1
|
Deng P, Xu L, Wei Y, Sun F, Li L, Zhang WB, Gao H. Deep Learning-Assisted Discovery of Protein Entangling Motifs. Biomacromolecules 2025; 26:1520-1529. [PMID: 39937127 DOI: 10.1021/acs.biomac.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Natural topological proteins exhibit unique properties including enhanced stability, controlled quaternary structures, and dynamic switching properties, highlighting topology as a unique dimension in protein engineering. Although artificial design and synthesis of topological proteins have achieved certain success, their diversity and complexity remain rather limited due to the scarcity of available entangling motifs essential for the construction of nontrivial protein topologies. In this work, we developed a deep-learning model to predict the entanglement features of a homodimer based solely on its amino acid sequence via the Gauss linking number matrices. The model achieved a search speed that was dozens of times faster than AlphaFold-Multimer, while maintaining comparable mean squared error. It was used to screen for entangling motifs from the genome of a hyperthermophilic archaeon. We demonstrated the effectiveness of our model by successful wet-lab synthesis of protein catenanes using two candidate entangling motifs. These findings show the great potential of our model for advancing the design and synthesis of novel topological proteins.
Collapse
Affiliation(s)
- Puqing Deng
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ying Wei
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| | - Linyan Li
- Department of Data Science, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- AI for Science (AI4S)-Preferred Program, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Hanyu Gao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| |
Collapse
|
2
|
Dabrowski‐Tumanski P, Goundaroulis D, Stasiak A, Rawdon EJ, Sulkowska JI. Theta-curves in proteins. Protein Sci 2024; 33:e5133. [PMID: 39167036 PMCID: PMC11337915 DOI: 10.1002/pro.5133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
We study and characterize the topology of connectivity circuits observed in natively folded protein structures whose coordinates are deposited in the Protein Data Bank (PDB). Polypeptide chains of some proteins naturally fold into unique knotted configurations. Another kind of nontrivial topology of polypeptide chains is observed when, in addition to covalent bonds connecting consecutive amino acids in polypeptide chains, one also considers disulfide and ionic bonds between non-consecutive amino acids. Bonds between non-consecutive amino acids introduce bifurcation points into connectivity circuits defined by bonds between consecutive and nonconsecutive amino acids in analyzed proteins. Circuits with bifurcation points can form θ-curves with various topologies. We catalog here the observed topologies of θ-curves passing through bridges between consecutive and non-consecutive amino acids in studied proteins.
Collapse
Affiliation(s)
| | - Dimos Goundaroulis
- Center for Genome Architecture, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Center for Theoretical Biological PhysicsRice UniversityHoustonTexasUSA
| | - Andrzej Stasiak
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Eric J. Rawdon
- Department of MathematicsUniversity of St. ThomasSt. PaulMinnesotaUSA
| | | |
Collapse
|
3
|
Castells-Graells R, Yeates TO. Making topological protein links using enzymatic reactions. Natl Sci Rev 2024; 11:nwae071. [PMID: 38572076 PMCID: PMC10990160 DOI: 10.1093/nsr/nwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Roger Castells-Graells
- Department of Chemistry and Biochemistry, University of California, USA
- UCLA-DOE Institute for Genomics and Proteomics, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, USA
- UCLA-DOE Institute for Genomics and Proteomics, USA
| |
Collapse
|
4
|
Heo L, Feig M. One bead per residue can describe all-atom protein structures. Structure 2024; 32:97-111.e6. [PMID: 38000367 PMCID: PMC10872525 DOI: 10.1016/j.str.2023.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Atomistic resolution is the standard for high-resolution biomolecular structures, but experimental structural data are often at lower resolution. Coarse-grained models are also used extensively in computational studies to reach biologically relevant spatial and temporal scales. This study explores the use of advanced machine learning networks for reconstructing atomistic models from reduced representations. The main finding is that a single bead per amino acid residue allows construction of accurate and stereochemically realistic all-atom structures with minimal loss of information. This suggests that lower resolution representations of proteins may be sufficient for many applications when combined with a machine learning framework that encodes knowledge from known structures. Practical applications include the rapid addition of atomistic detail to low-resolution structures from experiment or computational coarse-grained models. The application of rapid, deterministic all-atom reconstruction within multi-scale frameworks is further demonstrated with a rapid protocol for the generation of accurate models from cryo-EM densities close to experimental structures.
