1
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
2
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
3
|
Guerra JPL, Blanchet CE, Vieira BJC, Waerenborgh JC, Jones NC, Hoffmann SV, Pereira AS, Tavares P. Controlled modulation of the dynamics of the Deinococcus grandis Dps N-terminal tails by divalent metals. Protein Sci 2023; 32:e4567. [PMID: 36658780 PMCID: PMC9885476 DOI: 10.1002/pro.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
DNA-binding proteins from starved cells (Dps) are small multifunctional nanocages expressed by prokaryotes in acute oxidative stress conditions or during the starvation-induced stationary phase, as a bacterial defense mechanism. Dps proteins protect bacterial DNA from damage by either direct binding or by removing precursors of reactive oxygen species from solution. The DNA-binding properties of most Dps proteins studied so far are related to their unordered, flexible, N- and C-terminal extensions. In a previous work, we revealed that the N-terminal tails of Deinoccocus grandis Dps shift from an extended to a compact conformation depending on the ionic strength of the buffer and detected a novel high-spin ferrous iron center in the proximal ends of those tails. In this work, we further explore the conformational dynamics of the protein by probing the effect of divalent metals binding to the tail by comparing the metal-binding properties of the wild-type protein with a binding site-impaired D34A variant using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism, and small-angle X-ray scattering. The N-terminal ferrous species was also characterized by Mössbauer spectroscopy. The results herein presented reveal that the conformation of the N-terminal tails is altered upon metal binding in a gradual, reversible, and specific manner. These observations may point towards the existence of a regulatory process for the DNA-binding properties of Dps proteins through metal binding to their N- and/or C-terminal extensions.
Collapse
Affiliation(s)
- João P. L. Guerra
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
| | | | - Bruno J. C. Vieira
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
| | - João C. Waerenborgh
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
| | - Nykola C. Jones
- ISA, Department of Physics and AstronomyAarhus UniversityAarhusDenmark
| | | | - Alice S. Pereira
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
| | - Pedro Tavares
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology | FCT NOVAUniversidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
4
|
Chen Y, Yang Z, Zhou X, Jin M, Dai Z, Ming D, Zhang Z, Zhu L, Jiang L. Sequence, structure, and function of the Dps DNA-binding protein from Deinococcus wulumuqiensis R12. Microb Cell Fact 2022; 21:132. [PMID: 35780107 PMCID: PMC9250271 DOI: 10.1186/s12934-022-01857-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Deinococcus wulumuqiensis R12, which was isolated from arid irradiated soil in Xinjiang province of China, belongs to a genus that is well-known for its extreme resistance to ionizing radiation and oxidative stress. The DNA-binding protein Dps has been studied for its great contribution to oxidative resistance. To explore the role of Dps in D. wulumuqiensis R12, the Dps sequence and homology-modeled structure were analyzed. In addition, the dps gene was knocked out and proteomics was used to verify the functions of Dps in D. wulumuqiensis R12. Docking data and DNA binding experiments in vitro showed that the R12 Dps protein has a better DNA binding ability than the Dps1 protein from D. radiodurans R1. When the dps gene was deleted in D. wulumuqiensis R12, its resistance to H2O2 and UV rays was greatly reduced, and the cell envelope was destroyed by H2O2 treatment. Additionally, the qRT-PCR and proteomics data suggested that when the dps gene was deleted, the catalase gene was significantly down-regulated. The proteomics data indicated that the metabolism, transport and oxidation-reduction processes of D. wulumuqiensis R12 were down-regulated after the deletion of the dps gene. Overall, the data conformed that Dps protein plays an important role in D. wulumuqiensis R12.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xue Zhou
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mengmeng Jin
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zijie Dai
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Ürümqi, 830091, Xinjiang, China.
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
5
|
Chesnokov Y, Mozhaev A, Kamyshinsky R, Gordienko A, Dadinova L. Structural Insights into Iron Ions Accumulation in Dps Nanocage. Int J Mol Sci 2022; 23:ijms23105313. [PMID: 35628121 PMCID: PMC9140674 DOI: 10.3390/ijms23105313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/05/2023] Open
Abstract
Dps (DNA-binding protein from starved cells) is well known for the structural protection of bacterial DNA by the formation of highly ordered intracellular assemblies under stress conditions. Moreover, this ferritin-like protein can perform fast oxidation of ferrous ions and subsequently accumulate clusters of ferric ions in its nanocages, thus providing the bacterium with physical and chemical protection. Here, cryo-electron microscopy was used to study the accumulation of iron ions in the nanocage of a Dps protein from Escherichia coli. We demonstrate that Fe2+ concentration in the solution and incubation time have an insignificant effect on the volume and the morphology of iron minerals formed in Dps nanocages. However, an increase in the Fe2+ level leads to an increase in the proportion of larger clusters and the clusters themselves are composed of discrete ~1-1.5 nm subunits.
