-tRNA synthetase (AlaRS). Recently reported crystal structures of the complexes AlaRS-tRNAAla/G3·U70 and AlaRS-tRNAAla/A3·U70 suggest two very different conformations, representing a reactive and a nonreactive state, respectively. On the basis of these structures, it has been proposed that the G3·U70 base pair guides the -CCA end of the tRNA acceptor stem into the active site of AlaRS, thereby enabling aminoacylation. The crystal structures open up the possibility of directly computing the energetics of tRNA specificity by AlaRS. We have carried out molecular dynamics free-energy simulations to quantitatively estimate tRNA discrimination by AlaRS, focusing on the mutations of the single critical base pair G3·U70 to uncover the energetics underlying the accuracy of tRNA selection. The calculations show that the reactive complex is highly selective in favor of the cognate tRNAAla/G3·U70 over its noncognate analogues (A3·U70/G3·C70/A3·C70). In contrast, the nonreactive complex is predicted to be unselective between tRNAAla/G3·U70 and tRNAAla/A3·U70. Utilizing our calculated relative binding free energies, we show how a simple three-step kinetic scheme for aminoacylation, involving both an initial nonspecific binding step and a subsequent transition to a selective reactive complex, accounts for the observed kinetics of the process.
Collapse
Affiliation(s)
- Amit Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Johan Åqvist
- Department
of Cell and Molecular Biology, Uppsala University,
Biomedical Center, Box 596, Uppsala SE-751 24, Sweden
| | - Priyadarshi Satpati
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
27
|
Chen L, Tanimoto A, So BR, Bakhtina M, Magliery TJ, Wysocki VH, Musier-Forsyth K. Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA formation. Nucleic Acids Res 2019; 47:929-940. [PMID: 30418624 PMCID: PMC6344894 DOI: 10.1093/nar/gky1153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids onto tRNAs. To avoid mistranslation, editing mechanisms evolved to maintain tRNA aminoacylation fidelity. For instance, while rejecting the majority of non-cognate amino acids via discrimination in the synthetic active site, prolyl-tRNA synthetase (ProRS) misactivates and mischarges Ala and Cys, which are similar in size to cognate Pro. Ala-tRNAPro is specifically hydrolyzed by the editing domain of ProRS in cis, while YbaK, a free-standing editing domain, clears Cys-tRNAPro in trans. ProXp-ala is another editing domain that clears Ala-tRNAPro in trans. YbaK does not appear to possess tRNA specificity, readily deacylating Cys-tRNACysin vitro. We hypothesize that YbaK binds to ProRS to gain specificity for Cys-tRNAPro and avoid deacylation of Cys-tRNACys in the cell. Here, in vivo evidence for ProRS-YbaK interaction was obtained using a split-green fluorescent protein assay. Analytical ultracentrifugation and native mass spectrometry were used to investigate binary and ternary complex formation between ProRS, YbaK, and tRNAPro. Our combined results support the hypothesis that the specificity of YbaK toward Cys-tRNAPro is determined by the formation of a three-component complex with ProRS and tRNAPro and establish the stoichiometry of a 'triple-sieve' editing complex for the first time.
Collapse
Affiliation(s)
- Lin Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Byung Ran So
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Masuda I, Takase R, Matsubara R, Paulines MJ, Gamper H, Limbach PA, Hou YM. Selective terminal methylation of a tRNA wobble base. Nucleic Acids Res 2019; 46:e37. [PMID: 29361055 PMCID: PMC5909439 DOI: 10.1093/nar/gky013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3′-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuma Matsubara
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mellie June Paulines
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
29
|
Collins-Hed AI, Ardell DH. Match fitness landscapes for macromolecular interaction networks: Selection for translational accuracy and rate can displace tRNA-binding interfaces of non-cognate aminoacyl-tRNA synthetases. Theor Popul Biol 2019; 129:68-80. [PMID: 31042487 DOI: 10.1016/j.tpb.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/26/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Advances in structural biology of aminoacyl-tRNA synthetases (aaRSs) have revealed incredible diversity in how aaRSs bind their tRNA substrates. The causes of this diversity remain mysterious. We developed a new class of highly rugged fitness landscape models called match landscapes, through which genes encode the assortative interactions of their gene products through the complementarity and identifiability of their structural features. We used results from coding theory to prove bounds and equalities on fitness in match landscapes assuming additive interaction energies, macroscopic aminoacylation kinetics including proofreading, site-specific modifiers of interaction, and selection for translational accuracy in multiple, perfectly encoded site-types. Using genotypes based on extended Hamming codes we show that over a wide array of interface sizes and numbers of encoded cognate pairs, selection for translational accuracy alone is insufficient to displace the tRNA-binding interfaces of aaRSs. Yet, under combined selection for translational accuracy and rate, site-specific modifiers are selected to adaptively displace the tRNA-binding interfaces of non-cognate aaRS-tRNA pairs. We describe a remarkable correspondence between the lengths of perfect RNA (quaternary) codes and the modal sizes of small non-coding RNA families.
