1
|
Guo XY, Xie BB, Fang Q, Fang WH, Cui G. Unidirectional Photoisomerization of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein rsKiiro: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2025; 16:1485-1493. [PMID: 39898455 DOI: 10.1021/acs.jpclett.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In this study, a quantum mechanics/molecular mechanics (QM/MM) framework combined with the CASPT2//CASSCF approach was used to investigate the excited-state decay and isomerization of the rsKiiro green fluorescent protein (GFP) from its neutral "OFF" trans state. Upon irradiation at 400 nm, the trans conformation is initially excited to the bright S1 state. A rapid decay of the excited state then occurs and ultimately leads the molecule to the ground state. Notably, the clockwise and counterclockwise rotations of the C8C9C11N12 [or C5C8C9C11] dihedral angle are asymmetric or unidirectional, with only one direction of rotation effectively driving the excited-state relaxation. This process is shaped by hydrogen-bonding networks and steric constraints within the protein. In addition, trans-cis isomerization may not occur directly in the S1 state because the energy of the S1 cis minimum is relatively higher than that of the S1 trans minimum. Instead, the S1 cis minimum may be generated through the reabsorption of light near 400 nm, as the vertical excitation energy of the S0 cis minimum is close to that of the S0 trans minimum. This work provides important insights into the early photodynamics of rsKiiro GFP and aids in the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Xin-Yi Guo
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231 ,P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
2
|
McCulley CH, Walker AR. Dimer Interface Destabilization of Photodissociative Dronpa Driven by Asymmetric Monomer Dynamics. J Phys Chem B 2023; 127:9248-9257. [PMID: 37871275 DOI: 10.1021/acs.jpcb.3c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Photoswitchable Dronpa (psDronpa) is a unique member of the fluorescent protein family that can undergo reversible photoinduced switching between fluorescent and dark states and has recently been engineered into a dimer (pdDronpaV) that can dissociate and reassociate as part of its photoswitchable pathway. However, the specific details of the protein structure-function relationship of the dimer interface along with how the dimer proteins interact with each other upon chromophore isomerization are not yet clear. Classical molecular dynamics simulations were performed on psDronpa as monomers and dimers as well as the pdDronpaV dimer and with cis/trans chromophore structures. Analysis of the cis and trans isomers of the chromophore illustrated key differences between their interactions with residues in the protein in both the monomer and dimer forms of psDronpa. Examination of the psDronpa dimer showed nonidentical chromophore interactions between the domains, indicating domain directional favoring. Examination of the trans form of pdDronpaV illuminated the importance of hydrogen bonding between the monomeric domains in maintaining their association, as well as illustrating the motion of dissociation of the domains. This discovery offers important information for possible future mutations of pdDronpaV that might be made to accelerate dissociation.
Collapse
Affiliation(s)
- Christina H McCulley
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Alice R Walker
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
4
|
Ke HW, Sung K. 7-membered-ring effect on fluorescence quantum yield: does metal-complexation-induced twisting-inhibition of an amino GFP chromophore derivative enhance fluorescence? Phys Chem Chem Phys 2023; 25:14627-14634. [PMID: 37194347 DOI: 10.1039/d3cp00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To investigate two aspects, namely, (1) the 7-membered-ring effect on fluorescence quantum yield and (2) whether metal-complexation-induced twisting-inhibition of an amino green fluorescent protein (GFP) chromophore derivative is bound to enhance fluorescence, a novel GFP-chromophore-based triamine ligand, (Z)-o-PABDI, is designed and synthesized. Before complexation with metal ions, the S1 excited state of (Z)-o-PABDI undergoes τ-torsion relaxation (Z/E photoisomerization) with a Z/E photoisomerization quantum yield of 0.28, forming both ground-state (Z)- and (E)-o-PABDI isomers. Since (E)-o-PABDI is less stable than (Z)-o-PABDI, it is thermo-isomerized back to (Z)-o-PABDI at room temperature in acetonitrile with a first-order rate constant of (1.366 ± 0.082) × 10-6 s-1. After complexation with a Zn2+ ion, (Z)-o-PABDI as a tridentate ligand forms a 1 : 1 complex with the Zn2+ ion in acetonitrile and in the solid state, resulting in complete inhibition of the φ-torsion and τ-torsion relaxations, which does not enhance fluorescence but causes fluorescence quenching. (Z)-o-PABDI also forms complexes with other first-row transition metal ions Mn2+, Fe3+, Co2+, Ni2+ and Cu2+, generating almost the same fluorescence quenching effect. By comparison with the 2/Zn2+ complex, in which a 6-membered ring of Zn2+-complexation enhances fluorescence significantly (a positive 6-membered-ring effect on fluorescence quantum yield), we find that the flexible 7-membered rings of the (Z)-o-PABDI/Mn+ complexes trigger their S1 excited states to relax through internal conversion at a rate much faster than fluorescence (a negative 7-membered-ring effect on fluorescence quantum yield), leading to fluorescence quenching regardless of the type of transition metal that complexes with (Z)-o-PABDI.
Collapse
Affiliation(s)
- Hao-Wei Ke
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Zhu YH, Liu XX, Fang Q, Liu XY, Fang WH, Cui G. Multiple Photoisomerization Pathways of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2023; 14:2588-2598. [PMID: 36881005 DOI: 10.1021/acs.jpclett.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we have employed a combined CASPT2//CASSCF approach within the quantum mechanics/molecular mechanics (QM/MM) framework to explore the early time photoisomerization of rsEGFP2 starting from its two OFF trans states, i.e., Trans1 and Trans2. The results show similar vertical excitation energies to the S1 state in their Franck-Condon regions. Considering the clockwise and counterclockwise rotations of the C11-C9 bond, four pairs of the S1 excited-state minima and low-lying S1/S0 conical intersections were optimized, based on which we determined four S1 photoisomerization paths that are essentially barrierless to the relevant S1/S0 conical intersections leading to efficient excited-state deactivation to the S0 state. Most importantly, our work first identified multiple photoisomerization and excited-state decay paths, which must be seriously considered in the future. This work not only sheds significant light on the primary trans-cis photoisomerization of rsEGFP2 but also aids in the understanding of the microscopic mechanism of GFP-like RSFPs and the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Xin Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
7
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
8
|
Baxter J, Hutchison CD, Maghlaoui K, Cordon-Preciado V, Morgan RML, Aller P, Butryn A, Axford D, Horrell S, Owen RL, Storm SLS, Devenish NE, van Thor JJ. Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy. J Phys Chem B 2022; 126:9288-9296. [PMID: 36326150 PMCID: PMC9677427 DOI: 10.1021/acs.jpcb.2c06780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The chromophores of reversibly switchable fluorescent proteins (rsFPs) undergo photoisomerization of both the trans and cis forms. Concurrent with cis/trans photoisomerisation, rsFPs typically become protonated on the phenolic oxygen resulting in a blue shift of the absorption. A synthetic rsFP referred to as rsEospa, derived from EosFP family, displays the same spectroscopic behavior as the GFP-like rsFP Dronpa at pH 8.4 and involves the photoconversion between nonfluorescent neutral and fluorescent anionic chromophore states. Millisecond time-resolved synchrotron serial crystallography of rsEospa at pH 8.4 shows that photoisomerization is accompanied by rearrangements of the same three residues as seen in Dronpa. However, at pH 5.5 we observe that the OFF state is identified as the cationic chromophore with additional protonation of the imidazolinone nitrogen which is concurrent with a newly formed hydrogen bond with the Glu212 carboxylate side chain. FTIR spectroscopy resolves the characteristic up-shifted carbonyl stretching frequency at 1713 cm-1 for the cationic species. Electronic spectroscopy furthermore distinguishes the cationic absorption band at 397 nm from the neutral species at pH 8.4 seen at 387 nm. The observation of photoisomerization of the cationic chromophore state demonstrates the conical intersection for the electronic configuration, where previously fluorescence was proposed to be the main decay route for states containing imidazolinone nitrogen protonation. We present the full time-resolved room-temperature X-ray crystallographic, FTIR, and UV/vis assignment and photoconversion modeling of rsEospa.