Collapse
Affiliation(s)
- Yury Chesnokov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Andrey Mozhaev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia
| | - Roman Kamyshinsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700 Dolgoprudny, Russia
| | - Alexander Gordienko
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Liubov Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Correspondence: ; Tel.: +7-(499)-135-62-00
| |
Collapse
|
6
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
7
|
Chen Z, Tang Y, Hua Y, Zhao Y. Structural features and functional implications of proteins enabling the robustness of Deinococcus radiodurans. Comput Struct Biotechnol J 2020; 18:2810-2817. [PMID: 33133422 PMCID: PMC7575645 DOI: 10.1016/j.csbj.2020.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Deinococcus radiodurans can survive under extreme conditions, including high doses of DNA damaging agents and ionizing radiation, desiccation, and oxidative stress. Both the efficient cellular DNA repair machinery and antioxidation systems contribute to the extreme resistance of this bacterium, making it an ideal organism for studying the cellular mechanisms of environmental adaptation. The number of stress-related proteins identified in this bacterium has mushroomed in the past two decades. The newly identified proteins reveal both commonalities and diversity of structure, mechanism, and function, which impact a wide range of cellular functions. Here, we review the unique and general structural features of these proteins and discuss how these studies improve our understanding of the environmental stress adaptation mechanisms of D. radiodurans.
Collapse
Affiliation(s)
- Zijing Chen
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuyue Tang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Minato T, Teramoto T, Kakuta Y, Ogo S, Yoon KS. Biochemical and structural characterization of a thermostable Dps protein with His-type ferroxidase centers and outer metal-binding sites. FEBS Open Bio 2020; 10:1219-1229. [PMID: 32170832 PMCID: PMC7327923 DOI: 10.1002/2211-5463.12837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
The DNA‐binding protein from starved cells (Dps) is found in a wide range of microorganisms, and it has been well characterized. However, little is known about Dps proteins from nonheterocystous filamentous cyanobacteria. In this study, a Dps protein from the thermophilic nonheterocystous filamentous cyanobacterium Thermoleptolyngbya sp. O‐77 (TlDps1) was purified and characterized. PAGE and CD analyses of TlDps1 demonstrated that it had higher thermostability than previously reported Dps proteins. X‐ray crystallographic analysis revealed that TlDps1 possessed His‐type ferroxidase centers within the cavity and unique metal‐binding sites located on the surface of the protein, which presumably contributed to its exceedingly high thermostability.
Collapse
Affiliation(s)
- Takuo Minato
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
The interplay between Mn and Fe in Deinococcus radiodurans triggers cellular protection during paraquat-induced oxidative stress. Sci Rep 2019; 9:17217. [PMID: 31748604 PMCID: PMC6868200 DOI: 10.1038/s41598-019-53140-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
The bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation. According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-binding-proteins-under-starved-conditions during oxidative-stress remained open questions. We used synchrotron-based X-ray fluorescence imaging at nano-resolution to follow element-relocalization upon stress, and its dependency on the presence of Dps proteins, using dps knockout mutants. We show that manganese, calcium, and phosphorus are mobilized from rich-element regions that resemble electron-dense granules towards the cytosol and the cellular membrane, in a Dps-dependent way. Moreover, iron delocalizes from the septum region to the cytoplasm affecting cell division, specifically in the septum formation. These mechanisms are orchestrated by Dps1 and Dps2, which play a crucial role in metal homeostasis, and are associated with the D. radiodurans tolerance against reactive oxygen species.
Collapse
|
10
|
Qi HZ, Wang WZ, He JY, Ma Y, Xiao FZ, He SY. Antioxidative system of Deinococcus radiodurans. Res Microbiol 2019; 171:45-54. [PMID: 31756434 DOI: 10.1016/j.resmic.2019.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Deinococcus radiodurans is famous for its extreme resistance to various stresses such as ionizing radiation (IR), desiccation and oxidative stress. The underlying mechanism of exceptional resistance of this robust bacterium still remained unclear. However, the antioxidative system of D. radiodurans has been considered to be the determinant factor for its unparalleled resistance and protects the proteome during stress, then the DNA repair system and metabolic system exert their functions to restore the cell to normal physiological state. The antioxidative system not only equipped with the common reactive oxygen species (ROS) scavenging enzymes (e.g., catalase and superoxide dismutase) but also armed with a variety of non-enzyme antioxidants (e.g., carotenoids and manganese species). And the small manganese complexes play an important role in the antioxidative system of D. radiodurans. Recent studies have characterized several regulators (e.g., PprI and PprM) in D. radiodurans, which play critical roles in the protection of the bacteria from various stresses. In this review, we offer a panorama of the progress regarding the characteristics of the antioxidative system in D. radiodurans and its application in the future.
