1
|
Molaeitabari A, Dahms TES. Blocking the shikimate pathway amplifies the impact of carvacrol on biofilm formation in Candida albicans. Microbiol Spectr 2025; 13:e0275424. [PMID: 39918333 PMCID: PMC11878086 DOI: 10.1128/spectrum.02754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 03/05/2025] Open
Abstract
Candida albicans typically thrives in a commensal relationship with humans but is also an opportunistic fungal pathogen. As an opportunistic pathogen, C. albicans relies heavily on its ability to assimilate nutrients, for which it must compete with the host and other microorganisms. Amino acid biosynthesis, sensing, and uptake play pivotal roles in C. albicans growth and pathogenicity. C. albicans biosynthesizes aromatic amino acids and co-enzyme Q de novo through the shikimate pathway, including the Aro1, Aro2, and Aro7 enzymes, but also has amino acid transporters for uptake from the environment. Thus, antifungal approaches targeting aromatic amino acid biosynthesis must simultaneously inhibit amino acid biosynthesis and uptake. Herein, we investigate the plant-based antifungal, carvacrol, in conjunction with aromatic amino acid biosynthetic mutants, as a potential anti-candidal strategy. Growth of the WT, ARO2, and ARO7 strains were inhibited by 150 µg/mL carvacrol, whereas the ARO1 mutant was slightly more sensitive (with MIC 125 µg/mL). All repressed mutants exposed to carvacrol are partially rescued in the presence of para-aminobenzoic acid (PABA) (CoQ precursor), indicating that blocking the shikimate pathway impacts both aromatic amino acid and CoQ biosynthesis. Moreover, carvacrol at sublethal concentrations significantly inhibits ARO1 adhesion and hyphal formation, along with pre-attached and pre-formed hyphae, ultimately impacting biofilm metabolic activity and biomass accumulation and significantly reducing biofilm growth. In summary, carvacrol increases the sensitivity of C. albicans to ARO1 repression, with attenuated adhesion, hyphal formation, mycelial growth and biofilm formation, likely by blocking aromatic amino acid uptake.IMPORTANCEThe opportunistic pathogen Candida albicans remains the leading cause of candidemia and invasive candidiasis (IC), causing significant morbidity and mortality in immunocompromised patients. Our current arsenal of effective antifungal drugs is limited in number, mechanistic diversity, and efficacy, are cytotoxic and associated with antifungal resistance, necessitating the development of novel antifungals and combination therapies. Here, we show how simultaneously blocking the shikimate pathway, through ARO1 repression, and disrupting aromatic amino acid uptake by carvacrol prevent C. albicans biofilm formation. Thus, inhibitors of the Aro1 enzyme in combination with carvacrol are expected to shut down C. albicans biofilm formation and virulence.
Collapse
Affiliation(s)
- Ali Molaeitabari
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
2
|
Yu P, Zhou M, Yu D, Zhang Z, Ye S, Yu Y, Sun X, Li S, Hu C. Targeted regulation of sterol biosynthesis genes according to perturbations in ergosterol biosynthesis in fungi. J Adv Res 2025:S2090-1232(25)00065-7. [PMID: 39892608 DOI: 10.1016/j.jare.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION The synthesis and regulation of ergosterol are vital for fungal growth and stress adaptation. While ergosterol-mediated feedback regulation is a recognized mechanism controlling sterol biosynthesis in fungi, prior research suggests the presence of additional regulatory mechanisms. However, the specifics of the alternative regulatory mechanisms have not been systematically investigated. OBJECTIVES We proposed that a regulatory network is likely to discern disturbances in sterol biosynthesis and trigger responses accordingly. This study aimed to validate the hypothesis and investigate the regulatory mechanisms. METHODS Quantitative Real-time PCR and HPLC-MS/MS were used to explore and compare the regulation of sterol biosynthesis in different fungi. Key transcription factors involved in the alternative regulatory mechanism in Neurospora crassa were identified by phenotypic profiling of a transcription factor mutant library. ChIP-qPCR, fluorescence confocal imaging, RNA sequencing, and gene set enrichment analysis (GSEA) were used to reveal the mechanism of each transcription factor. RESULTS Unlike the canonical ergosterol-mediated feedback regulation in fungi like C. neoformans, our study demonstrated that the inhibitions of ergosterol biosynthesis at specific steps triggered distinct transcriptional responses of erg genes in fungi, including N. crassa and Aspergillus fumigatus. In N. crassa, the responses were orchestrated by different transcription factors. Specifically, the inhibition of ERG24 and ERG2 activated transcription factors SAH-2 and AtrR, resulting in the upregulation of erg24, erg2, erg25, and erg3. Furthermore, the inhibition of ERG11/CYP51 activated transcription factor NcSR, leading to the upregulation of erg11 and erg6. Phenotypic profiles of mutants of various N. crassa erg genes and the aforementioned transcription factors implied that the targeted regulation of ergosterol biosynthesis could fortify fungal viability within complex habitats. CONCLUSION Our study reveals a novel regulatory mechanism in fungi: targeted upregulation of specific sterol biosynthesis genes in response to given perturbations in ergosterol biosynthesis, exhibiting a higher degree of precision and sophistication in sterol biosynthesis regulation.
Collapse
Affiliation(s)
- Pengju Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China
| | - Mi Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; National Institute for Radiological Protection, China CDC, Beijing 100101 China
| | - Deshui Yu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010 China
| | - Zhongchi Zhang
- Shanghai Fondin Bio_Tech Company Limited, Shanghai 201204 China
| | - Shuting Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China
| | - Yifa Yu
- Nanning Harworld Biological Technology Company Limited, Nanning 530000 China
| | - Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China.
| | - Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China.
| |
Collapse
|
3
|
Tebbji F, Menon ACT, Khemiri I, St-Cyr DJ, Villeneuve L, Vincent AT, Sellam A. Small molecule inhibitors of fungal Δ(9) fatty acid desaturase as antifungal agents against Candida auris. Front Cell Infect Microbiol 2024; 14:1434939. [PMID: 39282497 PMCID: PMC11392922 DOI: 10.3389/fcimb.2024.1434939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Candida auris has emerged as a significant healthcare-associated pathogen due to its multidrug-resistant nature. Ongoing constraints in the discovery and provision of new antifungals create an urgent imperative to design effective remedies to this pressing global blight. Herein, we screened a chemical library and identified aryl-carbohydrazide analogs with potent activity against both C. auris and the most prevalent human fungal pathogen, C. albicans. SPB00525 [N'-(2,6-dichlorophenyl)-5-nitro-furan-2-carbohydrazide] exhibited potent activity against different strains that were resistant to standard antifungals. Using drug-induced haploinsufficient profiling, transcriptomics and metabolomic analysis, we uncovered that Ole1, a Δ(9) fatty acid desaturase, is the likely target of SPB00525. An analog of the latter, HTS06170 [N'-(2,6-dichlorophenyl)-4-methyl-1,2,3-thiadiazole-5-carbohydrazide], had a superior antifungal activity against both C. auris and C. albicans. Both SPB00525 and HTS06170 act as antivirulence agents and inhibited the invasive hyphal growth and biofilm formation of C. albicans. SPB00525 and HTS06170 attenuated fungal damage to human enterocytes and ameliorate the survival of Galleria mellonella larvae used as systemic candidiasis model. These data suggest that inhibiting fungal Δ(9) fatty acid desaturase activity represents a potential therapeutic approach for treating fungal infection caused by the superbug C. auris and the most prevalent human fungal pathogen, C. albicans.