Collapse
Affiliation(s)
- James
M. Baxter
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - Karim Maghlaoui
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - R. Marc L. Morgan
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Pierre Aller
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, DidcotOX11 0FAUnited Kingdom,Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Agata Butryn
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, DidcotOX11 0FAUnited Kingdom,Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Danny Axford
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Sam Horrell
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Robin L. Owen
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Selina L. S. Storm
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Nicholas E. Devenish
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom,
| |
Collapse
|
9
|
Tang L, Fang C. Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. Int J Mol Sci 2022; 23:6459. [PMID: 35742900 PMCID: PMC9223536 DOI: 10.3390/ijms23126459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| |
Collapse
|
10
|
Liao JW, Sung R, Sung K. Against the NEER principle: the third type of photochromism for GFP chromophore derivatives. Phys Chem Chem Phys 2021; 24:295-304. [PMID: 34889318 DOI: 10.1039/d1cp03581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochromism is the heart of photochromic fluorescent proteins. Excited-state proton transfer (ESPT) is the major cause of photochromism for the green fluorescent protein (GFP) and Z-E photoisomerization through τ-torsion is the major cause of photochromism for Dronpa (a GFP mutant). In this article, s-E-1 opens a third type of photochromism for GFP chromophore derivatives, which involves light-driven φ-torsion with no τ-torsion, followed by excited-state intramolecular proton transfer (ESIPT), and is gated by environmental polarity. Since s-E-1 does not follow Z-E photoisomerization through τ-torsion but undergoes light-driven φ-torsion, which involves equilibration of the excited-state rotamers, it is clearly against the NEER (Non-Equilibration of Excited-state Rotamers) principle.
Collapse
Affiliation(s)
- Jun-Wei Liao
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Robert Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Li MJ, Lin YH, Sung R, Sung K. E- Z Isomerization Mechanism of the Green Fluorescent Protein Chromophore: Remote Regulation by Proton Dissociation of the Phenol Group. J Phys Chem A 2021; 125:3614-3621. [PMID: 33885302 DOI: 10.1021/acs.jpca.1c01371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dronpa, a GFP (green fluorescent protein)-like fluorescent protein, allows its fluorescent and nonfluorescent states to be switched to each other reversibly by light or heat through E-Z isomerization of the GFP chromophore. In this article, a GFP chromophore (p-HBDI) in water is used as a model to explore this E-Z isomerization mechanism. Based on the experimental solvent isotope effect (kH2O/kD2O = 2.30), the E-Z isomerization of p-HBDI in water is suggested to go through the remote-proton-dissociation-regulated direct mechanism with a proton transfer in the rate-determining step. The fractionation factor (ϕ) of the water-associated phenol proton of p-HBDI in the transition state is found to be 0.43, which is exactly in the range of 0.1-0.6 for the fractionation factor (ϕ) of the transferring proton in the transition state of R2O···H···O+H2 in water. This means that the phenol proton of E-p-HBDI in the transition state is on the way to the associated water oxygen during the E-Z isomerization. The proton dissociation from the phenol group of p-HBDI remotely regulates its E-Z isomerization. Less proton dissociation from the phenol group (pKa = 8.0) at pH = 1-4 results in a modest reduction in the E-Z isomerization rate of p-HBDI, while complete proton dissociation from the phenol group at pH = 11-12 also reduces its E-Z isomerization rate by one order of magnitude because of the larger charge separation in the transition state of the p-HBDI anion. All of these results are consistent with the remote-proton-dissociation-regulated direct mechanism but against the water-assisted addition/elimination mechanism.
Collapse
Affiliation(s)
- Ming-Ju Li
- Department of Chemistry, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yen-Hsun Lin
- Department of Chemistry, National Cheng Kung University, Tainan 701401, Taiwan
| | - Robert Sung
- Faculty of Family Medicine, Northern Ontario School of Medicine, Sudbury, Ontario P3E 2C6, Canada
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
12
|
Photodimerization systems for regulating protein-protein interactions with light. Curr Opin Struct Biol 2019; 57:1-8. [PMID: 30818200 DOI: 10.1016/j.sbi.2019.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Abstract
Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
Collapse
|
13
|
Wang S, Shuai Y, Sun C, Xue B, Hou Y, Su X, Sun Y. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family. ACS Sens 2018; 3:2269-2277. [PMID: 30346738 DOI: 10.1021/acssensors.8b00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a special kind of delicate light-controllable genetically encoded optical device, reversibly photoswitchable fluorescent proteins (RSFPs) have been widely applied in many fields, especially various kinds of advanced nanoscopy approaches in recent years. However, there are still necessities for exploring novel RSFPs with specific biochemical or photophysical properties not only for bioimaging or biosensing applications but also for fluorescent protein (FP) mechanisms study and further knowledge-based molecular sensors or optical actuators' rational design and evolution. Besides previously reported GMars-Q and GMars-T variants, herein, we reported the development and applications of other RSFPs from GMars family, especially some featured RSFPs with desired optical properties. In the current work, in vitro FP purification, spectra measurements, and live-cell RESOLFT nanoscopy approaches were applied to characterize the basic properties and test the imaging performances of the selected RSFPs. As demonstrated, GMars variants such as GMars-A, GMars-G, or remarkable photofatigue-resistant GMars-L were found with beneficial properties to be capable of parallelized RESOLFT nanoscopy in living cells, while other featured GMars variants such as dark GMars-P may be a good candidate for further biosensor or actuator design and applications.