Collapse
Affiliation(s)
- Hui-Zhou Qi
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Function Laboratory Center, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Wu-Zhou Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Jun-Yan He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Fang-Zhu Xiao
- Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Shu-Ya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
11
|
Zeth K, Sancho-Vaello E, Okuda M. Metal Positions and Translocation Pathways of the Dodecameric Ferritin-like Protein Dps. Inorg Chem 2019; 58:11351-11363. [PMID: 31433627 DOI: 10.1021/acs.inorgchem.9b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron storage in biology is carried out by cage-shaped proteins of the ferritin superfamily, one of which is the dodecameric protein Dps. In Dps, four distinct steps lead to the formation of metal nanoparticles: attraction of ion-aquo complexes to the protein matrix, passage of these complexes through translocation pores, oxidation of these complexes at ferroxidase centers, and, ultimately, nanoparticle formation. In this study, we investigated Dps from Listeria innocua to structurally characterize these steps for Co2+, Zn2+, and La3+ ions. The structures reveal that differences in their ion coordination chemistry determine alternative metal ion-binding sites on the areas of the surface surrounding the translocation pore that captures nine La3+, three Co2+, or three Zn2+ ions as aquo clusters and passes them on for translocation. Inside these pores, ion-selective conformational changes at key residues occur before a gating residue to actively move ions through the constriction zone. Ions upstream of the Asp130 gate residue are typically hydrated, while ions downstream directly interact with the protein matrix. Inside the cavity, ions move along negatively charged residues to the ferroxidase center, where seven main residues adapt to the three different ions by dynamically changing their conformations. In total, we observed more than 20 metal-binding sites per Dps monomer, which clearly highlights the metal-binding capacity of this protein family. Collectively, our results provide a detailed structural description of the preparative steps for amino acid-assisted biomineralization in Dps proteins, demonstrating unexpected protein matrix plasticity.
Collapse
Affiliation(s)
- Kornelius Zeth
- Roskilde University , Department of Science and Environment , Universitetsvej 1 , 4000 Roskilde , Denmark.,Universidad del Pais Vasco (UPV/EHU) , 48940 Leioa , Basque Country , Spain
| | - Enea Sancho-Vaello
- Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain
| | - Mitsuhiro Okuda
- Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain.,CIC nanoGUNE , 20018 Donostia-San Sebastian , Basque Country , Spain.,IKERBASQUE , Basque Foundation for Science , 48011 Bilbao , Basque Country , Spain
| |
Collapse
|
12
|
Howe C, Ho F, Nenninger A, Raleiras P, Stensjö K. Differential biochemical properties of three canonical Dps proteins from the cyanobacterium Nostoc punctiforme suggest distinct cellular functions. J Biol Chem 2018; 293:16635-16646. [PMID: 30171072 DOI: 10.1074/jbc.ra118.002425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/29/2018] [Indexed: 11/06/2022] Open
Abstract
DNA-binding proteins from starved cells (Dps, EC: 1.16.3.1) have a variety of different biochemical activities such as DNA-binding, iron sequestration, and H2O2 detoxification. Most bacteria commonly feature one or two Dps enzymes, whereas the cyanobacterium Nostoc punctiforme displays an unusually high number of five Dps proteins (NpDps1-5). Our previous studies have indicated physiological differences, as well as cell-specific expression, among these five proteins. Three of the five NpDps proteins, NpDps1, -2, and -3, were classified as canonical Dps proteins. To further investigate their properties and possible importance for physiological function, here we characterized and compared them in vitro Nondenaturing PAGE, gel filtration, and dynamic light-scattering experiments disclosed that the three NpDps proteins exist as multimeric protein species in the bacterial cell. We also demonstrate Dps-mediated iron oxidation catalysis in the presence of H2O2 However, no iron oxidation with O2 as the electron acceptor was detected under our experimental conditions. In modeled structures of NpDps1, -2, and -3, protein channels were identified that could serve as the entrance for ferrous iron into the dodecameric structures. Furthermore, we could demonstrate pH-dependent DNA-binding properties for NpDps2 and -3. This study adds critical insights into the functions and stabilities of the three canonical Dps proteins from N. punctiforme and suggests that each of the Dps proteins within this bacterium has a specific biochemical property and function.