Collapse
Affiliation(s)
- Faiza Tebbji
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Anagha C T Menon
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Inès Khemiri
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Daniel J St-Cyr
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Louis Villeneuve
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Antony T Vincent
- Department of Animal Sciences, Université Laval, Quebec City, QC, Canada
- Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Rangel DEN. How Metarhizium robertsii's mycelial consciousness gets its conidia Zen-ready for stress. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:1-33. [PMID: 39389703 DOI: 10.1016/bs.aambs.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This memoir takes a whimsical ride through my professional adventures, spotlighting my fungal stress research on the insect-pathogenic fungus Metarhizium robertsii, which transformed many of my wildest dreams into reality. Imagine the magic of fungi meeting science and me, a happy researcher, arriving at Utah State University ready to dive deep into studies with the legendary insect pathologist, my advisor Donald W. Roberts, and my co-advisor Anne J. Anderson. From my very first "Aha!" moment in the lab, I plunged into a vortex of discovery, turning out research like a mycelium on a mission. Who knew 18 h/day, seven days a week, could be so exhilarating? I was fueled by an insatiable curiosity, boundless creativity, and a perhaps slightly alarming level of motivation. Years later, I managed to bring my grandest vision to life: the International Symposium on Fungal Stress-ISFUS. This groundbreaking event has attracted 162 esteemed speakers from 29 countries to Brazil, proving that fungi can be both fun and globally fascinating. ISFUS is celebrating its fifth edition in 2024, a decade after its 2014 debut.
Collapse
|
5
|
Kumar D, Kumar A. Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation. Mol Biotechnol 2024; 66:1640-1659. [PMID: 37410258 DOI: 10.1007/s12033-023-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
6
|
Arruda MFC, da Silva Ramos RCP, de Oliveira NS, Rosa RT, Stuelp-Campelo PM, Bianchini LF, Villas-Bôas SG, Rosa EAR. Central Carbon Metabolism in Candida albicans Biofilms Is Altered by Dimethyl Sulfoxide. J Fungi (Basel) 2024; 10:337. [PMID: 38786692 PMCID: PMC11121877 DOI: 10.3390/jof10050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
The effect of dimethyl sulfoxide (DMSO) on fungal metabolism has not been well studied. This study aimed to evaluate, by metabolomics, the impact of DMSO on the central carbon metabolism of Candida albicans. Biofilms of C. albicans SC5314 were grown on paper discs, using minimum mineral (MM) medium, in a dynamic continuous flow system. The two experimental conditions were control and 0.03% DMSO (v/v). After 72 h of incubation (37 °C), the biofilms were collected and the metabolites were extracted. The extracted metabolites were subjected to gas chromatography-mass spectrometry (GC/MS). The experiment was conducted using five replicates on three independent occasions. The GC/MS analysis identified 88 compounds. Among the 88 compounds, the levels of 27 compounds were markedly different between the two groups. The DMSO group exhibited enhanced levels of putrescine and glutathione and decreased levels of methionine and lysine. Additionally, the DMSO group exhibited alterations in 13 metabolic pathways involved in primary and secondary cellular metabolism. Among the 13 altered pathways, seven were downregulated and six were upregulated in the DMSO group. These results indicated a differential intracellular metabolic profile between the untreated and DMSO-treated biofilms. Hence, DMSO was demonstrated to affect the metabolic pathways of C. albicans. These results suggest that DMSO may influence the results of laboratory tests when it is used as a solvent. Hence, the use of DMSO as a solvent must be carefully considered in drug research, as the effect of the researched drugs may not be reliably translated into clinical practice.
Collapse
Affiliation(s)
- Maria Fernanda Cordeiro Arruda
- Graduate Program on Dentistry, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (M.F.C.A.); (R.C.P.d.S.R.)
| | - Romeu Cassiano Pucci da Silva Ramos
- Graduate Program on Dentistry, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (M.F.C.A.); (R.C.P.d.S.R.)
| | - Nicoly Subtil de Oliveira
- Graduate Program on Animal Sciences, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil;
| | - Rosimeire Takaki Rosa
- Xenobiotics Research Unit, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (R.T.R.); (P.M.S.-C.); (L.F.B.)
| | - Patrícia Maria Stuelp-Campelo
- Xenobiotics Research Unit, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (R.T.R.); (P.M.S.-C.); (L.F.B.)
| | - Luiz Fernando Bianchini
- Xenobiotics Research Unit, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (R.T.R.); (P.M.S.-C.); (L.F.B.)
| | | | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program on Dentistry, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (M.F.C.A.); (R.C.P.d.S.R.)
- Graduate Program on Animal Sciences, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil;
- Xenobiotics Research Unit, School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (R.T.R.); (P.M.S.-C.); (L.F.B.)
| |
Collapse
|
7
|
Xiong L, Pereira De Sa N, Zarnowski R, Huang MY, Mota Fernandes C, Lanni F, Andes DR, Del Poeta M, Mitchell AP. Biofilm-associated metabolism via ERG251 in Candida albicans. PLoS Pathog 2024; 20:e1012225. [PMID: 38739655 PMCID: PMC11115363 DOI: 10.1371/journal.ppat.1012225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Alonso-Monge R, Cortés-Prieto I, Román E, Pla J. Morphogenetic transitions in the adaptation of Candida albicans to the mammalian gut. Microbes Infect 2024; 26:105253. [PMID: 37977323 DOI: 10.1016/j.micinf.2023.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Candida albicans is a pathobiont in humans that forms part of the mycobiota in healthy individuals and can cause different pathologies upon alterations of the host defenses. The mammalian gut is clinically relevant as this niche is the most common pool for bloodstream-derived infections. The ability of C. albicans to switch from yeast to hypha has been related to the commensal-to-pathogen transition and is, therefore, considered relevant in virulence. Recently, filaments have been implicated in the humoral response in the gut. C. albicans exhibits other morphologies that play different roles in pathogenicity and commensalism. This review focuses on the role of these morphological transitions in C. albicans proliferation and its establishment as a commensal in the mammalian gut, paying special attention to the transcription factors involved in their regulation.
Collapse
Affiliation(s)
- Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Isabel Cortés-Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Khemiri I, Tebbji F, Burgain A, Sellam A. Regulation of copper uptake by the SWI/SNF chromatin remodeling complex in Candida albicans affects susceptibility to antifungal and oxidative stresses under hypoxia. FEMS Yeast Res 2024; 24:foae018. [PMID: 38760885 PMCID: PMC11160329 DOI: 10.1093/femsyr/foae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
Candida albicans is a human colonizer and also an opportunistic yeast occupying different niches that are mostly hypoxic. While hypoxia is the prevalent condition within the host, the machinery that integrates oxygen status to tune the fitness of fungal pathogens remains poorly characterized. Here, we uncovered that Snf5, a subunit of the chromatin remodeling complex SWI/SNF, is required to tolerate antifungal stress particularly under hypoxia. RNA-seq profiling of snf5 mutant exposed to amphotericin B and fluconazole under hypoxic conditions uncovered a signature that is reminiscent of copper (Cu) starvation. We found that under hypoxic and Cu-starved environments, Snf5 is critical for preserving Cu homeostasis and the transcriptional modulation of the Cu regulon. Furthermore, snf5 exhibits elevated levels of reactive oxygen species and an increased sensitivity to oxidative stress principally under hypoxia. Supplementing growth medium with Cu or increasing gene dosage of the Cu transporter CTR1 alleviated snf5 growth defect and attenuated reactive oxygen species levels in response to antifungal challenge. Genetic interaction analysis suggests that Snf5 and the bona fide Cu homeostasis regulator Mac1 function in separate pathways. Together, our data underlined a unique role of SWI/SNF complex as a potent regulator of Cu metabolism and antifungal stress under hypoxia.
Collapse
Affiliation(s)
- Inès Khemiri
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
| | - Faiza Tebbji
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute/Institut de Cardiologie de Montréal, Université de Montréal, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Puerner C, Vellanki S, Strauch JL, Cramer RA. Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression. Annu Rev Microbiol 2023; 77:403-425. [PMID: 37713457 PMCID: PMC11034785 DOI: 10.1146/annurev-micro-032521-021745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.