Collapse
Affiliation(s)
- Andrea I Collins-Hed
- Quantitative and Systems Biology Program, University of California, Merced, CA, 95306, United States
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced, CA, 95306, United States; Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, CA, 95306, United States.
| |
Collapse
|
30
|
Interaction studies on bacterial stringent response protein RelA with uncharged tRNA provide evidence for its prerequisite complex for ribosome binding. Curr Genet 2019; 65:1173-1184. [PMID: 30968189 DOI: 10.1007/s00294-019-00966-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The bacterial stringent response is regulated by the synthesis of (p)ppGpp which is mediated by RelA in a complex with uncharged tRNA and ribosome. We intended to probe RelA-uncharged tRNA interactions off the ribosome to understand the sequential activation mechanism of RelA. Stringent response is a key regulatory pleiotropic mechanism which allows bacteria to survive in unfavorable conditions. Since the discovery of RelA, it has been believed that it is activated upon binding to ribosomes which already have uncharged tRNA on acceptor site (A-site). However, uncharged tRNA occupied in the A-site of the ribosome prior to RelA binding could not be observed; therefore, recently an alternate model for RelA activation has been proposed in which RelA first binds to uncharged tRNA and then RelA-uncharged tRNA complex is loaded on to the ribosome to synthesize (p)ppGpp. To explore the alternate hypothesis, we report here the in vitro binding of uncharged tRNA to RelA in the absence of ribosome using formaldehyde cross-linking, fluorescence spectroscopy, surface plasmon resonance, size-exclusion chromatography, and hydrogen-deuterium exchange mass spectrometry. Altogether, our results clearly indicate binding between RelA and uncharged tRNA without the involvement of ribosome. Moreover, we have analyzed their binding kinetics and mapping of tRNA-interacting regions of RelA structure. We have also co-purified TGS domain in complex with tRNA to further establish in vivo RelA-tRNA binding. We have observed that TGS domain recognizes all types of uncharged tRNA similar to EF-Tu and tRNA interactions. Altogether, our results demonstrate the complex formation between RelA and uncharged tRNA that may be loaded to the ribosome for (p)ppGpp synthesis.