Collapse
Affiliation(s)
- Sheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yao Shuai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Chaoying Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Boxin Xue
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yingping Hou
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Xiaodong Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Yujie Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Hutchison CDM, Cordon-Preciado V, Morgan RML, Nakane T, Ferreira J, Dorlhiac G, Sanchez-Gonzalez A, Johnson AS, Fitzpatrick A, Fare C, Marangos JP, Yoon CH, Hunter MS, DePonte DP, Boutet S, Owada S, Tanaka R, Tono K, Iwata S, van Thor JJ. X-ray Free Electron Laser Determination of Crystal Structures of Dark and Light States of a Reversibly Photoswitching Fluorescent Protein at Room Temperature. Int J Mol Sci 2017; 18:E1918. [PMID: 28880248 PMCID: PMC5618567 DOI: 10.3390/ijms18091918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/03/2023] Open
Abstract
The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.
Collapse
Affiliation(s)
- Christopher D. M. Hutchison
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Violeta Cordon-Preciado
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Rhodri M. L. Morgan
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
| | - Josie Ferreira
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Gabriel Dorlhiac
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Alvaro Sanchez-Gonzalez
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Allan S. Johnson
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Ann Fitzpatrick
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK;
| | - Clyde Fare
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Jon P. Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Chun Hong Yoon
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Mark S. Hunter
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Daniel P. DePonte
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Sébastien Boutet
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| |
Collapse
|
15
|
Higashino A, Mizuno M, Mizutani Y. Chromophore Structure of Photochromic Fluorescent Protein Dronpa: Acid-Base Equilibrium of Two Cis Configurations. J Phys Chem B 2016; 120:3353-9. [PMID: 26991398 DOI: 10.1021/acs.jpcb.6b01752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dronpa is a novel photochromic fluorescent protein that exhibits fast response to light. The present article is the first report of the resonance and preresonance Raman spectra of Dronpa. We used the intensity and frequency of Raman bands to determine the structure of the Dronpa chromophore in two thermally stable photochromic states. The acid-base equilibrium in one photochromic state was observed by spectroscopic pH titration. The Raman spectra revealed that the chromophore in this state shows a protonation/deprotonation transition with a pKa of 5.2 ± 0.3 and maintains the cis configuration. The observed resonance Raman bands showed that the other photochromic state of the chromophore is in a trans configuration. The results demonstrate that Raman bands selectively enhanced for the chromophore yield valuable information on the molecular structure of the chromophore in photochromic fluorescent proteins after careful elimination of the fluorescence background.
Collapse
Affiliation(s)
- Asuka Higashino
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
16
|
Colletier JP, Sliwa M, Gallat FX, Sugahara M, Guillon V, Schirò G, Coquelle N, Woodhouse J, Roux L, Gotthard G, Royant A, Uriarte LM, Ruckebusch C, Joti Y, Byrdin M, Mizohata E, Nango E, Tanaka T, Tono K, Yabashi M, Adam V, Cammarata M, Schlichting I, Bourgeois D, Weik M. Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP. J Phys Chem Lett 2016; 7:882-887. [PMID: 26866390 DOI: 10.1021/acs.jpclett.5b02789] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.
Collapse
Affiliation(s)
| | - Michel Sliwa
- Université de Lille , CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | - François-Xavier Gallat
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Michihiro Sugahara
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Virginia Guillon
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Giorgio Schirò
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Nicolas Coquelle
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Joyce Woodhouse
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Laure Roux
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Guillaume Gotthard
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
- The European Synchrotron Radiation Facility (ESRF) , 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
| | - Antoine Royant
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
- The European Synchrotron Radiation Facility (ESRF) , 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
| | - Lucas Martinez Uriarte
- Université de Lille , CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | - Cyril Ruckebusch
- Université de Lille , CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Martin Byrdin
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Osaka 565-0871, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Virgile Adam
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1 , Rennes, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung , Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Dominique Bourgeois
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale , Université de Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| |
Collapse
|
17
|
El Khatib M, Martins A, Bourgeois D, Colletier JP, Adam V. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Sci Rep 2016; 6:18459. [PMID: 26732634 PMCID: PMC4702087 DOI: 10.1038/srep18459] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/11/2015] [Indexed: 11/09/2022] Open
Abstract
Phototransformable fluorescent proteins are central to several nanoscopy approaches. As yet however, there is no available variant allowing super-resolution imaging in cell compartments that maintain oxidative conditions. Here, we report the rational design of two reversibly switchable fluorescent proteins able to fold and photoswitch in the bacterial periplasm, rsFolder and rsFolder2. rsFolder was designed by hybridisation of Superfolder-GFP with rsEGFP2, and inherited the fast folding properties of the former together with the rapid switching of the latter, but at the cost of a reduced switching contrast. Structural characterisation of the switching mechanisms of rsFolder and rsEGFP2 revealed different scenarios for chromophore cis-trans isomerisation and allowed designing rsFolder2, a variant of rsFolder that exhibits improved switching contrast and is amenable to RESOLFT nanoscopy. The rsFolders can be efficiently expressed in the E. coli periplasm, opening the door to the nanoscale investigation of proteins localised in hitherto non-observable cellular compartments.
Collapse
Affiliation(s)
- Mariam El Khatib
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Alexandre Martins
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Dominique Bourgeois
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Virgile Adam
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
18
|
Smyrnova D, Moeyaert B, Michielssens S, Hofkens J, Dedecker P, Ceulemans A. Molecular Dynamic Indicators of the Photoswitching Properties of Green Fluorescent Proteins. J Phys Chem B 2015; 119:12007-16. [DOI: 10.1021/acs.jpcb.5b04826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daryna Smyrnova
- Quantum
Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Benjamien Moeyaert
- Molecular
Imaging and Photonics Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Servaas Michielssens
- Quantum
Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Molecular
Imaging and Photonics Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Molecular
Imaging and Photonics Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Arnout Ceulemans
- Quantum
Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
19
|
Close DW, Don Paul C, Langan PS, Wilce MC, Traore DA, Halfmann R, Rocha RC, Waldo GS, Payne RJ, Rucker JB, Prescott M, Bradbury AR. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Proteins 2015; 83:1225-37. [PMID: 25287913 PMCID: PMC4592778 DOI: 10.1002/prot.24699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 01/27/2023]
Abstract
In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.