Collapse
Affiliation(s)
- Christoph Howe
- From the Department of Chemistry, Molecular Biomimetics, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Felix Ho
- From the Department of Chemistry, Molecular Biomimetics, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Anja Nenninger
- From the Department of Chemistry, Molecular Biomimetics, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Patrícia Raleiras
- From the Department of Chemistry, Molecular Biomimetics, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Karin Stensjö
- From the Department of Chemistry, Molecular Biomimetics, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| |
Collapse
|
13
|
Frade KST, Fernandes ACP, Silveira CM, Frazão C, Moe E. A novel bacterial class V dye-decolourizing peroxidase from the extremophile Deinococcus radiodurans: cloning, expression optimization, purification, crystallization, initial characterization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:419-424. [PMID: 29969105 PMCID: PMC6038450 DOI: 10.1107/s2053230x18008488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/08/2018] [Indexed: 11/10/2022] Open
Abstract
Deinococcus radiodurans is a bacterium with extreme resistance to desiccation and radiation. The resistance mechanism is unknown, but an efficient reactive oxygen species (ROS) scavenging system and DNA-repair and DNA-protection mechanisms are believed to play important roles. Here, the cloning and small- and medium-scale expression tests of a novel dye-decolourizing peroxidase from D. radiodurans (DrDyP) using three different Escherichia coli strains and three different temperatures in order to identify the optimum conditions for the expression of recombinant DrDyP are presented. The best expression conditions were used for large-scale expression and yielded ∼10 mg recombinant DrDyP per litre of culture after purification. Initial characterization experiments demonstrated unusual features with regard to the haem spin state, which motivated the crystallization experiment. The obtained crystals were used for data collection and diffracted to 2.2 Å resolution. The crystals belonged to the trigonal space group P31 or P32, with unit-cell parameters a = b = 64.13, c = 111.32 Å, and are predicted to contain one DrDyP molecule per asymmetric unit. Structure determination by molecular replacement using previously determined structures of dye-decolourizing peroxidases with ∼30% sequence identity at ∼2 Å resolution as templates are ongoing.
Collapse
Affiliation(s)
- Kelly Stefany Tuna Frade
- Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República – EAN, 2780-157 Oeiras, Portugal
| | - Andreia Cecília Pimenta Fernandes
- Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República – EAN, 2780-157 Oeiras, Portugal
| | - Celia Marisa Silveira
- Raman BioSpectroscopy Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República – EAN, 2780-157 Oeiras, Portugal
| | - Carlos Frazão
- Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República – EAN, 2780-157 Oeiras, Portugal
| | - Elin Moe
- Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República – EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
14
|
Li J, Tian B, Li T, Dai S, Weng Y, Lu J, Xu X, Jin Y, Pang R, Hua Y. Biosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomedicine 2018; 13:1411-1424. [PMID: 29563796 PMCID: PMC5849937 DOI: 10.2147/ijn.s149079] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Biosynthesis of noble metallic nanoparticles (NPs) has attracted significant interest due to their environmental friendly and biocompatible properties. Methods In this study, we investigated syntheses of Au, Ag and Au–Ag bimetallic NPs using protein extracts of Deinococcus radiodurans, which demonstrated powerful metal-reducing ability. The obtained NPs were characterized and analyzed by various spectroscopy techniques. Results The D. radiodurans protein extract-mediated silver nanoparticles (Drp-AgNPs) were preferably monodispersed and stably distributed compared to D. radiodurans protein extract-mediated gold nanoparticles (Drp-AuNPs). Drp-AgNPs and Drp-AuNPs exhibited spherical morphology with average sizes of 37.13±5.97 nm and 51.72±7.38 nm and zeta potential values of −18.31±1.39 mV and −15.17±1.24 mV at pH 7, respectively. The release efficiencies of Drp-AuNPs and Drp-AgNPs measured at 24 h were 3.99% and 18.20%, respectively. During the synthesis process, Au(III) was reduced to Au(I) and further to Au(0) and Ag(I) was reduced to Ag(0) by interactions with the hydroxyl, amine, carboxyl, phospho or sulfhydryl groups of proteins and subsequently stabilized by these groups. Some characteristics of Drp-AuNPs were different from those of Drp-AgNPs, which could be attributed to the interaction of the NPs with different binding groups of proteins. The Drp-AgNPs could be further formed into Au–Ag bimetallic NPs via galvanic replacement reaction. Drp-AuNPs and Au–Ag bimetallic NPs showed low cytotoxicity against MCF-10A cells due to the lower level of intracellular reactive oxygen species (ROS) generation than that of Drp-AgNPs. Conclusions These results are crucial to understand the biosynthetic mechanism and properties of noble metallic NPs using the protein extracts of bacteria. The biocompatible Au or Au–Ag bimetallic NPs are applicable in biosensing, bioimaging and biomedicine.
Collapse
Affiliation(s)
- Jiulong Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yulan Weng
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianjiang Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaolin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People's Republic of China
| | - Ye Jin
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Renjiang Pang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
15
|
SAXS Structural Studies of Dps from Deinococcus radiodurans Highlights the Conformation of the Mobile N-Terminal Extensions. J Mol Biol 2017; 429:667-687. [PMID: 28088481 DOI: 10.1016/j.jmb.2017.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 02/06/2023]
Abstract
The radiation-resistant bacterium Deinococcus radiodurans contains two DNA-binding proteins from starved cells (Dps): Dps1 (DR2263) and Dps2 (DRB0092). These are suggested to play a role in DNA interaction and manganese and iron storage. The proteins assemble as a conserved dodecameric structure with structurally uncharacterised N-terminal extensions. In the case of DrDps1, these extensions have been proposed to be involved in DNA interactions, while in DrDps2, their function has yet to be established. The reported data reveal the relative position of the N-terminal extensions to the dodecameric sphere in solution for both Dps. The low-resolution small angle X-ray scattering (SAXS) results show that the N-terminal extensions protrude from the spherical shell of both proteins. The SAXS envelope of a truncated form of DrDps1 without the N-terminal extensions appears as a dodecameric sphere, contrasting strongly with the protrusions observed in the full-length models. The effect of iron incorporation into DrDps2 was investigated by static and stopped-flow SAXS measurements, revealing dynamic structural changes upon iron binding and core formation, as reflected by a quick alteration of its radius of gyration. The truncated and full-length versions of DrDps were also compared on the basis of their interaction with DNA to analyse functional roles of the N-terminal extensions. DrDps1 N-terminal protrusions appear to be directly involved with DNA, whilst those from DrDps2 are indirectly associated with DNA binding. Furthermore, detection of DrDps2 in the D. radiodurans membrane fraction suggests that the N-terminus of the protein interacts with the membrane.