Collapse
Affiliation(s)
- Charles Puerner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Julianne L Strauch
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
- Department of Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| |
Collapse
|
11
|
Silva AM, Pedrini N, Pupin B, Roberts DW, Rangel DEN. Asphyxiation of Metarhizium robertsii during mycelial growth produces conidia with increased stress tolerance via increased expression of stress-related genes. Fungal Biol 2023; 127:1209-1217. [PMID: 37495310 DOI: 10.1016/j.funbio.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Little is known about the impact of hypoxia and anoxia during mycelial growth on tolerance to different stress conditions of developing fungal conidia. Conidia of the insect-pathogenic fungus Metarhizium robertsii were produced on potato dextrose agar (PDA) medium under normoxia (control = normal oxygen concentrations), continuous hypoxia, and transient anoxia, as well as minimal medium under normoxia. The tolerance of the conidia produced under these different conditions was evaluated in relation to wet heat (heat stress), menadione (oxidative stress), potassium chloride (osmotic stress), UV radiation, and 4-nitroquinoline-1-oxide (=4-NQO genotoxic stress). Growth under hypoxic condition induced higher conidial tolerance of M. robertsii to menadione, KCl, and UV radiation. Transient anoxic condition induced higher conidial tolerance to KCl and UV radiation. Nutritional stress (i.e., minimal medium) induced higher conidial tolerance to heat, menadione, KCl, and UV radiation. However, neither of these treatments induced higher tolerance to 4-NQO. The gene hsp30 and hsp101 encoding a heat shock protein was upregulated under anoxic condition. In conclusion, growth under hypoxia and anoxia produced conidia with higher stress tolerances than conidia produced in normoxic condition. The nutritive stress generated by minimal medium, however, induced much higher stress tolerances. This condition also caused the highest level of gene expression in the hsp30 and hsp101 genes. Thus, the conidia produced under nutritive stress, hypoxia, and anoxia had greater adaptation to stress.
Collapse
Affiliation(s)
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisa Espaciais - INPE, São José dos Campos, SP, 12227-010, Brazil
| | - Donald W Roberts
- Department of Biology, Utah State University, Logan, UT, 84322-5305, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná (UTFPR), 85660-000, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
12
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
13
|
Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol Spectr 2022; 10:e0318322. [PMID: 36394350 PMCID: PMC9769929 DOI: 10.1128/spectrum.03183-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation. IMPORTANCE Candida albicans is a normal resident on and in the human body that can cause relatively benign infections. However, when our immune system is severely compromised (e.g., cancer chemotherapy patients) or underdeveloped (e.g., newborns), this fungus can become a deadly pathogen, infecting the bloodstream and organs. Since there are only a few effective antifungal agents that can be used to combat fungal infections, these fungi have been exposed to them over and over again, allowing the fungi to develop resistance. Instead of developing antifungal agents that kill the fungi, some of which have undesirable side effects on the human host, researchers have proposed to target the fungal traits that make the fungus more virulent. Here, we show how two components of plant-based essential oils, eugenol and citral, are effective inhibitors of C. albicans virulence traits.
Collapse
|
14
|
Systematic Metabolic Profiling Identifies De Novo Sphingolipid Synthesis as Hypha Associated and Essential for Candida albicans Filamentation. mSystems 2022; 7:e0053922. [PMID: 36264075 PMCID: PMC9765226 DOI: 10.1128/msystems.00539-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The yeast-to-hypha transition is a key virulence attribute of the opportunistic human fungal pathogen Candida albicans, since it is closely tied to infection-associated processes such as tissue invasion and escape from phagocytes. While the nature of hypha-associated gene expression required for fungal virulence has been thoroughly investigated, potential morphotype-dependent activity of metabolic pathways remained unclear. Here, we combined global transcriptome and metabolome analyses for the wild-type SC5314 and the hypha-defective hgc1Δ and cph1Δefg1Δ strains under three hypha-inducing (human serum, N-acetylglucosamine, and alkaline pH) and two yeast-promoting conditions to identify metabolic adaptions that accompany the filamentation process. We identified morphotype-related activities of distinct pathways and a metabolic core signature of 26 metabolites with consistent depletion or enrichment during the yeast-to-hypha transition. Most strikingly, we found a hypha-associated activation of de novo sphingolipid biosynthesis, indicating a connection of this pathway and filamentous growth. Consequently, pharmacological inhibition of this partially fungus-specific pathway resulted in strongly impaired filamentation, verifying the necessity of de novo sphingolipid biosynthesis for proper hypha formation. IMPORTANCE The reversible switch of Candida albicans between unicellular yeast and multicellular hyphal growth is accompanied by a well-studied hypha-associated gene expression, encoding virulence factors like adhesins, toxins, or nutrient scavengers. The investigation of this gene expression consequently led to fundamental insights into the pathogenesis of this fungus. In this study, we applied this concept to hypha-associated metabolic adaptations and identified morphotype-dependent activities of distinct pathways and a stimulus-independent metabolic signature of hyphae. Most strikingly, we found the induction of de novo sphingolipid biosynthesis as hypha associated and essential for the filamentation of C. albicans. These findings verified the presence of morphotype-specific metabolic traits in the fungus, which appear connected to the fungal virulence. Furthermore, the here-provided comprehensive description of the fungal metabolome will help to foster future research and lead to a better understanding of fungal physiology.
Collapse
|
15
|
Williams S, Cleary I, Thomas D. Anaerobic conditions are a major influence on Candida albicans chlamydospore formation. Folia Microbiol (Praha) 2022; 68:321-324. [PMID: 36418845 DOI: 10.1007/s12223-022-01018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Candidiasis now represents the fourth most frequent nosocomial infection both in the USA and worldwide. Candida albicans is an increasingly common threat to human health as a consequence of AIDS, steroid therapy, organ and tissue transplantation, cancer therapy, broad-spectrum antibiotics, and other immune defects. Unfortunately, these infections carry unacceptably high morbidity, mortality rates and important economic repercussions (estimated total direct cost of approximately 2 billion dollars in 1998 in US hospitals alone). This pathogen can grow both in yeast and filamentous forms and the pathogenic potential of C. albicans is intimately related to certain key processes including filamentation. Chlamydospores are considered to be a dormant form of C. albicans that remain understudied. Chlamydospores have been widely used as a diagnostic tool to separate C. albicans and C. dubliniensis from other Candida species. More recently, media have been developed that use chlamydopsore formation to separate C. albicans and C. dubliniensis from each other. Chlamydospore formation can be stimulated by hypoxic conditions but only on limited specific media types. Here, we show that anaerobic conditions are enough to drive chlamydospore formation in C. albicans on the surface of nutrient-rich agar.
Collapse
Affiliation(s)
- Shannon Williams
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA
| | - Ian Cleary
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA
| | - Derek Thomas
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401-9401, USA.
| |
Collapse
|
16
|
Hidalgo-Vico S, Casas J, García C, Lillo MP, Alonso-Monge R, Román E, Pla J. Overexpression of the White Opaque Switching Master Regulator Wor1 Alters Lipid Metabolism and Mitochondrial Function in Candida albicans. J Fungi (Basel) 2022; 8:1028. [PMID: 36294593 PMCID: PMC9604646 DOI: 10.3390/jof8101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 02/26/2024] Open
Abstract
Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans; increased colonization of this yeast in this niche has implicated the master regulator of the white-opaque transition, Wor1, by mechanisms not completely understood. We have addressed the role that this transcription factor has on commensalism by the characterization of strains overexpressing this gene. We show that WOR1 overexpression causes an alteration of the total lipid content of the fungal cell and significantly alters the composition of structural and reserve molecular species lipids as determined by lipidomic analysis. These cells are hypersensitive to membrane-disturbing agents such as SDS, have increased tolerance to azoles, an augmented number of peroxisomes, and increased phospholipase activity. WOR1 overexpression also decreases mitochondrial activity and results in altered susceptibility to certain oxidants. All together, these changes reflect drastic alterations in the cellular physiology that facilitate adaptation to the gastrointestinal tract environment.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Instituto de Química Avanzada de Cataluña, Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Carolina García
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - M. Pilar Lillo
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
17
|
Grob G, Hemmerle M, Yakobov N, Mahmoudi N, Fischer F, Senger B, Becker HD. tRNA-dependent addition of amino acids to cell wall and membrane components. Biochimie 2022; 203:93-105. [DOI: 10.1016/j.biochi.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
18
|
Rao KH, Paul S, Natarajan K, Ghosh S. N-acetylglucosamine kinase, Hxk1is a multifaceted metabolic enzyme in model pathogenic yeast Candida albicans. Microbiol Res 2022; 263:127146. [DOI: 10.1016/j.micres.2022.127146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
|
19
|
Glazier VE. EFG1, Everyone’s Favorite Gene in Candida albicans: A Comprehensive Literature Review. Front Cell Infect Microbiol 2022; 12:855229. [PMID: 35392604 PMCID: PMC8980467 DOI: 10.3389/fcimb.2022.855229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.