Collapse
Affiliation(s)
- Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Craig Don Paul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Patricia S. Langan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Matthew C.J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Daouda A.K. Traore
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Randal Halfmann
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reginaldo C. Rocha
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Geoffery S. Waldo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | |
Collapse
|
20
|
Don Paul C, Traore DAK, Olsen S, Devenish RJ, Close DW, Bell TDM, Bradbury A, Wilce MCJ, Prescott M. X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS One 2015; 10:e0123338. [PMID: 25923520 PMCID: PMC4414407 DOI: 10.1371/journal.pone.0123338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
Phanta is a reversibly photoswitching chromoprotein (ΦF, 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (ΦF, 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low ΦF, indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 Å), eCGP123T69V (2.0 Å) and eCGP123H193Q (2.2 Å) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Neuro- and Sensory Physiology, University Medicine, Göttingen, 37073, Göttingen, Germany
| | - Daouda A. K. Traore
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Seth Olsen
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| |
Collapse
|
21
|
Kaucikas M, Fitzpatrick A, Bryan E, Struve A, Henning R, Kosheleva I, Srajer V, Groenhof G, Van Thor JJ. Room temperature crystal structure of the fast switching M159T mutant of the fluorescent protein dronpa. Proteins 2015; 83:397-402. [PMID: 25524427 DOI: 10.1002/prot.24742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023]
Abstract
The fluorescent protein Dronpa undergoes reversible photoswitching reactions between the bright "on" and dark "off" states via photoisomerization and proton transfer reactions. We report the room temperature crystal structure of the fast switching Met159Thr mutant of Dronpa at 2.0-Å resolution in the bright on state. Structural differences with the wild type include shifted backbone positions of strand β8 containing Thr159 as well as an altered A-C dimer interface involving strands β7, β8, β10, and β11. The Met159Thr mutation increases the cavity volume for the p-hydroxybenzylidene-imidazolinone chromophore as a result of both the side chain difference and the backbone positional differences.
Collapse
Affiliation(s)
- Marius Kaucikas
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaucikas M, Tros M, van Thor JJ. Photoisomerization and proton transfer in the forward and reverse photoswitching of the fast-switching M159T mutant of the Dronpa fluorescent protein. J Phys Chem B 2014; 119:2350-62. [PMID: 25369171 DOI: 10.1021/jp506640q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fast-switching M159T mutant of the reversibly photoswitchable fluorescent protein Dronpa has an enhanced yield for the on-to-off reaction. The forward and reverse photoreactions proceed via cis-trans and trans-cis photoisomerization, yet protonation and deprotonation of the hydroxyphenyl oxygen of the chromophore is responsible for the majority of the resulting spectroscopic contrast. Ultrafast visible-pump, infrared-probe spectroscopy was used to detect the picosecond, nanosecond, as well as metastable millisecond intermediates. Additionally, static FTIR difference measurements of the Dronpa-M159T mutant correspond very closely to those of the wild type Dronpa, identifying the p-hydroxybenzylidene-imidazolinone chromophore in the cis anion and trans neutral forms in the bright "on" and dark "off" states, respectively. Green excitation of the on state is followed by dominant radiative decay with characteristic time constants of 1.9 ps, 185 ps, and 1.1 ns, and additionally reveals spectral changes belonging to the species decaying with a 1.1 ns time constant, associated with both protein and chromophore modes. A 1 ms measurement of the on state identifies bleach features that correspond to those seen in the static off-minus-on Fourier transform infrared (FTIR) difference spectrum, indicating that thermal protonation of the hydroxyphenyl oxygen proceeds within this time window. Blue excitation of the off state directly resolves the formation of the primary photoproduct with 0.6 and 14 ps time constants, which is stable on the nanosecond time scale. Assignment of the primary photoproduct to the cis neutral chromophore in the electronic ground state is supported by the frequency positions expected relative to those for the nonplanar distorted geometry for the off state. A 1 ms measurement of the off state corresponds closely with the on-minus-off FTIR difference spectrum, indicating thermal deprotonation and rearrangement of the Arg66 side chain to be complete.
Collapse
Affiliation(s)
- Marius Kaucikas
- Imperial College London , South Kensington Campus, SW7 2AZ London, United Kingdom
| | | | | |
Collapse
|
23
|
Yadav D, Lacombat F, Dozova N, Rappaport F, Plaza P, Espagne A. Real-time monitoring of chromophore isomerization and deprotonation during the photoactivation of the fluorescent protein Dronpa. J Phys Chem B 2014; 119:2404-14. [PMID: 25325882 DOI: 10.1021/jp507094f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dronpa is a photochromic green fluorescent protein (GFP) homologue used as a probe in super-resolution microscopy. It is known that the photochromic reaction involves cis/trans isomerization of the chromophore and protonation/deprotonation of its phenol group, but the sequence in time of the two steps and their characteristic time scales are still the subject of much debate. We report here a comprehensive UV-visible transient absorption spectroscopy study of the photoactivation mechanism of Dronpa, covering all relevant time scales from ∼100 fs to milliseconds. The Dronpa-2 variant was also studied and showed the same behavior. By carefully controlling the excitation energy to avoid multiphoton processes, we could measure both the spectrum and the anisotropy of the first photoactivation intermediate. We show that the observed few nanometer blue-shift of this intermediate is characteristic for a neutral cis chromophore, and that its anisotropy of ∼0.2 is in good agreement with the reorientation of the transition dipole moment expected upon isomerization. These data constitute the first clear evidence that trans → cis isomerization of the chromophore precedes its deprotonation and occurs on the picosecond time scale, concomitantly to the excited-state decay. We found the deprotonation step to follow in ∼10 μs and lead directly from the neutral cis intermediate to the final state.
Collapse
Affiliation(s)
- Dheerendra Yadav
- Ecole Normale Supérieure-PSL Research University , Département de Chimie, 24 rue Lhomond, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
24
|
Zimmer MH, Li B, Shahid RS, Peshkepija P, Zimmer M. Structural Consequences of Chromophore Formation and Exploration of Conserved Lid Residues amongst Naturally Occurring Fluorescent Proteins. Chem Phys 2014; 429:5-11. [PMID: 24465077 PMCID: PMC3899699 DOI: 10.1016/j.chemphys.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Computational methods were used to generate the lowest energy conformations of the immature precyclized forms of the 28 naturally occurring GFP-like proteins deposited in the pdb. In all 28 GFP-like proteins, the beta-barrel contracts upon chromophore formation and becomes more rigid. Our prior analysis of over 260 distinct naturally occurring GFP-like proteins revealed that most of the conserved residues are located in the top and bottom of the barrel in the turns between the β-sheets.(1) Structural analyses, molecular dynamics simulations and the Anisotropic Network Model were used to explore the role of these conserved lid residues as possible folding nuclei. Our results are internally consistent and show that the conserved residues in the top and bottom lids undergo relatively less translational movement than other lid residues, and a number of these residues may play an important role as hinges or folding nuclei in the fluorescent proteins.