Collapse
Affiliation(s)
- Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Hou Y, Xie T, He L, Tao L, Huang J. Topological links in predicted protein complex structures reveal limitations of AlphaFold. Commun Biol 2023; 6:1098. [PMID: 37898666 PMCID: PMC10613300 DOI: 10.1038/s42003-023-05489-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
AlphaFold is making great progress in protein structure prediction, not only for single-chain proteins but also for multi-chain protein complexes. When using AlphaFold-Multimer to predict protein‒protein complexes, we observed some unusual structures in which chains are looped around each other to form topologically intertwining links at the interface. Based on physical principles, such topological links should generally not exist in native protein complex structures unless covalent modifications of residues are involved. Although it is well known and has been well studied that protein structures may have topologically complex shapes such as knots and links, existing methods are hampered by the chain closure problem and show poor performance in identifying topologically linked structures in protein‒protein complexes. Therefore, we address the chain closure problem by using sliding windows from a local perspective and propose an algorithm to measure the topological-geometric features that can be used to identify topologically linked structures. An application of the method to AlphaFold-Multimer-predicted protein complex structures finds that approximately 1.72% of the predicted structures contain topological links. The method presented in this work will facilitate the computational study of protein‒protein interactions and help further improve the structural prediction of multi-chain protein complexes.
Collapse
Affiliation(s)
- Yingnan Hou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Tengyu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China.
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
6
|
Qu Z, Fang J, Wang YX, Sun Y, Liu Y, Wu WH, Zhang WB. A single-domain green fluorescent protein catenane. Nat Commun 2023; 14:3480. [PMID: 37311944 DOI: 10.1038/s41467-023-39233-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Natural proteins exhibit rich structural diversity based on the folds of an invariably linear chain. Macromolecular catenanes that cooperatively fold into a single domain do not belong to the current protein universe, and their design and synthesis open new territories in chemistry. Here, we report the design, synthesis, and properties of a single-domain green fluorescent protein catenane via rewiring the connectivity of GFP's secondary motifs. The synthesis could be achieved in two steps via a pseudorotaxane intermediate or directly via expression in cellulo. Various proteins-of-interest may be inserted at the loop regions to give fusion protein catenanes where the two subunits exhibit enhanced thermal resilience, thermal stability, and mechanical stability due to strong conformational coupling. The strategy can be applied to other proteins with similar fold, giving rise to a family of single-domain fluorescent proteins. The results imply that there may be multiple protein topological variants with desirable functional traits beyond their corresponding linear protein counterparts, which are now made accessible and fully open for exploration.
Collapse
Affiliation(s)
- Zhiyu Qu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yu-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China.
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China.
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China.
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Beijing Academy of Artificial Intelligence, Beijing, P. R. China.
| |
Collapse
|
7
|
Pathirage R, Favrot L, Petit C, Yamsek M, Singh S, Mallareddy JR, Rana S, Natarajan A, Ronning DR. Mycobacterium tuberculosis CitA activity is modulated by cysteine oxidation and pyruvate binding. RSC Med Chem 2023; 14:921-933. [PMID: 37252106 PMCID: PMC10211323 DOI: 10.1039/d3md00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/05/2023] [Indexed: 11/12/2023] Open
Abstract
As an adaptation for survival during infection, Mycobacterium tuberculosis becomes dormant, reducing its metabolism and growth. Two types of citrate synthases have been identified in Mycobacterium tuberculosis, GltA2 and CitA. Previous work shows that overexpression of CitA, the secondary citrate synthase, stimulates the growth of Mycobacterium tuberculosis under hypoxic conditions without showing accumulation of triacylglycerols and makes mycobacteria more sensitive to antibiotics, suggesting that CitA may play a role as a metabolic switch during infection and may be an interesting TB drug target. To assess the druggability and possible mechanisms of targeting CitA with small-molecule compounds, the CitA crystal structure was solved to 2.1 Å by X-ray crystallography. The solved structure shows that CitA lacks an NADH binding site that would afford allosteric regulation, which is atypical of most citrate synthases. However, a pyruvate molecule is observed within the analogous domain, suggesting pyruvate may instead be the allosteric regulator for CitA. The R149 and R153 residues forming the charged portion of the pyruvate binding pocket were mutated to glutamate and methionine, respectively, to assess the effect of mutations on activity. Protein thermal shift assay shows thermal stabilization of CitA in the presence of pyruvate compared to the two CitA variants designed to decrease pyruvate affinity. Solved crystal structures of both variants show no significant structural changes. However, the catalytic efficiency of the R153M variant increases by 2.6-fold. Additionally, we show that covalent modification of C143 of CitA by Ebselen completely arrests enzyme activity. Similar inhibition is observed using two spirocyclic Michael acceptor containing compounds, which inhibit CitA with ICapp50 values of 6.6 and 10.9 μM. A crystal structure of CitA modified by Ebselen was solved, but significant structural changes were lacking. Considering that covalent modification of C143 inactivates CitA and the proximity of C143 to the pyruvate binding site, this suggests that structural and/or chemical changes in this sub-domain are responsible for regulating CitA enzymatic activity.