Collapse
|
16
|
Timmins J, Moe E. A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges. Comput Struct Biotechnol J 2016; 14:168-176. [PMID: 27924191 PMCID: PMC5128194 DOI: 10.1016/j.csbj.2016.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joanna Timmins
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Elin Moe
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica (ITQB), Universidade Nova de Lisboa, Av da Republica (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
17
|
Santos SP, Mitchell EP, Franquelim HG, Castanho MARB, Abreu IA, Romão CV. Dps fromDeinococcus radiodurans: oligomeric forms of Dps1 with distinct cellular functions and Dps2 involved in metal storage. FEBS J 2015; 282:4307-27. [DOI: 10.1111/febs.13420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 08/14/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Sandra P. Santos
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | | | - Henri G. Franquelim
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Portugal
| | | | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Biologia Experimental e Tecnológica; Oeiras Portugal
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
18
|
Grove A, Kushwaha AK, Nguyen KH. Determining the role of metal binding in protein cage assembly. Methods Mol Biol 2015; 1252:91-100. [PMID: 25358776 DOI: 10.1007/978-1-4939-2131-7_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Assembly of protein cages may require structural metal ions to nucleate or stabilize association of protein subunits. We describe here an approach to establishing the role of metal ions in protein cage assembly and stability, focusing on detecting the presence of structural metal ions as well as establishing oligomeric state. A colorimetric assay for detection of metal is described, along with a gel filtration assay to assess protein cage assembly and a fluorescence-based method for determining protein stability.
Collapse
Affiliation(s)
- Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | | | |
Collapse
|
19
|
Structures and metal-binding properties of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center. Biomolecules 2014; 4:600-15. [PMID: 24971723 PMCID: PMC4192664 DOI: 10.3390/biom4030600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/24/2023] Open
Abstract
Helicobacter pylori causes severe diseases, such as chronic gastritis, peptic ulcers, and stomach cancers. H. pylori neutrophil-activating protein (HP-NAP) is an iron storage protein that forms a dodecameric shell, promotes the adhesion of neutrophils to endothelial cells, and induces the production of reactive oxygen radicals. HP-NAP belongs to the DNA-protecting proteins under starved conditions (Dps) family, which has significant structural similarities to the dodecameric ferritin family. The crystal structures of the apo form and metal-ion bound forms, such as iron, zinc, and cadmium, of HP-NAP have been determined. This review focused on the structures and metal-binding properties of HP-NAP. These metal ions bind at the di-nuclear ferroxidase center (FOC) by different coordinating patterns. In comparison with the apo structure, metal loading causes a series of conformational changes in conserved residues among HP-NAP and Dps proteins (Trp26, Asp52, and Glu56) at the FOC. HP-NAP forms a spherical dodecamer with 23 symmetry including two kinds of pores. Metal ions have been identified around one of the pores; therefore, the negatively-charged pore is suitable for the passage of metal ions.
Collapse
|
20
|
Williams SM, Chandran AV, Vijayabaskar MS, Roy S, Balaram H, Vishveshwara S, Vijayan M, Chatterji D. A histidine aspartate ionic lock gates the iron passage in miniferritins from Mycobacterium smegmatis. J Biol Chem 2014; 289:11042-11058. [PMID: 24573673 PMCID: PMC4036245 DOI: 10.1074/jbc.m113.524421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8-2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release.
Collapse
Affiliation(s)
| | - Anu V Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Mahalingam S Vijayabaskar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom, and
| | - Sourav Roy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | | | - Mamannamana Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India,; Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| |
Collapse
|
21
|
Shu JC, Soo PC, Chen JC, Hsu SH, Chen LC, Chen CY, Liang SH, Buu LM, Chen CC. Differential regulation and activity against oxidative stress of Dps proteins in Bacillus cereus. Int J Med Microbiol 2013; 303:662-73. [DOI: 10.1016/j.ijmm.2013.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
22
|
Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress. PLoS One 2013; 8:e71579. [PMID: 24013686 PMCID: PMC3754957 DOI: 10.1371/journal.pone.0071579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress.