Collapse
|
31
|
Gamper H, Hou YM. tRNA 3'-amino-tailing for stable amino acid attachment. RNA (NEW YORK, N.Y.) 2018; 24:1878-1885. [PMID: 30217865 PMCID: PMC6239183 DOI: 10.1261/rna.068015.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Amino acids are attached to the tRNA 3'-end as a prerequisite for entering the ribosome for protein synthesis. Amino acid attachment also gives tRNA access to nonribosomal cellular activities. However, the normal attachment is via an ester linkage between the carboxylic group of the amino acid and the 3'-hydroxyl of the terminal A76 ribose in tRNA. The instability of this ester linkage has severely hampered studies of aminoacyl-tRNAs. Although the use of 3'-amino-3'-deoxy A76 in a 3'-amino-tailed tRNA provides stable aminoacyl attachment via an amide linkage, there are multiple tailing protocols and the efficiency of each relative to the others is unknown. Here we compare five different tailing protocols in parallel, all dependent on the CCA-adding enzyme [CTP(ATP): tRNA nucleotidyl transferase; abbreviated as the CCA enzyme] to exchange the natural ribose with the modified one. We show that the most efficient protocol is achieved by the CCA-catalyzed pyrophosphorolysis removal of the natural A76 in equilibrium with the addition of the appropriate ATP analog to synthesize the modified 3'-end. This protocol for 3'-amino-tailing affords quantitative and stable attachment of a broad range of amino acids to tRNA, indicating its general utility for studies of aminoacyl-tRNAs in both canonical and noncanonical activities.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
32
|
Han L, Guy MP, Kon Y, Phizicky EM. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway. PLoS Genet 2018; 14:e1007288. [PMID: 29596413 PMCID: PMC5892943 DOI: 10.1371/journal.pgen.1007288] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Modification defects in the tRNA anticodon loop often impair yeast growth and cause human disease. In the budding yeast Saccharomyces cerevisiae and the phylogenetically distant fission yeast Schizosaccharomyces pombe, trm7Δ mutants grow poorly due to lack of 2'-O-methylation of C32 and G34 in the tRNAPhe anticodon loop, and lesions in the human TRM7 homolog FTSJ1 cause non-syndromic X-linked intellectual disability (NSXLID). However, it is unclear why trm7Δ mutants grow poorly. We show here that despite the fact that S. cerevisiae trm7Δ mutants had no detectable tRNAPhe charging defect in rich media, the cells constitutively activated a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. Consistent with reduced available charged tRNAPhe, the trm7Δ growth defect was suppressed by spontaneous mutations in phenylalanyl-tRNA synthetase (PheRS) or in the pol III negative regulator MAF1, and by overexpression of tRNAPhe, PheRS, or EF-1A; all of these also reduced GAAC activation. Genetic analysis also demonstrated that the trm7Δ growth defect was due to the constitutive robust GAAC activation as well as to the reduced available charged tRNAPhe. Robust GAAC activation was not observed with several other anticodon loop modification mutants. Analysis of S. pombe trm7 mutants led to similar observations. S. pombe Trm7 depletion also resulted in no observable tRNAPhe charging defect and a robust GAAC response, and suppressors mapped to PheRS and reduced GAAC activation. We speculate that GAAC activation is widely conserved in trm7 mutants in eukaryotes, including metazoans, and might play a role in FTSJ1-mediated NSXLID. The ubiquitous tRNA anticodon loop modifications have important but poorly understood functions in decoding mRNAs in the ribosome to ensure accurate and efficient protein synthesis, and their lack often impairs yeast growth and causes human disease. Here we investigate why ribose methylation of residues 32 and 34 in the anticodon loop is important. Mutations in the corresponding methyltransferase Trm7/FTSJ1 cause poor growth in the budding yeast Saccharomyces cerevisiae and near lethality in the evolutionarily distant fission yeast Schizosaccharomyces pombe, each due to reduced functional tRNAPhe. We previously showed that tRNAPhe anticodon loop modification in yeast and humans required two evolutionarily conserved Trm7 interacting proteins for Cm32 and Gm34 modification, which then stimulated G37 modification. We show here that both S. cerevisiae and S. pombe trm7Δ mutants have apparently normal tRNAPhe charging, but constitutively activate a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. We also show that S. cerevisiae trm7Δ mutants grow poorly due in part to constitutive GAAC activation as well as to the uncharged tRNAPhe. We propose that TRM7 is important to prevent constitutive GAAC activation throughout eukaryotes, including metazoans, which may explain non-syndromic X-linked intellectual disability associated with human FTSJ1 mutations.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Michael P. Guy
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, United States of America
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
34
|
Pawar KI, Suma K, Seenivasan A, Kuncha SK, Routh SB, Kruparani SP, Sankaranarayanan R. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. eLife 2017; 6. [PMID: 28362257 PMCID: PMC5409826 DOI: 10.7554/elife.24001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 12/18/2022] Open
Abstract