Collapse
Affiliation(s)
- Matthew H. Zimmer
- Chemistry Department, Connecticut College, New London, CT06320, USA
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Binsen Li
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Ramza S. Shahid
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Paola Peshkepija
- Chemistry Department, Connecticut College, New London, CT06320, USA
| | - Marc Zimmer
- Chemistry Department, Connecticut College, New London, CT06320, USA
| |
Collapse
|
25
|
Hu G, Yan W, Zhou J, Shen B. Residue interaction network analysis of Dronpa and a DNA clamp. J Theor Biol 2014; 348:55-64. [PMID: 24486230 DOI: 10.1016/j.jtbi.2014.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/19/2013] [Accepted: 01/18/2014] [Indexed: 11/16/2022]
Abstract
Topology is an essential aspect of protein structure. The network paradigm is increasingly used to describe the topology and dynamics of proteins. In this paper, the effect of topology on residue interaction network was investigated for two different proteins: Dronpa and a DNA clamp, which have cylindrical and toroidal topologies, respectively. Network metrics including characteristic path lengths, clustering coefficients, and diameters were calculated to investigate their global topology parameters such as small-world properties and packing density. Measures of centrality including betweenness, closeness, and residue centrality were computed to predict residues critical to function. Additionally, the detailed topology of the hydrophobic pocket in Dronpa, and communication pathways across the interface in the DNA clamp, were investigated using the network. The results are presented and discussed with regard to existing residue interaction network properties of globular proteins and elastic network models on Dronpa and the DNA clamp. The topological principle underlying residue interaction networks provided insight into the architectural organization of proteins.
Collapse
Affiliation(s)
- Guang Hu
- Center for Systems Biology, Soochow University, Suzhou 215006, China.
| | - Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Jianhong Zhou
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
26
|
Duan C, Adam V, Byrdin M, Bourgeois D. Structural basis of photoswitching in fluorescent proteins. Methods Mol Biol 2014; 1148:177-202. [PMID: 24718802 DOI: 10.1007/978-1-4939-0470-9_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescent proteins have revolutionized life sciences because they allow noninvasive and highly specific labeling of biological samples. The subset of "phototransformable" fluorescent proteins recently attracted a widespread interest, as their fluorescence state can be modified upon excitation at defined wavelengths. The fluorescence emission of Reversibly Switchable Fluorescent Proteins (RSFPs), in particular, can be repeatedly switched on and off. RSFPs enable many new exciting modalities in fluorescence microscopy and biotechnology, including protein tracking, photochromic Förster Resonance Energy Transfer, super-resolution microscopy, optogenetics, and ultra-high-density optical data storage. Photoswitching in RSFPs typically results from chromophore cis-trans isomerization accompanied by a protonation change, but other switching schemes based on, e.g., chromophore hydration/dehydration have also been discovered. In this chapter, we review the main structural features at the basis of photoswitching in RSFPs.
Collapse
Affiliation(s)
- Chenxi Duan
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | | | | | | |
Collapse
|
27
|
Mironov VA, Khrenova MG, Grigorenko BL, Savitsky AP, Nemukhin AV. Thermal isomerization of the chromoprotein asFP595 and its kindling mutant A143G: QM/MM molecular dynamics simulations. J Phys Chem B 2013; 117:13507-14. [PMID: 24079704 DOI: 10.1021/jp407406k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromoprotein asFP595 and its A143G variant called kindling fluorescent protein (KFP) are among the chronologically first species for which trans-cis chromophore isomerization has been proposed as a driving force of photoswitching. In spite of long-lasting efforts to characterize the route between protein conformations referring to the trans and cis forms of the chromophore, the molecular mechanism of this transformation is still under debate. We report the results of computational studies of the trans-cis isomerization of the anionic and neutral chromophore inside the protein matrices in the ground electronic state for both variants, asFP595 and KFP. Corresponding free energy profiles (potentials of mean force) were evaluated by using molecular dynamics simulations with the quantum mechanical-molecular mechanical (QM/MM) forces. The computed free energy barrier for the cis-trans ground state (thermal) isomerization reaction is about 2 kcal/mol higher in KFP than that in asFP595. These results provide interpretation of experimental studies on thermal relaxation from the light-induced activation of fluorescence of these proteins and correctly show that the A143G mutation in asFP595 noticeably increases the lifetime of the fluorescence species.
Collapse
Affiliation(s)
- Vladimir A Mironov
- Department of Chemistry, M.V. Lomonosov Moscow State University , Leninskie Gory, 1/3, Moscow, 119991, Russian Federation
| | | | | | | | | |
Collapse
|
28
|
Don Paul C, Kiss C, Traore DAK, Gong L, Wilce MCJ, Devenish RJ, Bradbury A, Prescott M. Phanta: a non-fluorescent photochromic acceptor for pcFRET. PLoS One 2013; 8:e75835. [PMID: 24098733 PMCID: PMC3786930 DOI: 10.1371/journal.pone.0075835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/22/2013] [Indexed: 11/24/2022] Open
Abstract
We have developed an orange non-fluorescent photochromic protein (quantum yield, 0.003) we call Phanta that is useful as an acceptor in pcFRET applications. Phanta can be repeatedly inter-converted between the two absorbing states by alternate exposure to cyan and violet light. The absorption spectra of Phanta in one absorbing state shows excellent overlap with the emission spectra of a number of donor green fluorescent proteins including the commonly used EGFP. We show that the Phanta-EGFP FRET pair is suitable for monitoring the activation of caspase 3 in live cells using readily available instrumentation and a simple protocol that requires the acquisition of two donor emission images corresponding to Phanta in each of its photoswitched states. This the first report of a genetically encoded non-fluorescent acceptor for pcFRET.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Csaba Kiss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Daouda A. K. Traore
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lan Gong
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
29
|
Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Nat Commun 2013; 4:1461. [DOI: 10.1038/ncomms2460] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/09/2013] [Indexed: 11/09/2022] Open
|
30
|
Gayda S, Nienhaus K, Nienhaus GU. Mechanistic insights into reversible photoactivation in proteins of the GFP family. Biophys J 2012; 103:2521-31. [PMID: 23260054 DOI: 10.1016/j.bpj.2012.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022] Open
Abstract
Light-controlled modification of the fluorescence emission properties of proteins of the GFP family is of crucial importance for many imaging applications including superresolution microscopy. Here, we have studied the reversibly photoswitchable fluorescent protein mIrisGFP using optical spectroscopy. By analyzing the pH dependence of isomerization and protonation equilibria and the isomerization kinetics, we have obtained insight into the coupling of the chromophore to the surrounding protein moiety and a better understanding of the photoswitching mechanism. A different acid-base environment of the chromophore's protonating group in its two isomeric forms, which can be inferred from the x-ray structures of IrisFP, is key to the photoswitching function and ensures that isomerization and protonation are correlated. Amino acids near the chromophore, especially Glu212, rearrange upon isomerization, and Glu212 protonation modulates the chromophore pK(a). In mIrisGFP, the cis chromophore protonates in two steps, with pK(cis) of 5.3 and 6, which is much lower than pK(trans) (>10). Based on these results, we have put forward a mechanistic scheme that explains how the combination of isomeric and acid-base properties of the chromophore in its protein environment can produce negative and positive photoswitching modes.
