1
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
2
|
Yu X, Mao C, Wang W, Kulshrestha S, Zhang P, Usman M, Zong S, Hilal MG, Fang Y, Han H, Li X. Reduction of metronidazole in municipal wastewater and protection of activated sludge system using a novel immobilized Aspergillus tabacinus LZ-M. BIORESOURCE TECHNOLOGY 2023; 369:128509. [PMID: 36538960 DOI: 10.1016/j.biortech.2022.128509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Metronidazole (MNZ) accumulation inhibits municipal wastewater treatment bio-systems, and an effective solution to augment anaerobic activated sludge (AAS) is required. This research discovered that Aspergillus tabacinus LZ-M could degrade 77.39% of MNZ at 5 mg/L. MNZ was metabolized into urea, and the enzymes involved in its degradation were aminotransferase, methyltransferase, monooxygenase, and CN cleavage hydrolase. The strain was immobilized in polyurethane foam and used in AAS for the treatment of MNZ-containing municipal wastewater. The results showed that, using immobilized LZ-M, MNZ was completely removed, and the degradation efficiency of wastewater's chemical oxygen demand (COD) was increased from 11.7% to 83.31%. The extracellular polymer and ROS levels indicated that MNZ's toxicity on AAS was reduced. Furthermore, bioaugmentation stabilized its microbial community, and decreased MNZ resistance genes. These observations confirm that the immobilized fungi are effective in protecting AAS against antibiotic contamination in the treatment process of municipal wastewater.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Saurabh Kulshrestha
- School of Biotechnology Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173212, Himachal Pradesh, India
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730020, Gansu, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Mian Gul Hilal
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Diwo M, Michel W, Aurass P, Kuhle-Keindorf K, Pippel J, Krausze J, Wamp S, Lang C, Blankenfeldt W, Flieger A. NAD(H)-mediated tetramerization controls the activity of Legionella pneumophila phospholipase PlaB. Proc Natl Acad Sci U S A 2021; 118:e2017046118. [PMID: 34074754 PMCID: PMC8201859 DOI: 10.1073/pnas.2017046118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of Legionella pneumophila, the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form. We found that the tetramer is a dimer of identical dimers, and a monomer consists of an N-terminal α/β-hydrolase domain expanded by two noncanonical two-stranded β-sheets, β-6/β-7 and β-9/β-10. The C-terminal domain reveals a fold displaying a bilobed β-sandwich with a hook structure required for dimer formation and structural complementation of the enzymatic domain in the neighboring monomer. This highlights the dimer as the active form. Δβ-9/β-10 mutants showed a decrease in the tetrameric fraction and altered activity profiles. The variant also revealed restricted binding to membranes resulting in mislocalization and bacterial lysis. Unexpectedly, we observed eight NAD(H) molecules at the dimer/dimer interface, suggesting that these molecules stabilize the tetramer and hence lead to enzyme inactivation. Indeed, addition of NAD(H) increased the fraction of the tetramer and concomitantly reduced activity. Together, these data reveal structural elements and an unprecedented NAD(H)-mediated tetramerization mechanism required for spatial and enzymatic control of a phospholipase virulence factor. The allosteric regulatory process identified here is suited to fine tune PlaB in a way that protects Legionella pneumophila from self-inflicted lysis while ensuring its activity at the pathogen-host interface.