Strict L-chiral rejection through Gly-cisPro motif during chiral proofreading underlies the inability of D-aminoacyl-tRNA deacylase (DTD) to discriminate between D-amino acids and achiral glycine. The consequent Gly-tRNAGly ‘misediting paradox’ is resolved by EF-Tu in the cell. Here, we show that DTD’s active site architecture can efficiently edit mischarged Gly-tRNAAla species four orders of magnitude more efficiently than even AlaRS, the only ubiquitous cellular checkpoint known for clearing the error. Also, DTD knockout in AlaRS editing-defective background causes pronounced toxicity in Escherichia coli even at low-glycine levels which is alleviated by alanine supplementation. We further demonstrate that DTD positively selects the universally invariant tRNAAla-specific G3•U70. Moreover, DTD’s activity on non-cognate Gly-tRNAAla is conserved across all bacteria and eukaryotes, suggesting DTD’s key cellular role as a glycine deacylator. Our study thus reveals a hitherto unknown function of DTD in cracking the universal mechanistic dilemma encountered by AlaRS, and its physiological importance. DOI:http://dx.doi.org/10.7554/eLife.24001.001 Proteins are made up of many different building blocks called amino acids, which are linked together in chains. The exact order of amino acids in a protein chain is important for the protein to work properly. When a cell makes proteins, molecules known as transfer ribonucleic acids (or tRNAs for short) bind to specific amino acids to guide them to the growing protein chains in the correct order. Most amino acids – except one called glycine – have two forms that are mirror images of one another, known as left-handed (L-amino acids) and right-handed (D-amino acids). However, only L-amino acids and glycine are used to make proteins. This is because of the presence of multiple quality control checkpoints in the cell that prevent D-amino acids from being involved. One such checkpoint is an enzyme called D-amino acid deacylase (DTD), which removes D-amino acids that are attached to tRNAs. Other enzymes are responsible for linking a particular amino acid to its correct tRNA. Along with mistaking D-amino acids for L-amino acids, these enzymes can also make errors when they have to distinguish between amino acids that are similar in shape and size. For example, the enzyme that attaches L-alanine to its tRNA can also mistakenly attach larger L-serine or smaller glycine to it instead. Previous research has shown that attaching L-serine to this tRNA can lead to neurodegeneration in mice, whereas attaching glycine does not seem to cause any harm. It is not clear why this is the case. Pawar et al. investigated how incorrectly attaching glycine or L-serine to the tRNA that usually binds to L-alanine affects a bacterium called Escherichia coli. The experiments show that, if the mistake is not corrected, glycine can be just as harmful to the cells as L-serine. The reason that glycine appears to be less of a problem is that the DTD enzyme is able to remove glycine, but not L-serine, from the tRNA. Further experiments show that DTD can play a similar role in a variety of organisms from bacteria to mammals. The findings of Pawar et al. extend the role of DTD beyond preventing D-amino acids from being incorporated into proteins. The next step is to understand the role of this enzyme in humans and other multicellular organisms, especially in the context of nerve cells, where it is present at high levels. DOI:http://dx.doi.org/10.7554/eLife.24001.002
Collapse
Affiliation(s)
| | - Katta Suma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
35
|
Reaction dynamics analysis of a reconstituted Escherichia coli protein translation system by computational modeling. Proc Natl Acad Sci U S A 2017; 114:E1336-E1344. [PMID: 28167777 DOI: 10.1073/pnas.1615351114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate the dynamic features of a biologically relevant large-scale reaction network, we constructed a computational model of minimal protein synthesis consisting of 241 components and 968 reactions that synthesize the Met-Gly-Gly (MGG) peptide based on an Escherichia coli-based reconstituted in vitro protein synthesis system. We performed a simulation using parameters collected primarily from the literature and found that the rate of MGG peptide synthesis becomes nearly constant in minutes, thus achieving a steady state similar to experimental observations. In addition, concentration changes to 70% of the components, including intermediates, reached a plateau in a few minutes. However, the concentration change of each component exhibits several temporal plateaus, or a quasi-stationary state (QSS), before reaching the final plateau. To understand these complex dynamics, we focused on whether the components reached a QSS, mapped the arrangement of components in a QSS in the entire reaction network structure, and investigated time-dependent changes. We found that components in a QSS form clusters that grow over time but not in a linear fashion, and that this process involves the collapse and regrowth of clusters before the formation of a final large single cluster. These observations might commonly occur in other large-scale biological reaction networks. This developed analysis might be useful for understanding large-scale biological reactions by visualizing complex dynamics, thereby extracting the characteristics of the reaction network, including phase transitions.