Collapse
Affiliation(s)
- Susan Gayda
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
31
|
Nguyen Bich N, Moeyaert B, Van Hecke K, Dedecker P, Mizuno H, Hofkens J, Van Meervelt L. Structural basis for the influence of a single mutation K145N on the oligomerization and photoswitching rate of Dronpa. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1653-9. [PMID: 23151630 DOI: 10.1107/s0907444912039686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/18/2012] [Indexed: 12/21/2022]
Abstract
The crystal structure of the on-state of PDM1-4, a single-mutation variant of the photochromic fluorescent protein Dronpa, is reported at 1.95 Å resolution. PDM1-4 is a Dronpa variant that possesses a slower off-switching rate than Dronpa and thus can effectively increase the image resolution in subdiffraction optical microscopy, although the precise molecular basis for this change has not been elucidated. This work shows that the Lys145Asn mutation in PDM1-4 stabilizes the interface available for dimerization, facilitating oligomerization of the protein. No significant changes were observed in the chromophore environment of PDM1-4 compared with Dronpa, and the ensemble absorption and emission properties of PDM1-4 were highly similar to those of Dronpa. It is proposed that the slower off-switching rate in PDM1-4 is caused by a decrease in the potential flexibility of certain β-strands caused by oligomerization along the AC interface.
Collapse
Affiliation(s)
- Ngan Nguyen Bich
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven (Heverlee), Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Korpany KV, Langat P, Kim DM, Edelman N, Cooper DR, Nadeau J, Blum AS. Conductance switching in the photoswitchable protein Dronpa. J Am Chem Soc 2012; 134:16119-22. [PMID: 22967233 DOI: 10.1021/ja306031n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dronpa, a photoswitchable GFP-like protein, was self-assembled onto gold substrates, and its conductance was measured using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS).
Collapse
Affiliation(s)
- Katalin V Korpany
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Addison K, Conyard J, Dixon T, Bulman Page PC, Solntsev KM, Meech SR. Ultrafast Studies of the Photophysics of Cis and Trans States of the Green Fluorescent Protein Chromophore. J Phys Chem Lett 2012; 3:2298-2302. [PMID: 26295786 DOI: 10.1021/jz3008408] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cis-trans photoisomerization is proposed as a key process in the photoswitching of some photoactivatable fluorescent proteins. Here we present ultrafast fluorescence measurements of the model GFP chromophore (HBDI) in the cis state and in a mixture of the cis and trans states. Our results demonstrate that the mean lifetimes of the cis and trans states are remarkably similar. Therefore, the specific isomer of the chromophore cannot be solely responsible for the different photophysics of the bright and dark states of photoactive proteins, which must therefore be due to differential interactions between the different isomers of the chromophore and the protein.
Collapse
Affiliation(s)
- Kiri Addison
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Jamie Conyard
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Tara Dixon
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Philip C Bulman Page
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Kyril M Solntsev
- ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Stephen R Meech
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
34
|
Bourgeois D, Adam V. Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 2012; 64:482-91. [PMID: 22535712 DOI: 10.1002/iub.1023] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/14/2012] [Indexed: 11/05/2022]
Abstract
Phototransformable fluorescent proteins (FPs) have received considerable attention in recent years, because they enable many new exciting modalities in fluorescence microscopy and biotechnology. On illumination with proper actinic light, phototransformable FPs are amenable to long-lived transitions between various fluorescent or nonfluorescent states, resulting in processes known as photoactivation, photoconversion, or photoswitching. Here, we review the subclass of photoswitchable FPs with a mechanistic perspective. These proteins offer the widest range of practical applications, including reversible high-density data bio-storage, photochromic FRET, and super-resolution microscopy by either point-scanning, structured illumination, or single molecule-based wide-field approaches. Photoswitching can be engineered to occur with high contrast in both Hydrozoan and Anthozoan FPs and typically results from a combination of chromophore cis-trans isomerization and protonation change. However, other switching schemes based on, for example, chromophore hydration/dehydration have been discovered, and it seems clear that ever more performant variants will be developed in the future.
Collapse
Affiliation(s)
- Dominique Bourgeois
- Pixel Team, IBS, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, Université Joseph Fourier, Grenoble, France. dominique.bourgeois@ ibs.fr
| | | |
Collapse
|
35
|
Kao YT, Zhu X, Min W. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proc Natl Acad Sci U S A 2012; 109:3220-5. [PMID: 22328153 PMCID: PMC3295282 DOI: 10.1073/pnas.1115311109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent advances in fluorescent proteins (FPs) have generated a remarkable family of optical highlighters with special light responses. Among them, Dronpa exhibits a unique capability of reversible light-regulated on-off switching. However, the environmental dependence of this photochromism is largely unexplored. Herein we report that the photoswitching kinetics of the chromophore inside Dronpa is actually slowed down by increasing medium viscosity outside Dronpa. This finding is a special example of an FP where the environment can exert a hydrodynamic effect on the internal chromophore. We attribute this effect to protein-flexibility mediated coupling where the chromophore's cis-trans isomerization during photoswitching is accompanied by conformational motion of a part of the protein β-barrel whose dynamics should be hindered by medium friction. Consistent with this mechanism, the photoswitching kinetics of Dronpa-3, a structurally more flexible mutant, is found to exhibit a more pronounced viscosity dependence. Furthermore, we mapped out spatial distributions of microviscosity in live cells experienced by a histone protein using the photoswitching kinetics of Dronpa-3 fusion as a contrast mechanism. This unique reporter should provide protein-specific information about the crowded intracellular environments by offering a genetically encoded microviscosity probe, which did not exist with normal FPs before.
Collapse
Affiliation(s)
- Ya-Ting Kao
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Xinxin Zhu
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
36
|
Hu G, Michielssens S, Moors SLC, Ceulemans A. The harmonic analysis of cylindrically symmetric proteins: a comparison of Dronpa and a DNA sliding clamp. J Mol Graph Model 2011; 34:28-37. [PMID: 22306411 DOI: 10.1016/j.jmgm.2011.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The harmonic analysis of two types of proteins with cylindrical symmetry is performed by the Standard Force Field Normal Mode Analysis and by the elastic network model. For both proteins the global elastic modes are assigned to their characteristic topologies. Dronpa is a rigid β-barrel structure, presenting the twisting, bending and breathing motion of a cylindrical rod. The β sliding clamp of Escherichia coli is a hexagonal β-wheel, consisting of rigid segments. In its spectrum four classes of vibrations are identified which are characteristic of an elastic torus. Correlation diagrams and RMSF analysis are compared. The results provide not only a comprehensive validation of the use of both methods to describe the elastic behavior according to the low-frequency normal modes, but also depict the correlated motions of β-barrel and β-wheel proteins. The harmonic flexibility of the Dronpa protein is compared to the principal components of molecular dynamics (MD) simulation. A functionally important localized cleft opening mode is found, which is not detected by harmonic analysis.