Collapse
Affiliation(s)
- Maurice Diwo
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Katja Kuhle-Keindorf
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Jan Pippel
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joern Krausze
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany;
| |
Collapse
|
4
|
You C, Li F, Zhang X, Ma L, Zhang YZ, Zhang W, Li S. Structural basis for substrate specificity of the peroxisomal acyl-CoA hydrolase MpaH' involved in mycophenolic acid biosynthesis. FEBS J 2021; 288:5768-5780. [PMID: 33843134 DOI: 10.1111/febs.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Mycophenolic acid (MPA) is a fungal natural product and first-line immunosuppressive drug for organ transplantations and autoimmune diseases. In the compartmentalized biosynthesis of MPA, the acyl-coenzyme A (CoA) hydrolase MpaH' located in peroxisomes catalyzes the highly specific hydrolysis of MPA-CoA to produce the final product MPA. The strict substrate specificity of MpaH' not only averts undesired hydrolysis of various cellular acyl-CoAs, but also prevents MPA-CoA from further peroxisomal β-oxidation catabolism. To elucidate the structural basis for this important property, in this study, we solve the crystal structures of the substrate-free form of MpaH' and the MpaH'S139A mutant in complex with the product MPA. The MpaH' structure reveals a canonical α/β-hydrolase fold with an unusually large cap domain and a rare location of the acidic residue D163 of catalytic triad after strand β6. MpaH' also forms an atypical dimer with the unique C-terminal helices α13 and α14 arming the cap domain of the other protomer and indirectly participating in the substrate binding. With these characteristics, we propose that MpaH' and its homologs form a new subfamily of α/β hydrolase fold protein. The crystal structure of MpaH'S139A /MPA complex and the modeled structure of MpaH'/MPA-CoA, together with the structure-guided mutagenesis analysis and isothermal titration calorimetry (ITC) measurements, provide important mechanistic insights into the high substrate specificity of MpaH'.
Collapse
Affiliation(s)
- Cai You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
5
|
Zhang H, Hantke V, Bruhnke P, Skellam EJ, Cox RJ. Chemical and Genetic Studies on the Formation of Pyrrolones During the Biosynthesis of Cytochalasans. Chemistry 2021; 27:3106-3113. [PMID: 33146923 PMCID: PMC7898483 DOI: 10.1002/chem.202004444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 01/17/2023]
Abstract
A key step during the biosynthesis of cytochalasans is a proposed Knoevenagel condensation to form the pyrrolone core, enabling the subsequent 4+2 cycloaddition reaction that results in the characteristic octahydroisoindolone motif of all cytochalasans. In this work, we investigate the role of the highly conserved α,β-hydrolase enzymes PyiE and ORFZ during the biosynthesis of pyrichalasin H and the ACE1 metabolite, respectively, using gene knockout and complementation techniques. Using synthetic aldehyde models we demonstrate that the Knoevenagel condensation proceeds spontaneously but results in the 1,3-dihydro-2H-pyrrol-2-one tautomer, rather than the required 1,5-dihydro-2H-pyrrol-2-one tautomer. Taken together our results suggest that the α,β-hydrolase enzymes are essential for first ring cyclisation, but the precise nature of the intermediates remains to be determined.
Collapse
Affiliation(s)
- Haili Zhang
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Verena Hantke
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Pia Bruhnke
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Elizabeth J. Skellam
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current Address: Department of ChemistryUniversity of North Texas1508 W Mulberry30167DentonTexasUSA
| | - Russell J. Cox
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
6
|
Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from Pseudomonas geniculata N1, the Key Enzyme Involved in Nicotine Degradation. Appl Environ Microbiol 2020; 86:AEM.01559-20. [PMID: 32737127 DOI: 10.1128/aem.01559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in Pseudomonas geniculata N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-S-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a "butterfly bend" conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products.IMPORTANCE Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways; Pseudomonas geniculata N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from Pseudomonas geniculata N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.