Collapse
|
36
|
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:103-148. [PMID: 28828732 PMCID: PMC5927602 DOI: 10.1007/5584_2017_93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels-protozymes and Urzymes-associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric-middle base-pairing frequencies in sense/antisense alignments-that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically-active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260, USA.
| |
Collapse
|
37
|
Cvetesic N, Gruic-Sovulj I. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Methods 2016; 113:13-26. [PMID: 27713080 DOI: 10.1016/j.ymeth.2016.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase. PLoS Biol 2016; 14:e1002465. [PMID: 27224426 PMCID: PMC4880308 DOI: 10.1371/journal.pbio.1002465] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023] Open
Abstract
D-aminoacyl-tRNA deacylase (DTD) removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD's invariant, cross-subunit Gly-cisPro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR) spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNAGly. High-resolution crystal structure reveals that the architecture of DTD's chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu) and DTD demonstrate that EF-Tu precludes Gly-tRNAGly misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNAGly. Our in vitro observations are substantiated by cell-based studies in Escherichia coli that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2'-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD's activity on Gly-tRNAGly. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.
Collapse
|
39
|
Richardson CJ, First EA. Hyperactive Editing Domain Variants Switch the Stereospecificity of Tyrosyl-tRNA Synthetase. Biochemistry 2016; 55:2526-37. [DOI: 10.1021/acs.biochem.6b00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles J. Richardson
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| | - Eric A. First
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| |
Collapse
|
40
|
Liu C, Stonestrom AJ, Christian T, Yong J, Takase R, Hou YM, Yang X. Molecular Basis and Consequences of the Cytochrome c-tRNA Interaction. J Biol Chem 2016; 291:10426-36. [PMID: 26961879 DOI: 10.1074/jbc.m115.697789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
The intrinsic apoptosis pathway occurs through the release of mitochondrial cytochrome c to the cytosol, where it promotes activation of the caspase family of proteases. The observation that tRNA binds to cytochrome c revealed a previously unexpected mode of apoptotic regulation. However, the molecular characteristics of this interaction, and its impact on each interaction partner, are not well understood. Using a novel fluorescence assay, we show here that cytochrome c binds to tRNA with an affinity comparable with other tRNA-protein binding interactions and with a molecular ratio of ∼3:1. Cytochrome c recognizes the tertiary structural features of tRNA, particularly in the core region. This binding is independent of the charging state of tRNA but is regulated by the redox state of cytochrome c. Compared with reduced cytochrome c, oxidized cytochrome c binds to tRNA with a weaker affinity, which correlates with its stronger pro-apoptotic activity. tRNA binding both facilitates cytochrome c reduction and inhibits the peroxidase activity of cytochrome c, which is involved in its release from mitochondria. Together, these findings provide new insights into the cytochrome c-tRNA interaction and apoptotic regulation.
Collapse
Affiliation(s)
- Cuiping Liu
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Aaron J Stonestrom
- the Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Thomas Christian
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jeongsik Yong
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ryuichi Takase
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ya-Ming Hou
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| | - Xiaolu Yang
- the Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
41
|
Abstract
Methyl transfer from S-adenosyl methionine (abbreviated as AdoMet) to biologically active molecules such as mRNAs and tRNAs is one of the most fundamental and widespread reactions in nature, occurring in all three domains of life. The measurement of kinetic constants of AdoMet-dependent methyl transfer is therefore important for understanding the reaction mechanism in the context of biology. When kinetic constants of methyl transfer are measured in steady state over multiple rounds of turnover, the meaning of these constants is difficult to define and is often limited by non-chemical steps of the reaction, such as product release after each turnover. Here, the measurement of kinetic constants of methyl transfer by tRNA methyltransferases in rapid equilibrium binding condition for one methyl transfer is described. The advantage of such a measurement is that the meaning of kinetic constants can be directly assigned to the steps associated with the chemistry of methyl transfer, including the substrate binding affinity to the methyltransferase, the pre-chemistry re-arrangement of the active site, and the chemical step of methyl transfer. An additional advantage is that kinetic constants measured for one methyl transfer can be correlated with structural information of the methyltransferase to gain direct insight into its reaction mechanism.