Collapse
|
20
|
Chen T, Wagner AS, Reynolds TB. When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ß(1,3)-Glucan Exposure in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:842501. [PMID: 36908584 PMCID: PMC10003681 DOI: 10.3389/ffunb.2022.842501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
Abstract
Candida spp. are an important source of systemic and mucosal infections in immune compromised populations. However, drug resistance or toxicity has put limits on the efficacy of current antifungals. The C. albicans cell wall is considered a good therapeutic target due to its roles in viability and fungal pathogenicity. One potential method for improving antifungal strategies could be to enhance the detection of fungal cell wall antigens by host immune cells. ß(1,3)-glucan, which is an important component of fungal cell walls, is a highly immunogenic epitope. Consequently, multiple host pattern recognition receptors, such as dectin-1, complement receptor 3 (CR3), and the ephrin type A receptor A (EphA2) are capable of recognizing exposed (unmasked) ß(1,3)-glucan moieties on the cell surface to initiate an anti-fungal immune response. However, ß(1,3)-glucan is normally covered (masked) by a layer of glycosylated proteins on the outer surface of the cell wall, hiding it from immune detection. In order to better understand possible mechanisms of unmasking ß(1,3)-glucan, we must develop a deeper comprehension of the pathways driving this phenotype. In this review, we describe the medical importance of ß(1,3)-glucan exposure in anti-fungal immunity, and highlight environmental stimuli and stressors encountered within the host that are capable of inducing changes in the levels of surface exposed ß(1,3)-glucan. Furthermore, particular focus is placed on how signal transduction cascades regulate changes in ß(1,3)-glucan exposure, as understanding the role that these pathways have in mediating this phenotype will be critical for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
21
|
Henry M, Burgain A, Tebbji F, Sellam A. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2022; 11:770478. [PMID: 35127551 PMCID: PMC8807691 DOI: 10.3389/fcimb.2021.770478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans, an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote C. albicans filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both ahr1 and tye7 mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation via the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.
Collapse
Affiliation(s)
- Manon Henry
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Adnane Sellam,
| |
Collapse
|
22
|
de Sousa LO, Oliveira LN, Naves RB, Pereira ALA, Santiago Freitas E Silva K, de Almeida Soares CM, de Sousa Lima P. The dual role of SrbA from Paracoccidioides lutzii: a hypoxic regulator. Braz J Microbiol 2021; 52:1135-1149. [PMID: 34148216 PMCID: PMC8382145 DOI: 10.1007/s42770-021-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
The fungus Paracoccidioides lutzii is one of the species of the Paracoccidioides genus, responsible for a neglected human mycosis, endemic in Latin America, the paracoccidioidomycosis (PCM). In order to survive in the host, the fungus overcomes a hostile environment under low levels of oxygen (hypoxia) during the infectious process. The hypoxia adaptation mechanisms are variable among human pathogenic fungi and worthy to be investigated in Paracoccidoides spp. Previous proteomic results identified that P. lutzii responds to hypoxia and it has a functional homolog of the SrbA transcription factor, a well-described hypoxic regulator. However, the direct regulation of genes by SrbA and the biological processes it governs while performing protein interactions have not been revealed yet. The goal of this study was to demonstrate the potential of SrbA targets genes in P. lutzii. In addition, to show the SrbA three-dimensional aspects as well as a protein interaction map and important regions of interaction with predicted targets. The results show that SrbA-regulated genes were involved with several biological categories, such as metabolism, energy, basal processes for cell maintenance, fungal morphogenesis, defense, virulence, and signal transduction. Moreover, in order to investigate the SrbA's role as a protein, we performed a 3D simulation and also a protein-protein network linked to this hypoxic regulator. These in silico analyses revealed relevant aspects regarding the biology of this pathogen facing hypoxia and highlight the potential of SrbA as an antifungal target in the future.
Collapse
Affiliation(s)
- Lorena Ordones de Sousa
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Raphaela Barbosa Naves
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - André Luiz Araújo Pereira
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Kleber Santiago Freitas E Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil.
| |
Collapse
|
23
|
de Mattos-Shipley KMJ, Foster GD, Bailey AM. Cprp-An Unusual, Repetitive Protein Which Impacts Pleuromutilin Biosynthesis in the Basidiomycete Clitopilus passeckerianus. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:655323. [PMID: 37744150 PMCID: PMC10512284 DOI: 10.3389/ffunb.2021.655323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 09/26/2023]
Abstract
Interrogation of an EST database for Clitopilus passeckerianus identified a putative homolog to the unusual stress response gene from yeast; ddr48, as being upregulated under pleuromutilin production conditions. Silencing of this gene, named cprp, produced a population of transformants which demonstrated significantly reduced pleuromutilin production. Attempts to complement a Saccharomyces cerevisiae ddr48 mutant strain (strain Y16748) with cprp were hampered by the lack of a clearly identifiable mutant phenotype, but interestingly, overexpression of either ddr48 or cprp in S. cerevisiae Y16748 led to a conspicuous and comparable reduction in growth rate. This observation, combined with the known role of DDR48 proteins from a range of fungal species in nutrient starvation and stress responses, raises the possibility that this family of proteins plays a role in triggering oligotrophic growth. Localization studies via the production of a Cprp:GFP fusion protein in C. passeckerianus showed clear localization adjacent to the hyphal septa and, to a lesser extent, cell walls, which is consistent with the identification of DDR48 as a cell wall-associated protein in various yeast species. To our knowledge this is the first study demonstrating that a DDR48-like protein plays a role in the regulation of a secondary metabolite, and represents the first DDR48-like protein from a basidiomycete. Potential homologs can be identified across much of the Dikarya, suggesting that this unusual protein may play a central role in regulating both primary and secondary metabolism in fungi.
Collapse
Affiliation(s)
| | | | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Abstract
C. neoformans is the main causative agent of fungal meningitis that is responsible for about 15% of all HIV-related deaths. Although an obligate aerobic fungus, C. neoformans is well adapted to hypoxia conditions that the fungus could encounter in the host or the environment. To aerobic organisms, low oxygen tension (hypoxia) presents a physiological challenge. To cope with such a challenge, metabolic pathways such as those used in energy production have to be adjusted. Many of such metabolic changes are orchestrated by the conserved hypoxia-inducible factors (HIFs) in higher eukaryotes. However, there are no HIF homologs in fungi or protists, and not much is known about conductors that direct hypoxic adaptation in lower eukaryotes. Here, we discovered that the transcription factor Pas2 controls the transcript levels of metabolic genes and consequently rewires metabolism for hypoxia adaptation in the human fungal pathogen Cryptococcus neoformans. Through genetic, proteomic, and biochemical analyses, we demonstrated that Pas2 directly interacts with another transcription factor, Rds2, in regulating cryptococcal hypoxic adaptation. The Pas2/Rds2 complex represents the key transcription regulator of metabolic flexibility. Its regulation of metabolism rewiring between respiration and fermentation is critical to our understanding of the cryptococcal response to low levels of oxygen.