Collapse
|
7
|
Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS One 2020; 15:e0229376. [PMID: 32084230 PMCID: PMC7034887 DOI: 10.1371/journal.pone.0229376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta-Hydrolases (ABH) are a structural class of proteins that are found widespread in nature and includes enzymes that can catalyze various reactions in different substrates. The catalytic versatility of the ABH fold enzymes, which has been a valuable property in protein engineering applications, is based on a similar acid-base-nucleophile catalytic mechanism. In our research, we are concerned with the structure that surrounds the key units of the catalytic machinery, and we have previously found conserved structural organizations that coordinate the catalytic acid, the catalytic nucleophile and the residues of the oxyanion hole. Here, we explore the architecture that surrounds the catalytic histidine at the active sites of enzymes from 40 ABH fold families, where we have identified six conserved interactions that coordinate the catalytic histidine next to the catalytic acid and the catalytic nucleophile. Specifically, the catalytic nucleophile is coordinated next to the catalytic histidine by two weak hydrogen bonds, while the catalytic acid is directly involved in the coordination of the catalytic histidine through by two weak hydrogen bonds. The imidazole ring of the catalytic histidine is coordinated by a CH-π contact and a hydrophobic interaction. Moreover, the catalytic triad residues are connected with a residue that is located at the core of the active site of ABH fold, which is suggested to be the fourth member of a “structural catalytic tetrad”. Besides their role in the stability of the catalytic mechanism, the conserved elements of the catalytic site are actively involved in ligand binding and affect other properties of the catalytic activity, such as substrate specificity, enantioselectivity, pH optimum and thermostability of ABH fold enzymes. These properties are regularly targeted in protein engineering applications, and thus, the identified conserved structural elements can serve as potential modification sites in order to develop ABH fold enzymes with altered activities.
Collapse
Affiliation(s)
- Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
- * E-mail:
| | - Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
8
|
Zhou Q, Bräuer A, Adihou H, Schmalhofer M, Saura P, Grammbitter GLC, Kaila VRI, Groll M, Bode HB. Molecular mechanism of polyketide shortening in anthraquinone biosynthesis of Photorhabdus luminescens. Chem Sci 2019; 10:6341-6349. [PMID: 31341589 PMCID: PMC6601290 DOI: 10.1039/c9sc00749k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Anthraquinones, produced by a type II polyketide synthase in Photorhabdus luminescens, are derived from polyketide chain shortening.
Anthraquinones, a widely distributed class of aromatic natural products, are produced by a type II polyketide synthase system in the Gram-negative bacterium Photorhabdus luminescens. Heterologous expression of the antABCDEFGHI anthraquinone biosynthetic gene cluster in Escherichia coli identified AntI as an unusual lyase, catalysing terminal polyketide shortening prior to formation of the third aromatic ring. Functional in vitro and in vivo analysis of AntI using X-ray crystallography, structure-based mutagenesis, and molecular simulations revealed that AntI converts a defined octaketide to the tricyclic anthraquinone ring via retro-Claisen and Dieckmann reactions. Thus, AntI catalyses a so far unobserved multistep reaction in this PKS system.
Collapse
Affiliation(s)
- Qiuqin Zhou
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| | - Alois Bräuer
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Hélène Adihou
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| | - Maximilian Schmalhofer
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Patricia Saura
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Gina L C Grammbitter
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| | - Ville R I Kaila
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM) , Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , 85748 Garching , Germany .
| | - Helge B Bode
- Molekulare Biotechnologie , Fachbereich Biowissenschaften , Buchmann Institute for Molecular Life Sciences (BMLS) , Goethe Universität Frankfurt , Max-von-Laue-Str. 15, Max-von-Laue-Str. 9 , 60438 Frankfurt am Main , Germany .