Collapse
|
23
|
Ardini M, Fiorillo A, Fittipaldi M, Stefanini S, Gatteschi D, Ilari A, Chiancone E. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1830:3745-55. [PMID: 23396000 DOI: 10.1016/j.bbagen.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. METHODS The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. RESULTS In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. CONCLUSIONS Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. GENERAL SIGNIFICANCE The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Functional comparison of Deinococcus radiodurans Dps proteins suggests distinct in vivo roles. Biochem J 2012; 447:381-91. [PMID: 22857940 DOI: 10.1042/bj20120902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deinococcus radiodurans exhibits extreme resistance to DNA damage and is one of only few bacteria that encode two Dps (DNA protection during starvation) proteins. Dps-1 was shown previously to bind DNA with high affinity and to localize to the D. radiodurans nucleoid. A unique feature of Dps-2 is its predicted signal peptide. In the present paper, we report that Dps-2 assembly into a dodecamer requires the C-terminal extension and, whereas Dps-2 binds DNA with low affinity, it protects against degradation by reactive oxygen species. Consistent with a role for Dps-2 in oxidative stress responses, the Dps-2 promoter is up-regulated by oxidative stress, whereas the Dps-1 promoter is not. Although DAPI (4',6-diamidino-2-phenylindole) staining of Escherichia coli nucleoids shows that Dps-1 can compact genomic DNA, such nucleoid condensation is absent from cells expressing Dps-2. A fusion of EGFP (enhanced green fluorescent protein) to the Dps-2 signal peptide results in green fluorescence at the perimeter of D. radiodurans cells. The differential response of the Dps-1 and Dps-2 promoters to oxidative stress, the distinct cellular localization of the proteins and the differential ability of Dps-1 and Dps-2 to attenuate hydroxyl radical production suggest distinct functional roles; whereas Dps-1 may function in DNA metabolism, Dps-2 may protect against exogenously derived reactive oxygen species.
Collapse
|
25
|
Tsuruta O, Yokoyama H, Fujii S. A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP). Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:134-40. [PMID: 22297984 PMCID: PMC3274388 DOI: 10.1107/s1744309111052675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/07/2011] [Indexed: 05/31/2023]
Abstract
A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP) has been determined in two forms: the native state (Apo) at 2.20 Å resolution and an iron-loaded form (Fe-load) at 2.50 Å resolution. The highly solvated packing of the dodecameric shell is suitable for crystallographic study of the metal ion-uptake pathway. Like other bacterioferritins, HP-NAP forms a spherical dodecamer with 23 symmetry including two kinds of channels. Iron loading causes a series of conformational changes of amino-acid residues (Trp26, Asp52 and Glu56) at the ferroxidase centre.
Collapse
Affiliation(s)
- Osamu Tsuruta
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Hideshi Yokoyama
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Satoshi Fujii
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| |
Collapse
|
26
|
Ping L, Platzer M, Wen G, Delaroque N. Coevolution of aah: a dps-like gene with the host bacterium revealed by comparative genomic analysis. ScientificWorldJournal 2012; 2012:504905. [PMID: 22454608 PMCID: PMC3289904 DOI: 10.1100/2012/504905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/14/2011] [Indexed: 11/17/2022] Open
Abstract
A protein named AAH was isolated from the bacterium Microbacterium arborescens SE14, a gut commensal of the lepidopteran larvae. It showed not only a high sequence similarity to Dps-like proteins (DNA-binding proteins from starved cell) but also reversible hydrolase activity. A comparative genomic analysis was performed to gain more insights into its evolution. The GC profile of the aah gene indicated that it was evolved from a low GC ancestor. Its stop codon usage was also different from the general pattern of Actinobacterial genomes. The phylogeny of dps-like proteins showed strong correlation with the phylogeny of host bacteria. A conserved genomic synteny was identified in some taxonomically related Actinobacteria, suggesting that the ancestor genes had incorporated into the genome before the divergence of Micrococcineae from other families. The aah gene had evolved new function but still retained the typical dodecameric structure.
Collapse
Affiliation(s)
- Liyan Ping
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
27
|
DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans. Biochem Biophys Res Commun 2010; 396:413-8. [PMID: 20417183 DOI: 10.1016/j.bbrc.2010.04.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/17/2010] [Indexed: 11/22/2022]
Abstract
Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.
Collapse
|
28
|
Chowdhury RP, Saraswathi R, Chatterji D. Mycobacterial stress regulation: The Dps "twin sister" defense mechanism and structure-function relationship. IUBMB Life 2010; 62:67-77. [PMID: 20014234 DOI: 10.1002/iub.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.