Collapse
|
42
|
Abstract
Transfer RNA (tRNA) molecules contain many chemical modifications that are introduced after transcription. A major form of these modifications is methyl transfer to bases and backbone groups, using S-adenosyl methionine (AdoMet) as the methyl donor. Each methylation confers a specific advantage to tRNA in structure or in function. A remarkable methylation is to the G37 base on the 3'-side of the anticodon to generate m(1)G37-tRNA, which suppresses frameshift errors during protein synthesis and is therefore essential for cell growth in all three domains of life. This methylation is catalyzed by TrmD in bacteria and by Trm5 in eukaryotes and archaea. Although TrmD and Trm5 catalyze the same methylation reaction, kinetic analysis reveals that these two enzymes are unrelated to each other and are distinct in their reaction mechanism. This chapter summarizes the kinetic assays that are used to reveal the distinction between TrmD and Trm5. Three types of assays are described, the steady-state, the pre-steady-state, and the single-turnover assays, which collectively provide the basis for mechanistic investigation of AdoMet-dependent methyl transfer reactions.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA.
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| |
Collapse
|
43
|
Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation. Proc Natl Acad Sci U S A 2015; 112:6027-32. [PMID: 25918376 DOI: 10.1073/pnas.1423664112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) establish the rules of the genetic code, whereby each amino acid is attached to a cognate tRNA. Errors in this process lead to mistranslation, which can be toxic to cells. The selective forces exerted by species-specific requirements and environmental conditions potentially shape quality-control mechanisms that serve to prevent mistranslation. A family of editing factors that are homologous to the editing domain of bacterial prolyl-tRNA synthetase includes the previously characterized trans-editing factors ProXp-ala and YbaK, which clear Ala-tRNA(Pro) and Cys-tRNA(Pro), respectively, and three additional homologs of unknown function, ProXp-x, ProXp-y, and ProXp-z. We performed an in vivo screen of 230 conditions in which an Escherichia coli proXp-y deletion strain was grown in the presence of elevated levels of amino acids and specific ARSs. This screen, together with the results of in vitro deacylation assays, revealed Ser- and Thr-tRNA deacylase function for this homolog. A similar activity was demonstrated for Bordetella parapertussis ProXp-z in vitro. These proteins, now renamed "ProXp-ST1" and "ProXp-ST2," respectively, recognize multiple tRNAs as substrates. Taken together, our data suggest that these free-standing editing domains have the ability to prevent mistranslation errors caused by a number of ARSs, including lysyl-tRNA synthetase, threonyl-tRNA synthetase, seryl-tRNA synthetase, and alanyl-tRNA synthetase. The expression of these multifunctional enzymes is likely to provide a selective growth advantage to organisms subjected to environmental stresses and other conditions that alter the amino acid pool.
Collapse
|
44
|
Effect of hydrogen peroxide on the biosynthesis of heme and proteins: potential implications for the partitioning of Glu-tRNA(Glu) between these pathways. Int J Mol Sci 2014; 15:23011-23. [PMID: 25514408 PMCID: PMC4284751 DOI: 10.3390/ijms151223011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/24/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
Glutamyl-tRNA (Glu-tRNA(Glu)) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNA(Glu) can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNA(Glu). Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNA(Glu) distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions.
Collapse
|
45
|
Dulic M, Perona JJ, Gruic-Sovulj I. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. Biochemistry 2014; 53:6189-98. [PMID: 25207837 PMCID: PMC4188249 DOI: 10.1021/bi5007699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
accurate expression of genetic information relies on the fidelity
of amino acid–tRNA coupling by aminoacyl-tRNA synthetases (aaRS).