| |
Collapse
|
9
|
Lees NR, Han LC, Byrne MJ, Davies JA, Parnell AE, Moreland PEJ, Stach JEM, van der Kamp MW, Willis CL, Race PR. An Esterase-like Lyase Catalyzes Acetate Elimination in Spirotetronate/Spirotetramate Biosynthesis. Angew Chem Int Ed Engl 2019; 58:2305-2309. [PMID: 30664319 DOI: 10.1002/anie.201812105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/09/2022]
Abstract
Spirotetronate and spirotetramate natural products include a multitude of compounds with potent antimicrobial and antitumor activities. Their biosynthesis incorporates many unusual biocatalytic steps, including regio- and stereo-specific modifications, cyclizations promoted by Diels-Alderases, and acetylation-elimination reactions. Here we focus on the acetate elimination catalyzed by AbyA5, implicated in the formation of the key Diels-Alder substrate to give the spirocyclic system of the antibiotic abyssomicin C. Using synthetic substrate analogues, it is shown that AbyA5 catalyzes stereospecific acetate elimination, establishing the (R)-tetronate acetate as a biosynthetic intermediate. The X-ray crystal structure of AbyA5, the first of an acetate-eliminating enzyme, reveals a deviant acetyl esterase fold. Molecular dynamics simulations and enzyme assays show the use of a His-Ser dyad to catalyze either elimination or hydrolysis, via disparate mechanisms, under substrate control.
Collapse
Affiliation(s)
- Nicholas R Lees
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| | - Li-Chen Han
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| | - Matthew J Byrne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| | - Jonathan A Davies
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| | - Alice E Parnell
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| | - Pollyanna E J Moreland
- School of Biology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Centre for Synthetic Biology and the Bioeconomy, Newcastle-upon-Tyne, NE2 4AX, UK
| | - James E M Stach
- School of Biology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Centre for Synthetic Biology and the Bioeconomy, Newcastle-upon-Tyne, NE2 4AX, UK
| | - Marc W van der Kamp
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
10
|
Lees NR, Han LC, Byrne MJ, Davies JA, Parnell AE, Moreland PEJ, Stach JEM, van der Kamp MW, Willis CL, Race PR. An Esterase-like Lyase Catalyzes Acetate Elimination in Spirotetronate/Spirotetramate Biosynthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicholas R. Lees
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| | - Li-Chen Han
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| | - Matthew J. Byrne
- School of Biochemistry; University of Bristol; Bristol BS8 1TD UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| | - Jonathan A. Davies
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| | - Alice E. Parnell
- School of Biochemistry; University of Bristol; Bristol BS8 1TD UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| | - Pollyanna E. J. Moreland
- School of Biology; Newcastle University; Newcastle-upon-Tyne NE1 7RU UK
- Centre for Synthetic Biology and the Bioeconomy; Newcastle-upon-Tyne NE2 4AX UK
| | - James E. M. Stach
- School of Biology; Newcastle University; Newcastle-upon-Tyne NE1 7RU UK
- Centre for Synthetic Biology and the Bioeconomy; Newcastle-upon-Tyne NE2 4AX UK
| | - Marc W. van der Kamp
- School of Biochemistry; University of Bristol; Bristol BS8 1TD UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| | - Christine L. Willis
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| | - Paul R. Race
- School of Biochemistry; University of Bristol; Bristol BS8 1TD UK
- BrisSynBio Synthetic Biology Research Centre; University of Bristol; Bristol BS8 1TQ UK
| |
Collapse
|
11
|
Dimitriou PS, Denesyuk AI, Nakayama T, Johnson MS, Denessiouk K. Distinctive structural motifs co-ordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes. Protein Sci 2018; 28:344-364. [PMID: 30311984 DOI: 10.1002/pro.3527] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
The alpha/beta-hydrolases (ABH) are among the largest structural families of proteins that are found in nature. Although they vary in their sequence and function, the ABH enzymes use a similar acid-base-nucleophile catalytic mechanism to catalyze reactions on different substrates. Because ABH enzymes are biocatalysts with a wide range of potential applications, protein engineering has taken advantage of their catalytic versatility to develop enzymes with industrial applications. This study is a comprehensive analysis of 40 ABH enzyme families focusing on two identified substructures: the nucleophile zone and the oxyanion zone, which co-ordinate the catalytic nucleophile and the residues of the oxyanion hole, and independently reported as critical for the enzymatic activity. We also frequently observed an aromatic cluster near the nucleophile and oxyanion zones, and opposite the ligand-binding site. The nucleophile zone, the oxyanion zone and the residue cluster enriched in aromatic side chains comprise a three-dimensional structural organization that shapes the active site of ABH enzymes and plays an important role in the enzymatic function by structurally stabilizing the catalytic nucleophile and the residues of the oxyanion hole. The structural data support the notion that the aromatic cluster can participate in co-ordination of the catalytic histidine loop, and properly place the catalytic histidine next to the catalytic nucleophile.