Collapse
Affiliation(s)
- Guang Hu
- Department of Chemistry and INPAC Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | | | | |
Collapse
|
37
|
Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 2011; 109:E135-43. [PMID: 22160683 DOI: 10.1073/pnas.1107547108] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using ultralow light intensities that are well suited for investigating biological samples, we demonstrate whole-cell superresolution imaging by nonlinear structured-illumination microscopy. Structured-illumination microscopy can increase the spatial resolution of a wide-field light microscope by a factor of two, with greater resolution extension possible if the emission rate of the sample responds nonlinearly to the illumination intensity. Saturating the fluorophore excited state is one such nonlinear response, and a realization of this idea, saturated structured-illumination microscopy, has achieved approximately 50-nm resolution on dye-filled polystyrene beads. Unfortunately, because saturation requires extremely high light intensities that are likely to accelerate photobleaching and damage even fixed tissue, this implementation is of limited use for studying biological samples. Here, reversible photoswitching of a fluorescent protein provides the required nonlinearity at light intensities six orders of magnitude lower than those needed for saturation. We experimentally demonstrate approximately 40-nm resolution on purified microtubules labeled with the fluorescent photoswitchable protein Dronpa, and we visualize cellular structures by imaging the mammalian nuclear pore and actin cytoskeleton. As a result, nonlinear structured-illumination microscopy is now a biologically compatible superresolution imaging method.
Collapse
|
38
|
Don Paul C, Traore DAK, Byres E, Rossjohn J, Devenish RJ, Kiss C, Bradbury A, Wilce MCJ, Prescott M. Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1266-8. [PMID: 22102044 DOI: 10.1107/s1744309111028156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/13/2011] [Indexed: 11/10/2022]
Abstract
Enhanced consensus green protein variant 123 (eCGP123) is an extremely thermostable green fluorescent protein (GFP) that exhibits useful negative reversible photoswitching properties. eCGP123 was derived by the application of both a consensus engineering approach and a recursive evolutionary process. Diffraction-quality crystals of recombinant eCGP123 were obtained by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. The eCGP123 crystal diffracted X-rays to 2.10 Å resolution. The data were indexed in space group P1, with unit-cell parameters a = 74.63, b = 75.38, c = 84.51 Å, α = 90.96, β = 89.92, γ = 104.03°. The Matthews coefficient (V(M) = 2.26 Å(3) Da(-1)) and a solvent content of 46% indicated that the asymmetric unit contained eight eCGP123 molecules.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Biochemistry and Molecular Biology, School of Biomedical Science, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Remington SJ. Green fluorescent protein: a perspective. Protein Sci 2011; 20:1509-19. [PMID: 21714025 PMCID: PMC3190146 DOI: 10.1002/pro.684] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/07/2022]
Abstract
A brief personal perspective is provided for green fluorescent protein (GFP), covering the period 1994-2011. The topics discussed are primarily those in which my research group has made a contribution and include structure and function of the GFP polypeptide, the mechanism of fluorescence emission, excited state protein transfer, the design of ratiometric fluorescent protein biosensors and an overview of the fluorescent proteins derived from coral reef animals. Structure-function relationships in photoswitchable fluorescent proteins and nonfluorescent chromoproteins are also briefly covered.
Collapse
Affiliation(s)
- S James Remington
- Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, Oregon 97403-1229, USA.
| |
Collapse
|
40
|
Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU. From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. JOURNAL OF BIOPHOTONICS 2011; 4:377-90. [PMID: 21319305 DOI: 10.1002/jbio.201000122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 05/11/2023]
Abstract
Fluorescent proteins from the GFP family have become indispensable imaging tools in life sciences research. In recent years, a wide variety of these proteins were discovered in non-bioluminescent anthozoa. Some of them feature exciting new properties, including the possibility to change their fluorescence quantum yield and/or color by irradiating with light of specific wavelengths. These photoactivatable fluorescent proteins enable many interesting applications including pulse-chase experiments and super-resolution imaging. In this review, we discuss the development of advanced variants, using a structure-function based, molecular biophysics approach, of the photoactivatable fluorescent protein EosFP, which can be photoconverted from green to red fluorescence by ~400 nm light. A variety of applications are presented that demonstrate the versatility of these marker proteins in live-cell imaging.
Collapse
Affiliation(s)
- Jörg Wiedenmann
- National Oceanography Centre, University of Southampton, Southampton SO143ZH, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
42
|
Nienhaus GU, Nienhaus K, Wiedenmann J. Structure–Function Relationships in Fluorescent Marker Proteins of the Green Fluorescent Protein Family. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/4243_2011_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
43
|
Mizuno H, Mal TK, Wälchli M, Fukano T, Ikura M, Miyawaki A. Molecular basis of photochromism of a fluorescent protein revealed by direct 13C detection under laser illumination. JOURNAL OF BIOMOLECULAR NMR 2010; 48:237-246. [PMID: 21052778 DOI: 10.1007/s10858-010-9453-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
Dronpa is a green fluorescent protein homologue with a photochromic property. A green laser illumination reversibly converts Dronpa from a green-emissive bright state to a non-emissive dark state, and ultraviolet illumination converts it to the bright state. We have employed solution NMR to understand the underlying molecular mechanism of the photochromism. The detail characterization of Dronpa is hindered as it is metastable in the dark state and spontaneously converts to the bright state. To circumvent this issue, we have designed in magnet laser illumination device. By combining the device with a 150-mW argon laser at 514.5 nm, we have successfully converted and maintained Dronpa in the dark state in the NMR tube by continuous illumination during the NMR experiments. We have employed direct-detection of (13)C nuclei from the carbon skeleton of the chromophore for detailed characterization of chromophore in both states of Dronpa by using the Bruker TCI cryoprobe. The results from NMR data have provided direct evidence of the double bond formation between C(α) and C(β) of Y63 in the chromophore, the β-barrel structure in solution, and the ionized and protonated state of Y63 hydroxyl group in the bright and dark states, respectively. These studies have also revealed that a part of β-barrel around the chromophore becomes polymorphic only in the dark state, which may be critical to make the fluorescence dim by increasing the contribution of non-emissive vibrational relaxation pathways.
Collapse
Affiliation(s)
- Hideaki Mizuno
- Cell Function and Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010; 90:1103-63. [PMID: 20664080 DOI: 10.1152/physrev.00038.2009] [Citation(s) in RCA: 962] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its homologs from diverse marine animals are widely used as universal genetically encoded fluorescent labels. Many laboratories have focused their efforts on identification and development of fluorescent proteins with novel characteristics and enhanced properties, resulting in a powerful toolkit for visualization of structural organization and dynamic processes in living cells and organisms. The diversity of currently available fluorescent proteins covers nearly the entire visible spectrum, providing numerous alternative possibilities for multicolor labeling and studies of protein interactions. Photoactivatable fluorescent proteins enable tracking of photolabeled molecules and cells in space and time and can also be used for super-resolution imaging. Genetically encoded sensors make it possible to monitor the activity of enzymes and the concentrations of various analytes. Fast-maturing fluorescent proteins, cell clocks, and timers further expand the options for real time studies in living tissues. Here we focus on the structure, evolution, and function of GFP-like proteins and their numerous applications for in vivo imaging, with particular attention to recent techniques.