When the specificity against structurally similar noncognate amino
acids in the synthetic reaction does not support a threshold fidelity
level for translation, the aaRS employ intrinsic hydrolytic editing
to correct errors in aminoacylation. Escherichia coli isoleucyl-tRNA synthetase (EcIleRS) is a class I aaRS that is notable
for its use of tRNA-dependent pretransfer editing to hydrolyze noncognate
valyl-adenylate prior to aminoacyl-tRNA formation. On the basis of
the finding that IleRS possessing an inactivated post-transfer editing
domain is still capable of robust tRNA-dependent editing, we have
recently proposed that the pretransfer editing activity resides within
the synthetic site. Here we apply an improved methodology that allows
quantitation of the AMP fraction that arises particularly from tRNA-dependent
aa-AMP hydrolysis. By this approach, we demonstrate that tRNA-dependent
pretransfer editing accounts for nearly one-third of the total proofreading
by EcIleRS and that a highly conserved tyrosine within the synthetic
site modulates both editing and aminoacylation. Therefore, synthesis
of aminoacyl-tRNA and hydrolysis of aminoacyl-adenylates employ overlapping
amino acid determinants. We suggest that this overlap hindered the
evolution of synthetic site-based pretransfer editing as the predominant
proofreading pathway, because that activity is difficult to accommodate
in the context of efficient aminoacyl-tRNA synthesis. Instead, the
acquisition of a spatially separate domain dedicated to post-transfer
editing alone allowed for the development of a powerful deacylation
machinery that effectively competes with dissociation of misacylated
tRNAs.
Collapse
Affiliation(s)
- Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
46
|
Naganuma M, Sekine SI, Chong YE, Guo M, Yang XL, Gamper H, Hou YM, Schimmel P, Yokoyama S. The selective tRNA aminoacylation mechanism based on a single G•U pair. Nature 2014; 510:507-11. [PMID: 24919148 DOI: 10.1038/nature13440] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.
Collapse
Affiliation(s)
- Masahiro Naganuma
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yeeting Esther Chong
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Min Guo
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Paul Schimmel
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] The Scripps Florida Research Institute, 130 Scripps Way, 3B3 Jupiter, Florida 33458-5284, USA
| | - Shigeyuki Yokoyama
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
47
|
Peacock JR, Walvoord RR, Chang AY, Kozlowski MC, Gamper H, Hou YM. Amino acid-dependent stability of the acyl linkage in aminoacyl-tRNA. RNA (NEW YORK, N.Y.) 2014; 20:758-64. [PMID: 24751649 PMCID: PMC4024630 DOI: 10.1261/rna.044123.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aminoacyl-tRNAs are the biologically active substrates for peptide bond formation in protein synthesis. The stability of the acyl linkage in each aminoacyl-tRNA, formed through an ester bond that connects the amino acid carboxyl group with the tRNA terminal 3'-OH group, is thus important. While the ester linkage is the same for all aminoacyl-tRNAs, the stability of each is not well characterized, thus limiting insight into the fundamental process of peptide bond formation. Here, we show, by analysis of the half-lives of 12 of the 22 natural aminoacyl-tRNAs used in peptide bond formation, that the stability of the acyl linkage is effectively determined only by the chemical nature of the amino acid side chain. Even the chirality of the side chain exhibits little influence. Proline confers the lowest stability to the linkage, while isoleucine and valine confer the highest, whereas the nucleotide sequence in the tRNA provides negligible contribution to the stability. We find that, among the variables tested, the protein translation factor EF-Tu is the only one that can protect a weak acyl linkage from hydrolysis. These results suggest that each amino acid plays an active role in determining its own stability in the acyl linkage to tRNA, but that EF-Tu overrides this individuality and protects the acyl linkage stability for protein synthesis on the ribosome.