Collapse
Affiliation(s)
- Polytimi S Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander I Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Toru Nakayama
- Tohoku University, Biomolecular Engineering, Sendai, Miyagi, 980-8579, Japan
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
12
|
Fitzpatrick PF. The enzymes of microbial nicotine metabolism. Beilstein J Org Chem 2018; 14:2295-2307. [PMID: 30202483 PMCID: PMC6122326 DOI: 10.3762/bjoc.14.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Because of nicotine's toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon-nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
13
|
Rauwerdink A, Kazlauskas RJ. How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes. ACS Catal 2015; 5:6153-6176. [PMID: 28580193 DOI: 10.1021/acscatal.5b01539] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes within a family often catalyze different reactions. In some cases, this variety stems from different catalytic machinery, but in other cases the machinery is identical; nevertheless, the enzymes catalyze different reactions. In this review, we examine the subset of α/β-hydrolase fold enzymes that contain the serine-histidine-aspartate catalytic triad. In spite of having the same protein fold and the same core catalytic machinery, these enzymes catalyze seventeen different reaction mechanisms. The most common reactions are hydrolysis of C-O, C-N and C-C bonds (Enzyme Classification (EC) group 3), but other enzymes are oxidoreductases (EC group 1), acyl transferases (EC group 2), lyases (EC group 4) or isomerases (EC group 5). Hydrolysis reactions often follow the canonical esterase mechanism, but eight variations occur where either the formation or cleavage of the acyl enzyme intermediate differs. The remaining eight mechanisms are lyase-type elimination reactions, which do not have an acyl enzyme intermediate and, in four cases, do not even require the catalytic serine. This diversity of mechanisms from the same catalytic triad stems from the ability of the enzymes to bind different substrates, from the requirements for different chemical steps imposed by these new substrates and, only in about half of the cases, from additional hydrogen bond partners or additional general acids/bases in the active site. This detailed analysis shows that binding differences and non-catalytic residues create new mechanisms and are essential for understanding and designing efficient enzymes.
Collapse
Affiliation(s)
- Alissa Rauwerdink
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
14
|
Heath RS, Pontini M, Bechi B, Turner NJ. Development of anR-Selective Amine Oxidase with Broad Substrate Specificity and High Enantioselectivity. ChemCatChem 2014. [DOI: 10.1002/cctc.201301008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
|
16
|
|
17
|
Charavgi MD, Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED. The structure of a novel glucuronoyl esterase from Myceliophthora thermophila gives new insights into its role as a potential biocatalyst. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:63-73. [PMID: 23275164 DOI: 10.1107/s0907444912042400] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/10/2012] [Indexed: 11/10/2022]
Abstract
The increasing demand for the development of efficient biocatalysts is a consequence of their broad industrial applications. Typical difficulties that are encountered during their exploitation in a variety of processes are interconnected with factors such as temperature, pH, product inhibitors etc. To eliminate these, research has been directed towards the identification of new enzymes that would comply with the required standards. To this end, the recently discovered glucuronoyl esterases (GEs) are an enigmatic family within the carbohydrate esterase (CE) family. Structures of the thermophilic StGE2 esterase from Myceliophthora thermophila (synonym Sporotrichum thermophile), a member of the CE15 family, and its S213A mutant were determined at 1.55 and 1.9 Å resolution, respectively. The first crystal structure of the S213A mutant in complex with a substrate analogue, methyl 4-O-methyl-β-D-glucopyranuronate, was determined at 2.35 Å resolution. All of the three-dimensional protein structures have an α/β-hydrolase fold with a three-layer αβα-sandwich architecture and a Rossmann topology and comprise one molecule per asymmetric unit. These are the first crystal structures of a thermophilic GE both in an unliganded form and bound to a substrate analogue, thus unravelling the organization of the catalytic triad residues and their neighbours lining the active site. The knowledge derived offers novel insights into the key structural elements that drive the hydrolysis of glucuronic acid esters.