Collapse
|
25
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
26
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
27
|
Zain Ul Arifeen M, Chu C, Yang X, Liu J, Huang X, Ma Y, Liu X, Xue Y, Liu C. The anaerobic survival mechanism of Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Environ Microbiol 2020; 23:1174-1185. [PMID: 33215844 DOI: 10.1111/1462-2920.15332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Fungi dominated the eukaryotic group in the anaerobic sedimentary environment below the ocean floor where they play an essential ecological role. However, the adaptive mechanism of fungi to these anaerobic environments is still unclear. Here, we reported the anaerobic adaptive mechanism of Schizophyllum commune 20R-7-F01, isolated from deep coal-bearing sediment down to ~2 km below the seafloor, through biochemical, metabolomic and transcriptome analyses. The fungus grows well, but the morphology changes obviously and the fruit body develops incompletely under complete hypoxia. Compared with aerobic conditions, the fungus has enhanced branched-chain amino acid biosynthesis and ethanol fermentation under anaerobic conditions, and genes related to these metabolisms have been significantly up-regulated. Additionally, the fungus shows novel strategies for synthesizing ethanol by utilizing both glycolysis and ethanol fermentation pathways. These findings suggest that the subseafloor fungi may adopt multiple mechanisms to cope with lack of oxygen.
Collapse
Affiliation(s)
- Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinyi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yunan Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Gupta P, Meena RC, Kumar N. Functional characterization of Candida glabrata ORF, CAGL0M02233g for its role in stress tolerance and virulence. Microb Pathog 2020; 149:104469. [PMID: 32890635 DOI: 10.1016/j.micpath.2020.104469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
Present investigation is aimed to analyze the role of an uncharacterized ORF of Candida glabrata (CBS138), CAGL0M02233g (an ortholog of RAD53, a key DNA checkpoint effector in Saccharomyces cerevisiae) in tolerance of various stresses and in biofilm formation. The CAGL0M02233g was cloned in p416TEF shuttle vector for constitutive expression under TEF1 promoter in BG14 strain (ura3 auxotrophic C. glabrata), and upregulated expression of the cloned ORF was confirmed by immunoblotting. The constitutive expression of CAGL0M02233g rendered cells resistant to the DNA damage stressor (MMS), replication stressor (HU) and hypoxia mimetic (CoCl2) in plate spot and growth curve assays. Hypoxia (a low oxygen condition) is an imperative host factor that influences Candida pathogenesis. Biofilm formation by the BG14 cells transformed with p416TEF-CAGL0M02233g (REX cell) was reduced to approximately 50% under hypoxia. It is notable that biofilm formation by the REX cells was significantly lower than that of BG14 cells transformed with p416TEF vector (VC cell) under hypoxia. The biofilm of the REX cells has shown higher susceptibility to fluconazole than that of VC cells under hypoxia and REX cells at normoxia. This is the first report on the function of CAGL0M02233g in tolerance of various stressors and in modulation of the biofilm under hypoxia.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, PIN-248002, India
| | - R C Meena
- Molecular Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, PIN-248002, India.
| |
Collapse
|
29
|
Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, Dirks B, Krajmalnik-Brown R, Maldonado J, Guinan J, Thangamani S. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol 2020; 96:5643884. [PMID: 31769789 PMCID: PMC6934136 DOI: 10.1093/femsec/fiz187] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-induced alterations in the gut ecosystem increases the susceptibility to Candida albicans, yet the mechanisms involved remains poorly understood. Here we show that mice treated with the broad-spectrum antibiotic cefoperazone promoted the growth, morphogenesis and gastrointestinal (GI) colonization of C. albicans. Using metabolomics, we revealed that the cecal metabolic environment of the mice treated with cefoperazone showed a significant alteration in intestinal metabolites. Levels of carbohydrates, sugar alcohols and primary bile acids increased, whereas carboxylic acids and secondary bile acids decreased in antibiotic treated mice susceptible to C. albicans. Furthermore, using in-vitro assays, we confirmed that carbohydrates, sugar alcohols and primary bile acids promote, whereas carboxylic acids and secondary bile acids inhibit the growth and morphogenesis of C. albicans. In addition, in this study we report changes in the levels of gut metabolites correlated with shifts in the gut microbiota. Taken together, our in-vivo and in-vitro results indicate that cefoperazone-induced metabolome and microbiome alterations favor the growth and morphogenesis of C. albicans, and potentially play an important role in the GI colonization of C. albicans.
Collapse
Affiliation(s)
- Daniel Gutierrez
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Vijay C Antharam
- Department of Chemistry, School of Science and Human Development, Methodist University, 5400 Ramsey St, Fayetteville, NC 28311, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Blake Dirks
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA.,Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Juan Maldonado
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jack Guinan
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
30
|
Chung H, Lee YH. Hypoxia: A Double-Edged Sword During Fungal Pathogenesis? Front Microbiol 2020; 11:1920. [PMID: 32903454 PMCID: PMC7434965 DOI: 10.3389/fmicb.2020.01920] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular oxygen functions as an electron acceptor for aerobic respiration and a substrate for key metabolisms and cellular processes. Most eukaryotes develop direct or indirect oxygen sensors and reprogram transcriptional and translational metabolisms to adapt to altered oxygen availability under varying oxygen concentrations. Human fungal pathogens manipulate transcriptional levels of genes related to virulence as well as oxygen-dependent metabolisms such as ergosterol homeostasis when they are confronted with oxygen limitation (hypoxia) during infection. Oxygen states in plant tissues also vary depending on site, species, and external environment, potentially providing hypoxia to plant pathogens during infection. In this review, knowledge on the regulation of oxygen sensing and adaptive mechanisms in eukaryotes and nascent understanding of hypoxic responses in plant pathogens are summarized and discussed.
Collapse
Affiliation(s)
- Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Valle-Maldonado MI, Patiño-Medina JA, Pérez-Arques C, Reyes-Mares NY, Jácome-Galarza IE, Ortíz-Alvarado R, Vellanki S, Ramírez-Díaz MI, Lee SC, Garre V, Meza-Carmen V. The heterotrimeric G-protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus Mucor circinelloides. Cell Microbiol 2020; 22:e13236. [PMID: 32562333 DOI: 10.1111/cmi.13236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.
Collapse
Affiliation(s)
- Marco Iván Valle-Maldonado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Nancy Yadira Reyes-Mares
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | | | - Rafael Ortíz-Alvarado
- Facultad de Quimico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Martha Isela Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| |
Collapse
|
32
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|
33
|
Wijnants S, Riedelberger M, Penninger P, Kuchler K, Van Dijck P. Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Candida albicans. Front Microbiol 2020; 11:1274. [PMID: 32612591 PMCID: PMC7308821 DOI: 10.3389/fmicb.2020.01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that relies upon different virulence traits, including morphogenesis, invasion, biofilm formation, and nutrient acquisition from host sources as well as metabolic adaptations during host invasion. In this study, we show how sugar kinases at the start of glycolysis modulate virulence of C. albicans. Sequence comparison with Saccharomyces cerevisiae identified four enzymes (Hxk1, Hxk2, Glk1, and Glk4) in C. albicans with putative roles in sugar phosphorylation. Hxk2, Glk1, and Glk4 demonstrate a critical role in glucose metabolism, while Hxk2 is the only kinase important for fructose metabolism. Additionally, we show that Hxk1 controls HXK2, GLK1, and GLK4 expression in the presence of fermentable as well as non-fermentable carbon sources, thereby indirectly controlling glycolysis. Moreover, these sugar kinases are important during virulence. Disabling the glycolytic pathway reduces adhesion capacity, while deletion of HXK1 decreases biofilm formation. Finally, we demonstrate that hxk2Δ/Δ glk1Δ/Δ glk4Δ/Δ and hxk1Δ/Δ hxk2Δ/Δ glk1Δ/Δ glk4Δ/Δ have attenuated virulence upon systemic infections in mice. These results indicate a regulatory role for Hxk1 during sugar phosphorylation. Furthermore, these kinases are essential during growth on glucose or fructose, and C. albicans relies on a functional glycolytic pathway for maximal virulence.