Collapse
Affiliation(s)
- Jacob R. Peacock
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ryan R. Walvoord
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Angela Y. Chang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
- Corresponding authorE-mail
| |
Collapse
|
48
|
Wu J, Fan Y, Ling J. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Nucleic Acids Res 2014; 42:6523-31. [PMID: 24744241 PMCID: PMC4041444 DOI: 10.1093/nar/gku271] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases maintain the fidelity during protein synthesis by selective activation of cognate amino acids at the aminoacylation site and hydrolysis of misformed aminoacyl-tRNAs at the editing site. Threonyl-tRNA synthetase (ThrRS) misactivates serine and utilizes an editing site cysteine (C182 in Escherichia coli) to hydrolyze Ser-tRNAThr. Hydrogen peroxide oxidizes C182, leading to Ser-tRNAThr production and mistranslation of threonine codons as serine. The mechanism of C182 oxidation remains unclear. Here we used a chemical probe to demonstrate that C182 was oxidized to sulfenic acid by air, hydrogen peroxide and hypochlorite. Aminoacylation experiments in vitro showed that air oxidation increased the Ser-tRNAThr level in the presence of elongation factor Tu. C182 forms a putative metal binding site with three conserved histidine residues (H73, H77 and H186). We showed that H73 and H186, but not H77, were critical for activating C182 for oxidation. Addition of zinc or nickel ions inhibited C182 oxidation by hydrogen peroxide. These results led us to propose a model for C182 oxidation, which could serve as a paradigm for the poorly understood activation mechanisms of protein cysteine residues. Our work also suggests that bacteria may use ThrRS editing to sense the oxidant levels in the environment.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongqiang Fan
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
49
|
Safro M, Klipcan L. The mechanistic and evolutionary aspects of the 2'- and 3'-OH paradigm in biosynthetic machinery. Biol Direct 2013; 8:17. [PMID: 23835000 PMCID: PMC3716924 DOI: 10.1186/1745-6150-8-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/05/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The translation machinery underlies a multitude of biological processes within the cell. The design and implementation of the modern translation apparatus on even the simplest course of action is extremely complex, and involves different RNA and protein factors. According to the "RNA world" idea, the critical link in the translation machinery may be assigned to an adaptor tRNA molecule. Its exceptional functional and structural characteristics are of primary importance in understanding the evolutionary relationships among all these macromolecular components. PRESENTATION OF THE HYPOTHESIS The 2'-3' hydroxyls of the tRNA A76 constitute chemical groups of critical functional importance, as they are implicated in almost all phases of protein biosynthesis. They contribute to: a) each step of the tRNA aminoacylation reaction catalyzed by aminoacyl-tRNA synthetases (aaRSs); b) the isomerase activity of EF-Tu, involving a mixture of the 2'(3')- aminoacyl tRNA isomers as substrates, thereby producing the required combination of amino acid and tRNA; and c) peptide bond formation at the peptidyl transferase center (PTC) of the ribosome. We hypothesize that specific functions assigned to the 2'-3' hydroxyls during peptide bond formation co-evolved, together with two modes of attack on the aminoacyl-adenylate carbonyl typical for two classes of aaRSs, and alongside the isomerase activity of EF-Tu. Protein components of the translational apparatus are universally recognized as being of ancient origin, possibly replacing RNA-based enzymes that may have existed before the last universal common ancestor (LUCA). We believe that a remnant of these processes is still imprinted on the organization of modern-day translation. TESTING AND IMPLICATIONS OF THE HYPOTHESIS Earlier publications indicate that it is possible to select ribozymes capable of attaching the aa-AMP moiety to RNA molecules. The scenario described herein would gain general acceptance, if a ribozyme able to activate the amino acid and transfer it onto the terminal ribose of the tRNA, would be found in any life form, or generated in vitro. Interestingly, recent studies have demonstrated the plausibility of using metals, likely abandoned under primordial conditions, as biomimetic catalysts of the aminoacylation reaction.
Collapse
Affiliation(s)
- Mark Safro
- Department of Structural Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel.
| | | |
Collapse
|
50
|
Choudhury A, Banerjee R. The N-terminal fragment of Acanthamoeba polyphaga
mimivirus tyrosyl-tRNA synthetase (TyrRSapm
) is a monomer in solution. FEBS Lett 2013; 587:590-9. [DOI: 10.1016/j.febslet.2013.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/14/2023]
|