Collapse
Affiliation(s)
- Maria Despoina Charavgi
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
18
|
Kagan M, Dain J, Peng L, Reynolds C. Metabolism and pharmacokinetics of indacaterol in humans. Drug Metab Dispos 2012; 40:1712-22. [PMID: 22648561 DOI: 10.1124/dmd.112.046151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The metabolism, pharmacokinetics, and excretion of [(14)C]indacaterol were investigated in healthy male subjects. Although indacaterol is administered to patients via inhalation, the dose in this study was administered orally. This was done to avoid the complications and concerns associated with the administration of a radiolabeled compound via the inhalation route. The submilligram doses administered in this study made metabolite identification and structural elucidation by mass spectrometry especially challenging. In serum, the mean t(max), C(max), and AUC(0-last) values were 1.75 h, 0.47 ng/ml, and 1.81 ng · h/ml for indacaterol and 2.5 h, 1.4 ngEq/ml, and 27.2 ngEq · h/ml for total radioactivity. Unmodified indacaterol was the most abundant drug-related compound in the serum, contributing 30% to the total radioactivity in the AUC(0-24h) pools, whereas monohydroxylated indacaterol (P26.9), the glucuronide conjugate of P26.9 (P19), and the 8-O-glucuronide conjugate of indacaterol (P37) were the most abundant metabolites, with each contributing 4 to 13%. In addition, the N-glucuronide (2-amino) conjugate (P37.7) and two metabolites (P38.2 and P39) that resulted from the cleavage about the aminoethanol group linking the hydroxyquinolinone and diethylindane moieties had a combined contribution of 12.5%. For all four subjects in the study, ≥90% of the radioactivity dose was recovered in the excreta (85% in feces and 10% in urine, mean values). In feces, unmodified indacaterol and metabolite P26.9 were the most abundant drug-related compounds (54 and 17% of the dose, respectively). In urine, unmodified indacaterol accounted for ∼0.3% of the dose, with no single metabolite accounting for >1.3%.
Collapse
Affiliation(s)
- Mark Kagan
- One Health Plaza, Novartis Institutes for Biomedical Research, East Hanover, NJ 07936-1080, USA.
| | | | | | | |
Collapse
|
19
|
Pokkuluri PR, Duke NEC, Wood SJ, Cotta MA, Li XL, Biely P, Schiffer M. Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina. Proteins 2011; 79:2588-92. [PMID: 21661060 DOI: 10.1002/prot.23088] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/07/2011] [Accepted: 04/19/2011] [Indexed: 11/10/2022]
Abstract
The structure of the catalytic domain of glucuronoyl esterase Cip2 from the fungus H. jecorina was determined at a resolution of 1.9 Å. This is the first structure of the newly established carbohydrate esterase family 15. The structure has revealed the residues Ser278-His411-Glu301 present in a triad arrangement as the active site. Ser278 is present in the novel consensus sequence GCSRXG reported earlier in the members of CE-15 family. The active site is exposed on the surface of the protein which has implications for the ability of the enzyme to hydrolyze ester bonds of large substrates. Efforts are underway to obtain crystals of Cip2_GE complexed with inhibitor and synthetic substrates. The activity of the glucuronoyl esterase could play a significant role in plant biomass degradation as its expected role is to separate the lignin from hemicelluloses by hydrolysis of the ester bond between 4-O-methyl-D-glucuronic acid moieties of glucuronoxylans and aromatic alcohols of lignin.