Collapse
Affiliation(s)
- Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Michael Riedelberger
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Philipp Penninger
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
34
|
Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea-Simon IA, Man A. Candida and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020; 8:microorganisms8060857. [PMID: 32517179 PMCID: PMC7355540 DOI: 10.3390/microorganisms8060857] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most important questions in microbiology nowadays, is how apparently harmless, commensal yeasts like Candida spp. can cause a rising number of infections. The occurrence of the disease requires firstly the attachment to the host cells, followed by the invasion of the tissue. The adaptability translates into a rapid ability to respond to stress factors, to take up nutrients or to multiply under different conditions. By forming complex intracellular networks such as biofilms, Candida spp. become not only more refractive to antifungal therapies but also more prone to cause disease. The inter-microbial interactions can enhance the virulence of a strain. In vivo, the fungal cells face a multitude of challenges and, as a result, they develop complex strategies serving one ultimate goal: survival. This review presents the virulence factors of the most important Candida spp., contributing to a better understanding of the onset of candidiasis and raising awareness of the highly complex interspecies interactions that can change the outcome of the disease.
Collapse
Affiliation(s)
- Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Correspondence:
| | - Irina-Bianca Kosovski
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of Physiopathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| | - Felicia Toma
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| | - Ionela Anca Pintea-Simon
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| |
Collapse
|
35
|
Alves R, Barata-Antunes C, Casal M, Brown AJP, Van Dijck P, Paiva S. Adapting to survive: How Candida overcomes host-imposed constraints during human colonization. PLoS Pathog 2020; 16:e1008478. [PMID: 32437438 PMCID: PMC7241708 DOI: 10.1371/journal.ppat.1008478] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Successful human colonizers such as Candida pathogens have evolved distinct strategies to survive and proliferate within the human host. These include sophisticated mechanisms to evade immune surveillance and adapt to constantly changing host microenvironments where nutrient limitation, pH fluctuations, oxygen deprivation, changes in temperature, or exposure to oxidative, nitrosative, and cationic stresses may occur. Here, we review the current knowledge and recent findings highlighting the remarkable ability of medically important Candida species to overcome a broad range of host-imposed constraints and how this directly affects their physiology and pathogenicity. We also consider the impact of these adaptation mechanisms on immune recognition, biofilm formation, and antifungal drug resistance, as these pathogens often exploit specific host constraints to establish a successful infection. Recent studies of adaptive responses to physiological niches have improved our understanding of the mechanisms established by fungal pathogens to evade the immune system and colonize the host, which may facilitate the design of innovative diagnostic tests and therapeutic approaches for Candida infections.
Collapse
Affiliation(s)
- Rosana Alves
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
| | - Cláudia Barata-Antunes
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
| | | | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
- * E-mail: mailto:
| |
Collapse
|
36
|
Abstract
Hypoxia is the predominant condition that the human opportunistic fungus Candida albicans encounters in the majority of the colonized niches within the host. So far, the impact of such a condition on the overall metabolism of this important human-pathogenic yeast has not been investigated. Here, we have undertaken a time-resolved metabolomics analysis to uncover the metabolic landscape of fungal cells experiencing hypoxia. Our data showed a dynamic reprogramming of many fundamental metabolic pathways, such as glycolysis, the pentose phosphate pathway, and different metabolic routes related to fungal cell wall biogenesis. The C. albicans lipidome was highly affected by oxygen depletion, with an increased level of free fatty acids and biochemical intermediates of membrane lipids, including phospholipids, lysophospholipids, sphingolipids, and mevalonate. The depletion of oxygen-dependent lipids such as ergosterol or phosphatidylcholine with longer and polyunsaturated lateral fatty acid chains was observed only at the later hypoxic time point (180 min). Transcriptomics data supported the main metabolic response to hypoxia when matched to our metabolomic profiles. The hypoxic metabolome reflected different physiological alterations of the cell wall and plasma membrane of C. albicans under an oxygen-limiting environment that were confirmed by different approaches. This study provided a framework for future in vivo investigations to examine relevant hypoxic metabolic trajectories in fungal virulence and fitness within the host.IMPORTANCE A critical aspect of cell fitness is the ability to sense and adapt to variations in oxygen levels in their local environment. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogen. While hypoxia is the predominant condition that C. albicans encounters in most of its niches, its impact on fungal metabolism remains unexplored so far. Here, we provided a detailed landscape of the C. albicans metabolome that emphasized the importance of many metabolic routes for the adaptation of this yeast to oxygen depletion. The fungal hypoxic metabolome identified in this work provides a framework for future investigations to assess the contribution of relevant metabolic pathways in the fitness of C. albicans and other human eukaryotic pathogens with similar colonized human niches. As hypoxia is present at most of the fungal infection foci in the host, hypoxic metabolic pathways are thus an attractive target for antifungal therapy.
Collapse
|
37
|
Rastogi SK, van Wijlick L, Ror S, Lee KK, Román E, Agarwal P, Manzoor N, Gow NAR, Pla J, Ernst JF, Panwar SL. Ifu5, a WW domain-containing protein interacts with Efg1 to achieve coordination of normoxic and hypoxic functions to influence pathogenicity traits in Candida albicans. Cell Microbiol 2020; 22:e13140. [PMID: 31736226 PMCID: PMC7614792 DOI: 10.1111/cmi.13140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Hypoxic adaptation pathways, essential for Candida albicans pathogenesis, are tied to its transition from a commensal to a pathogen. Herein, we identify a WW domain-containing protein, Ifu5, as a determinant of hypoxic adaptation that also impacts normoxic responses in this fungus. Ifu5 activity supports glycosylation homeostasis via the Cek1 mitogen-activated protein kinase-dependent up-regulation of PMT1, under normoxia. Transcriptome analysis of ifu5Δ/Δ under normoxia shows a significant up-regulation of the hypoxic regulator EFG1 and EFG1-dependent genes. We demonstrate physical interaction between Ifu5 by virtue of its WW domain and Efg1 that represses EFG1 expression under normoxia. This interaction is lost under hypoxic growth conditions, relieving EFG1 repression. Hypoxic adaptation processes such as filamentation and biofilm formation are affected in ifu5Δ/Δ cells revealing the role of Ifu5 in hypoxic signalling and modulating pathogenicity traits of C. albicans under varied oxygen conditions. Additionally, the WW domain of Ifu5 facilitates its role in hypoxic adaptation, revealing the importance of this domain in providing a platform to integrate various cellular processes. These data forge a relationship between Efg1 and Ifu5 that fosters the role of Ifu5 in hypoxic adaptation thus illuminating novel strategies to undermine the growth of C. albicans.
Collapse
Affiliation(s)
- Sumit K Rastogi
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Keunsook K Lee
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Pranjali Agarwal
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhat Manzoor
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Joachim F Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sneh L Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
38
|
Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi (Basel) 2020; 6:E16. [PMID: 31963458 PMCID: PMC7151168 DOI: 10.3390/jof6010016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Collapse
Affiliation(s)
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
39
|
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog 2019; 15:e1007823. [PMID: 31809527 PMCID: PMC6919631 DOI: 10.1371/journal.ppat.1007823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans. A critical aspect of eukaryotic cell fitness is the ability to sense and adapt to variations in oxygen level in their local environment. Hypoxia leads to a substantial remodeling of cell metabolism and energy homeostasis, and thus, organisms must develop an effective regulatory mechanism to cope with oxygen depletion. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogens. This yeast colonizes diverse niches inside the human host with contrasting carbon sources and oxygen concentrations. While hypoxia is the predominant condition that C. albicans encounters inside most of the niches, the impact of this condition on metabolic flexibility, a major determinant of fungal virulence, was completely unexplored. Here, we uncovered that the chromatin remodelling complex SWI/SNF is a master regulator of the circuit that links oxygen status to a broad spectrum of carbon utilization routes. Snf5 was essential for the maintenance of C. albicans as a commensal and also for the expression of its virulence. The oxygen-sensitive regulators identified in this work provide a framework to comprehensively understand the virulence of human fungal pathogens and represent a therapeutic value to fight fungal infections.