Collapse
|
29
|
Chiancone E, Ceci P. The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta Gen Subj 2010; 1800:798-805. [PMID: 20138126 DOI: 10.1016/j.bbagen.2010.01.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND The widely expressed Dps proteins, so named after the DNA-binding properties of the first characterized member of the family in Escherichia coli, are considered major players in the bacterial response to stress. SCOPE OF REVIEW The review describes the distinctive features of the "ferritin-like" ferroxidation reaction, which uses hydrogen peroxide as physiological iron oxidant and therefore permits the concomitant removal of the two reactants that give rise to hydroxyl radicals via Fenton chemistry. It also illustrates the structural elements identified to date that render the interaction of some Dps proteins with DNA possible and outlines briefly the significance of Dps-DNA complex formation and of the Dps interaction with other DNA-binding proteins in relation to the organization of the nucleoid and microbial survival. GENERAL SIGNIFICANCE Understanding in molecular terms the distinctive role of Dps proteins in bacterial resistance to general and specific stress conditions. MAJOR CONCLUSIONS The state of the art is that the response to oxidative and peroxide-mediated stress is mediated directly by Dps proteins via their ferritin-like activity. In contrast, the response to other stress conditions derives from the concerted interplay of diverse interactions that Dps proteins may establish with DNA and with other DNA-binding proteins.
Collapse
Affiliation(s)
- Emilia Chiancone
- Department of Biochemical Sciences 'A. Rossi Fanelli', "Sapienza" University of Rome, Rome, Italy.
| | | |
Collapse
|
30
|
Chen H, Huang L, Hua X, Yin L, Hu Y, Wang C, Chen W, Yu X, Xu Z, Tian B, Hu S, Hua Y. Pleiotropic effects of RecQ in Deinococcus radiodurans. Genomics 2009; 94:333-40. [DOI: 10.1016/j.ygeno.2009.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 07/29/2009] [Accepted: 08/01/2009] [Indexed: 11/29/2022]
|
31
|
Haikarainen T, Tsou CC, Wu JJ, Papageorgiou AC. Crystal structures of Streptococcus pyogenes Dpr reveal a dodecameric iron-binding protein with a ferroxidase site. J Biol Inorg Chem 2009; 15:183-94. [PMID: 19727858 DOI: 10.1007/s00775-009-0582-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/14/2009] [Indexed: 11/28/2022]
Abstract
DNA-binding protein from starved cells (Dps)-like proteins are key factors involved in oxidative stress protection in bacteria. They bind and oxidize iron, thus preventing the formation of harmful reactive oxygen species that can damage biomolecules, particularly DNA. Dps-like proteins are composed of 12 identical subunits assembled in a spherical structure with a hollow central cavity. The iron oxidation occurs at 12 intersubunit sites located at dimer interfaces. Streptococcus pyogenes Dps-like peroxide resistance protein (Dpr) has been previously found to protect the catalase-lacking S. pyogenes bacterium from oxidative stress. We have determined the crystal structure of S. pyogenes Dpr, the second Dpr structure from a streptococcal bacterium, in iron-free and iron-bound forms at 2.0- and 1.93-A resolution, respectively. The iron binds to well-conserved sites at dimer interfaces and is coordinated directly to Asp77 and Glu81 from one monomer, His50 from a twofold symmetry-related monomer, a glycerol molecule, and a water molecule. Upon iron binding, Asp77 and Glu81 change conformation. Site-directed mutagenesis of active-site residues His50, His62, Asp66, Asp77, and Glu81 to Ala revealed a dramatic decrease in iron incorporation. A short helix at the N-terminal was found in a different position compared with other Dps-like proteins. Two types of pores were identified in the dodecamer. Although the N-terminal pore was found to be similar to that of other Dps-like proteins, the C-terminal pore was found to be blocked by bulky Tyr residues instead of small residues present in other Dps-like proteins.
Collapse
Affiliation(s)
- Teemu Haikarainen
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | | | | | | |
Collapse
|
32
|
Daly MJ. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 2009; 7:237-45. [PMID: 19172147 DOI: 10.1038/nrmicro2073] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In classical models of radiation toxicity, DNA is the molecule that is most affected by ionizing radiation (IR). However, recent data show that the amount of protein damage caused during irradiation of bacteria is better related to survival than to DNA damage. In this Opinion article, a new model is presented in which proteins are the most important target in the hierarchy of macromolecules affected by IR. A first line of defence against IR in extremely radiation-resistant bacteria might be the accumulation of manganese complexes, which can prevent the production of iron-dependent reactive oxygen species. This would allow an irradiated cell to protect sufficient enzymatic activity needed to repair DNA and survive.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
33
|