Collapse
|
45
|
Subach OM, Malashkevich VN, Zencheck WD, Morozova KS, Piatkevich KD, Almo SC, Verkhusha VV. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. CHEMISTRY & BIOLOGY 2010; 17:333-41. [PMID: 20416505 PMCID: PMC2862997 DOI: 10.1016/j.chembiol.2010.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/23/2010] [Accepted: 03/05/2010] [Indexed: 11/28/2022]
Abstract
We determined the 2.2 A crystal structures of the red fluorescent protein TagRFP and its derivative, the blue fluorescent protein mTagBFP. The crystallographic analysis is consistent with a model in which TagRFP has the trans coplanar anionic chromophore with the conjugated pi-electron system, similar to that of DsRed-like chromophores. Refined conformation of mTagBFP suggests the presence of an N-acylimine functionality in its chromophore and single C(alpha)-C(beta) bond in the Tyr64 side chain. Mass spectrum of mTagBFP chromophore-bearing peptide indicates a loss of 20 Da upon maturation, whereas tandem mass spectrometry reveals that the C(alpha)-N bond in Leu63 is oxidized. These data indicate that mTagBFP has a new type of the chromophore, N-[(5-hydroxy-1H-imidazole-2-yl)methylidene]acetamide. We propose a chemical mechanism in which the DsRed-like chromophore is formed via the mTagBFP-like blue intermediate.
Collapse
Affiliation(s)
- Oksana M. Subach
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Bronx, New York 10461, U.S.A
| | - Vladimir N. Malashkevich
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, U.S.A
| | - Wendy D. Zencheck
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, U.S.A
| | - Kateryna S. Morozova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Bronx, New York 10461, U.S.A
| | - Kiryl D. Piatkevich
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Bronx, New York 10461, U.S.A
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, U.S.A
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Bronx, New York 10461, U.S.A
| |
Collapse
|
46
|
Mudalige K, Habuchi S, Goodwin PM, Pai RK, De Schryver F, Cotlet M. Photophysics of the Red Chromophore of HcRed: Evidence for Cis−Trans Isomerization and Protonation-State Changes. J Phys Chem B 2010; 114:4678-85. [DOI: 10.1021/jp9102146] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kumara Mudalige
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Mail Stop 735, Upton New York 11973, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Heverlee Leuven B-3001, Belgium, and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545
| | - Satoshi Habuchi
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Mail Stop 735, Upton New York 11973, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Heverlee Leuven B-3001, Belgium, and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545
| | - Peter M. Goodwin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Mail Stop 735, Upton New York 11973, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Heverlee Leuven B-3001, Belgium, and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545
| | - Ranjith K. Pai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Mail Stop 735, Upton New York 11973, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Heverlee Leuven B-3001, Belgium, and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545
| | - Frans De Schryver
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Mail Stop 735, Upton New York 11973, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Heverlee Leuven B-3001, Belgium, and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Mail Stop 735, Upton New York 11973, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Heverlee Leuven B-3001, Belgium, and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545
| |
Collapse
|
47
|
Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. SPRINGER SERIES ON FLUORESCENCE 2010. [DOI: 10.1007/978-3-642-04702-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
48
|
Ebisawa T, Yamamura A, Kameda Y, Hayakawa K, Nagata K, Tanokura M. Crystallization and preliminary X-ray analysis of a monomeric mutant of Azami-Green (mAG), an Aequorea victoria green fluorescent protein-like green-emitting fluorescent protein from the stony coral Galaxea fascicularis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1292-5. [PMID: 20054132 DOI: 10.1107/s1744309109045382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/29/2009] [Indexed: 11/10/2022]
Abstract
Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first monomeric green-emitting fluorescent protein that is not a derivative of Aequorea victoria green fluorescent protein (avGFP). mAG and avGFP are 27% identical in amino-acid sequence. Diffraction-quality crystals of recombinant mAG were obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The mAG crystal diffracted X-rays to 2.20 A resolution on beamline AR-NW12A at the Photon Factory (Tsukuba, Japan). The crystal belonged to space group P1, with unit-cell parameters a = 41.78, b = 51.72, c = 52.89 A, alpha = 90.96, beta = 103.41, gamma = 101.79 degrees. The Matthews coefficient (V(M) = 2.10 A(3) Da(-1)) indicated that the crystal contained two mAG molecules per asymmetric unit.
Collapse
Affiliation(s)
- Tatsuki Ebisawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Li X, Chung LW, Mizuno H, Miyawaki A, Morokuma K. A Theoretical Study on the Nature of On- and Off-States of Reversibly Photoswitching Fluorescent Protein Dronpa: Absorption, Emission, Protonation, and Raman. J Phys Chem B 2009; 114:1114-26. [DOI: 10.1021/jp909947c] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Hideaki Mizuno
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Atsushi Miyawaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| |
Collapse
|
50
|
Adam V, Nienhaus K, Bourgeois D, Nienhaus GU. Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 2009; 48:4905-15. [PMID: 19371086 DOI: 10.1021/bi900383a] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendra2 is an engineered, monomeric GFP-like protein that belongs to a subclass of fluorescent proteins undergoing irreversible photoconversion from a green- to a red-emitting state upon exposure to purple-blue light. This photoinduced process occurs only in the neutral state of the chromophore and is known to result from backbone cleavage accompanied by an extension of the delocalized pi-electron system. We have measured the X-ray structure of the green species of Dendra2 and performed a comprehensive characterization of the optical absorption and fluorescence properties of the protein in both its green and red forms. The structure, which is very similar to those reported for the closely related proteins EosFP and Kaede, revealed a local structural change involving mainly Arg66 and a water molecule W4, which are part of a charged and hydrogen-bonded cluster of amino acids and water molecules next to the chromophore. Unlike in EosFP and Kaede, Arg66 of Dendra2 does not contribute to negative charge stabilization on the imidazolinone ring by hydrogen bonding to the imidazolinone carbonyl. This structural change may explain the blue shift of the absorption and emission bands, as well as the markedly higher pKs of the hydroxyphenyl moiety of the chromophore, which were determined as 7.1 and 7.5 for the green and red species, respectively. The action spectrum of photoconversion coincides with the absorption band of the neutral species. Consequently, its 20-fold enhancement in Dendra2 at physiological pH accounts for the higher photoconversion yield of this protein as compared to EosFP.
Collapse
Affiliation(s)
- Virgile Adam
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 8043 Grenoble Cedex, France
| | | | | | | |
Collapse
|