Collapse
Affiliation(s)
- Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Laura Markey
- Program in Molecular Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Faiza Tebbji
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and Engineering, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
40
|
Zeitz MA, Tanveer Z, Openshaw AT, Schmidt M. Genetic Regulators and Physiological Significance of Glycogen Storage in Candida albicans. J Fungi (Basel) 2019; 5:jof5040102. [PMID: 31671578 PMCID: PMC6958490 DOI: 10.3390/jof5040102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 01/31/2023] Open
Abstract
The dimorphic human fungal pathogen C. albicans has broad metabolic flexibility that allows it to adapt to the nutrient conditions in different host habitats. C. albicans builds large carbohydrate stores (glycogen) at the end of exponential growth and begins consumption of stored carbohydrates when nutrients become limiting. The expression of genes required for the successful transition between host environments, including the factors controlling glycogen content, is controlled by protein kinase A signaling through the transcription factor Efg1. In addition to the inability to transition to hyphal growth, C. albicans efg1 mutants have low glycogen content and reduced long-term survival, suggesting that carbohydrate storage is required for viability during prolonged culture. To test this assumption, we constructed a glycogen-deficient C. albicans mutant and assessed its viability during extended culture. Pathways and additional genetic factors controlling C. albicans glycogen synthesis were identified through the screening of mutant libraries for strains with low glycogen content. Finally, a part of the Efg1-regulon was screened for mutants with a shortened long-term survival phenotype. We found that glycogen deficiency does not affect long-term survival, growth, metabolic flexibility or morphology of C. albicans. We conclude that glycogen is not an important contributor to C. albicans fitness.
Collapse
Affiliation(s)
- Marcus A Zeitz
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | - Zainab Tanveer
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | - Anatole T Openshaw
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | - Martin Schmidt
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| |
Collapse
|
41
|
|
42
|
Laurian R, Dementhon K, Doumèche B, Soulard A, Noel T, Lemaire M, Cotton P. Hexokinase and Glucokinases Are Essential for Fitness and Virulence in the Pathogenic Yeast Candida albicans. Front Microbiol 2019; 10:327. [PMID: 30858840 PMCID: PMC6401654 DOI: 10.3389/fmicb.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/08/2019] [Indexed: 01/28/2023] Open
Abstract
The pathogenic yeast Candida albicans is both a powerful commensal and a pathogen of humans that can infect wide range of organs and body sites. Metabolic flexibility promotes infection and commensal colonization by this opportunistic pathogen. Yeast cell survival depends upon assimilation of fermentable and non-fermentable locally available carbon sources. Physiologically relevant sugars like glucose and fructose are present at low levels in host niches. However, because glucose is the preferred substrate for energy and biosynthesis of structural components, its efficient detection and metabolism are fundamental for the metabolic adaptation of the pathogen. We explored and characterized the C. albicans hexose kinase system composed of one hexokinase (CaHxk2) and two glucokinases (CaGlk1 and CaGlk4). Using a set of mutant strains, we found that hexose phosphorylation is mostly performed by CaHxk2, which sustains growth on hexoses. Our data on hexokinase and glucokinase expression point out an absence of cross regulation mechanisms at the transcription level and different regulatory pathways. In the presence of glucose, CaHxk2 migrates in the nucleus and contributes to the glucose repression signaling pathway. In addition, CaHxk2 participates in oxidative, osmotic and cell wall stress responses, while glucokinases are overexpressed under hypoxia. Hexose phosphorylation is a key step necessary for filamentation that is affected in the hexokinase mutant. Virulence of this mutant is clearly impacted in the Galleria mellonella and macrophage models. Filamentation, glucose phosphorylation and stress response defects of the hexokinase mutant prevent host killing by C. albicans. By contributing to metabolic flexibility, stress response and morphogenesis, hexose kinase enzymes play an essential role in the virulence of C. albicans.
Collapse
Affiliation(s)
- Romain Laurian
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Karine Dementhon
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Bastien Doumèche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon – Université Lyon 1, Lyon, France
| | - Alexandre Soulard
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Thierry Noel
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Marc Lemaire
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Pascale Cotton
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| |
Collapse
|
43
|
Childers DS, Avelar GM, Bain JM, Larcombe DE, Pradhan A, Budge S, Heaney H, Brown AJP. Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance. Curr Top Microbiol Immunol 2019; 425:297-330. [PMID: 31781866 DOI: 10.1007/82_2019_182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.
Collapse
Affiliation(s)
- Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Susan Budge
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Helen Heaney
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
44
|
Xu W, Peng J, Li D, Tsui CKM, Long Z, Wang Q, Mei H, Liu W. Transcriptional profile of the human skin pathogenic fungus Mucor irregularis in response to low oxygen. Med Mycol 2018; 56:631-644. [PMID: 29420826 DOI: 10.1093/mmy/myx081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Mucormycosis is one of the most invasive mycosis and has caused global concern in public health. Cutaneous mucormycosis caused by Mucor irregularis (formerly Rhizomucor variabilis) is an emerging disease in China. To survive in the human body, M. irregularis must overcome the hypoxic (low oxygen) host microenvironment. However, the exact molecular mechanism of its pathogenicity and adaptation to low oxygen stress environment is relatively unexplored. In this study, we used Illumina HiSeq technology (RNA-Seq) to determine and compare the transcriptome profile of M. irregularis CBS103.93 under normal growth condition and hypoxic stress. Our analyses demonstrated a series of genes involved in TCA, glyoxylate cycle, pentose phosphate pathway, and GABA shunt were down-regulated under hypoxic condition, while certain genes in the lipid/fatty acid metabolism and endocytosis were up-regulated, indicating that lipid metabolism was more active under hypoxia. Comparing the data with other important human pathogenic fungi such as Aspergillus spp., we found that the gene expression pattern and metabolism in responses to hypoxia in M. irregularis were unique and different. We proposed that these metabolic changes can represent a species-specific hypoxic adaptation in M. irregularis, and we hypothesized that M. irregularis could use the intra-lipid pool and lipid secreted in the infection region, as an extracellular nutrient source to support its hypoxic growth. Characterizing the significant differential gene expression in this species could be beneficial to uncover their role in hypoxia adaptation and fungalpathogenesis and further facilitate the development of novel targets in disease diagnosis and treatment against mucormycosis.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Jingwen Peng
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Clement K M Tsui
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Zhimin Long
- Demo Lab, Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, IBP, Shanghai, 200335, People's Republic of China
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Huan Mei
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. mBio 2018; 9:mBio.01318-18. [PMID: 30401773 PMCID: PMC6222127 DOI: 10.1128/mbio.01318-18] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Organisms must adapt to changes in oxygen tension if they are to exploit the energetic benefits of reducing oxygen while minimizing the potentially damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms display robust adaptation to hypoxia (low oxygen levels). This is particularly important for fungal pathogens that colonize hypoxic niches in the host. We show that adaptation to hypoxia in the major fungal pathogen of humans Candida albicans includes changes in cell wall structure and reduced exposure, at the cell surface, of β-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to reduced phagocytosis by murine bone marrow-derived macrophages and decreased production of IL-10, RANTES, and TNF-α by peripheral blood mononuclear cells, suggesting that hypoxia-induced β-glucan masking has a significant effect upon C. albicans-host interactions. We show that hypoxia-induced β-glucan masking is dependent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The decrease in β-glucan exposure is blocked by mutations that affect mitochondrial functionality (goa1Δ and upc2Δ) or that decrease production of hydrogen peroxide in the inner membrane space (sod1Δ). Furthermore, β-glucan masking is enhanced by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The β-glucan masking defects displayed by goa1Δ and upc2Δ cells are suppressed by exogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or PKA (tpk1Δ tpk2Δ) block the masking phenotype. Our data suggest that C. albicans responds to hypoxic niches by inducing β-glucan masking via a mitochondrial cAMP-PKA signaling pathway, thereby modulating local immune responses and promoting fungal colonization.IMPORTANCE Animal, plant, and fungal cells occupy environments that impose changes in oxygen tension. Consequently, many species have evolved mechanisms that permit robust adaptation to these changes. The fungal pathogen Candida albicans can colonize hypoxic (low oxygen) niches in its human host, such as the lower gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must also evade local immune defenses. We reveal, for the first time, a defined link between hypoxic adaptation and immune evasion in C. albicans As this pathogen adapts to hypoxia, it undergoes changes in cell wall structure that include masking of β-glucan at its cell surface, and it becomes better able to evade phagocytosis by innate immune cells. We also define the signaling mechanisms that mediate hypoxia-induced β-glucan masking, showing that they are dependent on mitochondrial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to trigger immune evasion in this fungal pathogen.