Jiang W, Zhang B, Yin J, Liu L, Wang L, Liu C. Polymorphism of the SOD1-DNA aggregation species can be modulated by DNA. Biopolymers 2008; 89:1154-69. [PMID: 18690666 DOI: 10.1002/bip.21067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Proteinaceous aggregates rich in copper, zinc superoxide dismutase (SOD1) have been found in both in vivo and in vitro models. We have shown that double-stranded DNA that acts as a template accelerates the in vitro formation of wild-type SOD1 aggregates. Here, we examined the polymorphism of templated-SOD1 aggregates generated in vitro upon association with DNA under different conditions. Electron microscopy imaging indicates that this polymorphism is capable of being manipulated by the shapes, structures, and doses of the DNAs tested. The nanometer- and micrometer-scale aggregates formed under acidic conditions and under neutral conditions containing ascorbate fall into three classes: aggregate monomers, oligomeric aggregates, and macroaggregates. The aggregate monomers observed at given DNA doses exhibit a polymorphism that is markedly corresponded to the coiled shapes of linear DNA and structures of plasmid DNA. On the other hand, the regularly branched structures observed under both atomic force microscopy and optical microscope indicate that the DNAs tested are simultaneously condensed into a nanoparticle with a specific morphology during SOD1 aggregation, revealing that SOD1 aggregation and DNA condensation are two concurrent phenomena. The results might provide the basis of therapeutic approaches to suppress the formation of toxic protein oligomers or aggregates by screening the toxicity of the protein aggregates with various sizes and morphologies.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | |
Collapse
|
34
|
Chiancone E. Dps proteins, an efficient detoxification and DNA protection machinery in the bacterial response to oxidative stress. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s12210-008-0018-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Blasius M, Sommer S, Hübscher U. Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 2008; 43:221-38. [PMID: 18568848 DOI: 10.1080/10409230802122274] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Deinococcus radiodurans, one of the most radioresistant organisms known to date, is able to repair efficiently hundreds of DNA double- and single-strand breaks as well as other types of DNA damages promoted by ionizing or ultraviolet radiation. We review recent discoveries concerning several aspects of radioresistance and survival under high genotoxic stress. We discuss different hypotheses and possibilities that have been suggested to contribute to radioresistance and propose that D. radiodurans combines a variety of physiological tools that are tightly coordinated. A complex network of regulatory proteins may be discovered in the near future that might allow further understanding of radioresistance.
Collapse
Affiliation(s)
- Melanie Blasius
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, Zurich, Switzerland
| | | | | |
Collapse
|
36
|
A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS One 2008; 3:e1602. [PMID: 18270589 PMCID: PMC2225504 DOI: 10.1371/journal.pone.0001602] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 01/18/2008] [Indexed: 01/14/2023] Open
Abstract
In bacteria, OxyR is a peroxide sensor and transcription regulator, which can sense the presence of reactive oxygen species and induce antioxidant system. When the cells are exposed to H2O2, OxyR protein is activated via the formation of a disulfide bond between the two conserved cysteine residues (C199 and C208). In Deinococcus radiodurans, a previously unreported special characteristic of DrOxyR (DR0615) is found with only one conserved cysteine. dr0615 gene mutant is hypersensitive to H2O2, but only a little to ionizing radiation. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that the conserved cysteine (C210) is necessary for sensing H2O2, but its mutation did not alter the binding characteristics of OxyR on DNA. Under oxidant stress, DrOxyR is oxidized to sulfenic acid form, which can be reduced by reducing reagents. In addition, quantitative real-time PCR and global transcription profile results showed that OxyR is not only a transcriptional activator (e.g., katE, drb0125), but also a transcriptional repressor (e.g., dps, mntH). Because OxyR regulates Mn and Fe ion transporter genes, Mn/Fe ion ratio is changed in dr0615 mutant, suggesting that the genes involved in Mn/Fe ion homeostasis, and the genes involved in antioxidant mechanism are highly cooperative under extremely oxidant stress. In conclusion, these findings expand the OxyR family, which could be divided into two classes: typical 2-Cys OxyR and 1-Cys OxyR.
Collapse
|
37
|
Roy S, Saraswathi R, Chatterji D, Vijayan M. Structural studies on the second Mycobacterium smegmatis Dps: invariant and variable features of structure, assembly and function. J Mol Biol 2007; 375:948-59. [PMID: 18061613 DOI: 10.1016/j.jmb.2007.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/16/2022]
Abstract
A second DNA binding protein from stationary-phase cells of Mycobacterium smegmatis (MsDps2) has been identified from the bacterial genome. It was cloned, expressed and characterised and its crystal structure was determined. The core dodecameric structure of MsDps2 is the same as that of the Dps from the organism described earlier (MsDps1). However, MsDps2 possesses a long N-terminal tail instead of the C-terminal tail in MsDps1. This tail appears to be involved in DNA binding. It is also intimately involved in stabilizing the dodecamer. Partly on account of this factor, MsDps2 assembles straightway into the dodecamer, while MsDps1 does so on incubation after going through an intermediate trimeric stage. The ferroxidation centre is similar in the two proteins, while the pores leading to it exhibit some difference. The mode of sequestration of DNA in the crystalline array of molecules, as evidenced by the crystal structures, appears to be different in MsDps1 and MsDps2, highlighting the variability in the mode of Dps-DNA complexation. A sequence search led to the identification of 300 Dps molecules in bacteria with known genome sequences. Fifty bacteria contain two or more types of Dps molecules each, while 195 contain only one type. Some bacteria, notably some pathogenic ones, do not contain Dps. A sequence signature for Dps could also be derived from the analysis.
Collapse
Affiliation(s)
- Siddhartha Roy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|