Collapse
Affiliation(s)
- Phani Raj Pokkuluri
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dawson A, Fyfe PK, Gillet F, Hunter WN. Exploiting the high-resolution crystal structure of Staphylococcus aureus MenH to gain insight into enzyme activity. BMC STRUCTURAL BIOLOGY 2011; 11:19. [PMID: 21513522 PMCID: PMC3097144 DOI: 10.1186/1472-6807-11-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/22/2011] [Indexed: 11/23/2022]
Abstract
Background MenH (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase) is a key enzyme in the biosynthesis of menaquinone, catalyzing an unusual 2,5-elimination of pyruvate from 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate. Results The crystal structure of Staphylococcus aureus MenH has been determined at 2 Å resolution. In the absence of a complex to inform on aspects of specificity a model of the enzyme-substrate complex has been used in conjunction with previously published kinetic analyses, site-directed mutagenesis studies and comparisons with orthologues to investigate the structure and reactivity of MenH. Conclusions The overall basic active site displays pronounced hydrophobic character on one side and these properties complement those of the substrate. A complex network of hydrogen bonds involving well-ordered water molecules serves to position key residues participating in the recognition of substrate and subsequent catalysis. We propose a proton shuttle mechanism, reliant on a catalytic triad consisting of Ser89, Asp216 and His243. The reaction is initiated by proton abstraction from the substrate by an activated Ser89. The propensity to form a conjugated system provides the driving force for pyruvate elimination. During the elimination, a methylene group is converted to a methyl and we judge it likely that His243 provides a proton, previously acquired from Ser89 for that reduction. A conformational change of the protonated His243 may be encouraged by the presence of an anionic intermediate in the active site.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | |
Collapse
|
21
|
He YX, Huang L, Xue Y, Fei X, Teng YB, Rubin-Pitel SB, Zhao H, Zhou CZ. Crystal structure and computational analyses provide insights into the catalytic mechanism of 2,4-diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens. J Biol Chem 2010; 285:4603-11. [PMID: 20018877 PMCID: PMC2836065 DOI: 10.1074/jbc.m109.044180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/03/2009] [Indexed: 12/24/2022] Open
Abstract
2,4-Diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens catalyzes hydrolytic carbon-carbon (C-C) bond cleavage of the antibiotic 2,4-diacetylphloroglucinol to form monoacetylphloroglucinol, a rare class of reactions in chemistry and biochemistry. To investigate the catalytic mechanism of this enzyme, we determined the three-dimensional structure of PhlG at 2.0 A resolution using x-ray crystallography and MAD methods. The overall structure includes a small N-terminal domain mainly involved in dimerization and a C-terminal domain of Bet v1-like fold, which distinguishes PhlG from the classical alpha/beta-fold hydrolases. A dumbbell-shaped substrate access tunnel was identified to connect a narrow interior amphiphilic pocket to the exterior solvent. The tunnel is likely to undergo a significant conformational change upon substrate binding to the active site. Structural analysis coupled with computational docking studies, site-directed mutagenesis, and enzyme activity analysis revealed that cleavage of the 2,4-diacetylphloroglucinol C-C bond proceeds via nucleophilic attack by a water molecule, which is coordinated by a zinc ion. In addition, residues Tyr(121), Tyr(229), and Asn(132), which are predicted to be hydrogen-bonded to the hydroxyl groups and unhydrolyzed acetyl group, can finely tune and position the bound substrate in a reactive orientation. Taken together, these results revealed the active sites and zinc-dependent hydrolytic mechanism of PhlG and explained its substrate specificity as well.
Collapse
Affiliation(s)
- Yong-Xing He
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Liang Huang
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Yanyan Xue
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Xue Fei
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Yan-Bin Teng
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | | | - Huimin Zhao
- the Departments of Chemical and Biomolecular Engineering and
- Chemistry and
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Cong-Zhao Zhou
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| |
Collapse
|
22
|
|