Collapse
|
46
|
Abstract
Microbial colonizers of humans have evolved to adapt to environmental cues and to sense nutrient availability. Oxygen is a constantly changing environmental parameter in different host tissues and in different types of infection. We describe how Candida albicans, an opportunistic fungal pathogen, can modulate the host response under hypoxia and anoxia. We found that high infiltration of polymorphonuclear leukocytes (PMNs) to the site of infection contributes to a low oxygen milieu in a murine subdermal abscess. A persistent hypoxic environment did not affect viability or metabolism of PMNs. Under oxygen deprivation, however, infection with C. albicans disturbed specific PMN responses. PMNs were not able to efficiently phagocytose, produce ROS, or release extracellular DNA traps. Failure to launch an adequate response was caused by C. albicans cell wall masking of β-glucan upon exposure to low oxygen levels which hindered PAMP sensing by Dectin-1 on the surfaces of PMNs. This in turn contributed to immune evasion and enhanced fungal survival. The cell wall masking effect is prolonged by the accumulation of lactate produced by PMNs under low oxygen conditions. Finally, adaptation to oxygen deprivation increased virulence of C. albicans which we demonstrated using a Caenorhabditis elegans infection model.IMPORTANCE Successful human colonizers have evolved mechanisms to bypass immune surveillance. Infiltration of PMNs to the site of infection led to the generation of a low oxygen niche. Exposure to low oxygen levels induced fungal cell wall masking, which in turn hindered pathogen sensing and antifungal responses by PMNs. The cell wall masking effect was prolonged by increasing lactate amounts produced by neutrophil metabolism under oxygen deprivation. In an invertebrate infection model, C. albicans was able to kill infected C. elegans nematodes within 2 days under low oxygen conditions, whereas the majority of uninfected controls and infected worms under normoxic conditions survived. These results suggest that C. albicans benefited from low oxygen niches to increase virulence. The interplay of C. albicans with innate immune cells under these conditions contributed to the overall outcome of infection. Adaption to low oxygen levels was in addition beneficial for C. albicans by reducing susceptibility to selected antifungal drugs. Hence, immunomodulation of host cells under low oxygen conditions could provide a valuable approach to improve current antifungal therapies.
Collapse
|
47
|
Bruno DDCF, Bartelli TF, Rodrigues CR, Briones MR. Prolonged growth of Candida albicans reveals co-isolated bacteria from single yeast colonies. INFECTION GENETICS AND EVOLUTION 2018; 65:117-126. [DOI: 10.1016/j.meegid.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/09/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023]
|
48
|
The 5' Untranslated Region of the EFG1 Transcript Promotes Its Translation To Regulate Hyphal Morphogenesis in Candida albicans. mSphere 2018; 3:3/4/e00280-18. [PMID: 29976646 PMCID: PMC6034079 DOI: 10.1128/msphere.00280-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extensive 5' untranslated regions (UTR) are a hallmark of transcripts determining hyphal morphogenesis in Candida albicans The major transcripts of the EFG1 gene, which are responsible for cellular morphogenesis and metabolism, contain a 5' UTR of up to 1,170 nucleotides (nt). Deletion analyses of the 5' UTR revealed a 218-nt sequence that is required for production of the Efg1 protein and its functions in filamentation, without lowering the level and integrity of the EFG1 transcript. Polysomal analyses revealed that the 218-nt 5' UTR sequence is required for efficient translation of the Efg1 protein. Replacement of the EFG1 open reading frame (ORF) by the heterologous reporter gene CaCBGluc confirmed the positive regulatory importance of the identified 5' UTR sequence. In contrast to other reported transcripts containing extensive 5' UTR sequences, these results indicate the positive translational function of the 5' UTR sequence in the EFG1 transcript, which is observed in the context of the native EFG1 promoter. It is proposed that the 5' UTR recruits regulatory factors, possibly during emergence of the native transcript, which aid in translation of the EFG1 transcript.IMPORTANCE Many of the virulence traits that make Candida albicans an important human fungal pathogen are regulated on a transcriptional level. Here, we report an important regulatory contribution of translation, which is exerted by the extensive 5' untranslated regulatory sequence (5' UTR) of the transcript for the protein Efg1, which determines growth, metabolism, and filamentation in the fungus. The presence of the 5' UTR is required for efficient translation of Efg1, to promote filamentation. Because transcripts for many relevant regulators contain extensive 5' UTR sequences, it appears that the virulence of C. albicans depends on the combination of transcriptional and translational regulatory mechanisms.
Collapse
|
49
|
Bartelli TF, Bruno DCF, Briones MRS. Evidence for Mitochondrial Genome Methylation in the Yeast Candida albicans: A Potential Novel Epigenetic Mechanism Affecting Adaptation and Pathogenicity? Front Genet 2018; 9:166. [PMID: 29896215 PMCID: PMC5986885 DOI: 10.3389/fgene.2018.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
The commensal yeast Candida albicans is an opportunistic pathogen. In order to successfully colonize or infect the human body, the fungus must adapt to the host’s environmental conditions, such as low oxygen tension (hypoxia), temperature (37°C), and the different carbon sources available. Previous studies demonstrated the adaptive importance of C. albicans genetic variability for its pathogenicity, although the contributions of epigenetic and the influence of environmental factors are not fully understood. Mitochondria play important roles in fungal energetic metabolism, regulation of nuclear epigenetic mechanisms and pathogenicity. However, the specific impact of inter-strain mitochondrial genome variability and mitochondrial epigenetics in pathogenicity is unclear. Here, we draw attention to this relevant organelle and its potential role in C. albicans pathogenicity and provide preliminary evidence, for the first time, for methylation of the yeast mitochondrial genome. Our results indicate that environmental conditions, such as continuous exposure for 12 weeks to hypoxia and 37°C, decrease the mitochondrial genome methylation in strains SC5314 and L757. However, the methylation decrease is quantitatively different in specific genome positions when strains SC5314 and L757 are compared. We hypothesize that this phenomenon can be promising for future research to understand how physical factors of the host affect the C. albicans mitochondrial genome and its possible impact on adaptation and pathogenicity.
Collapse
Affiliation(s)
- Thais F Bartelli
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Genomics, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Danielle C F Bruno
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo R S Briones
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Department of Health Informatics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Basso V, d'Enfert C, Znaidi S, Bachellier-Bassi S. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Curr Top Microbiol Immunol 2018; 422:61-99. [PMID: 30368597 DOI: 10.1007/82_2018_144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 ℃, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.
Collapse
Affiliation(s)
- Virginia Basso
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 Rue Du Docteur Roux, Paris, France.,Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France. .,Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.
| |
Collapse
|