Collapse
Affiliation(s)
- Rasangi Pathirage
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Lorenza Favrot
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
| | - Cecile Petit
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
| | - Melvin Yamsek
- Department of Chemistry and Biochemistry, University of Toledo Toledo OH 43606 USA
| | - Sarbjit Singh
- Eppley Institute for Cancer Research, University of Nebraska Medical Center Omaha NE 68198 USA
| | | | - Sandeep Rana
- Eppley Institute for Cancer Research, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Amarnath Natarajan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
- Eppley Institute for Cancer Research, University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha NE 68198 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
8
|
Wagner P, Rominger F, Gross JH, Mastalerz M. Solvent-Controlled Quadruple Catenation of Giant Chiral [8+12] Salicylimine Cubes Driven by Weak Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202217251. [PMID: 36695113 DOI: 10.1002/anie.202217251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mechanically interlocked structures are fascinating synthetic targets and the topological complexity achieved through catenation offers numerous possibilities for the construction of new molecules with exciting properties. In the structural space of catenated organic cage molecules, only few examples have been realized so far, and control over the catenation process in solution is still barely achieved. Herein, we describe the formation of a quadruply interlocked catenane of giant chiral [8+12] salicylimine cubes. The formation could be controlled by the choice of solvent used in the reaction. The interlocked structure was unambiguously characterized by single crystal X-ray diffraction and weak hydrogen bonding was identified as a central driving force for the catenation. Furthermore, scrambling experiments using partially deuterated cages were performed, revealing that the catenane formation occurs through mechanical interlocking of preformed single cages.
Collapse
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Topological Catenation Enhances Elastic Modulus of Single Linear Polycatenane. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
van Tartwijk FW, Kaminski CF. Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Adv Biol (Weinh) 2022; 6:e2101328. [PMID: 35796197 DOI: 10.1002/adbi.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Indexed: 01/28/2023]
Abstract
The cytoplasm is an aqueous, highly crowded solution of active macromolecules. Its properties influence the behavior of proteins, including their folding, motion, and interactions. In particular, proteins in the cytoplasm can interact to form phase-separated assemblies, so-called biomolecular condensates. The interplay between cytoplasmic properties and protein condensation is critical in a number of functional contexts and is the subject of this review. The authors first describe how cytoplasmic properties can affect protein behavior, in particular condensate formation, and then describe the functional implications of this interplay in three cellular contexts, which exemplify how protein self-organization can be adapted to support certain physiological phenotypes. The authors then describe the formation of RNA-protein condensates in highly polarized cells such as neurons, where condensates play a critical role in the regulation of local protein synthesis, and describe how different stressors trigger extensive reorganization of the cytoplasm, both through signaling pathways and through direct stress-induced changes in cytoplasmic properties. Finally, the authors describe changes in protein behavior and cytoplasmic properties that may occur in extremophiles, in particular organisms that have adapted to inhabit environments of extreme temperature, and discuss the implications and functional importance of these changes.
Collapse
Affiliation(s)
- Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
11
|
Liu Y, Bai X, Lyu C, Fang J, Zhang F, Wu WH, Wei W, Zhang WB. Mechano-bioconjugation Strategy Empowering Fusion Protein Therapeutics with Aggregation Resistance, Prolonged Circulation, and Enhanced Antitumor Efficacy. J Am Chem Soc 2022; 144:18387-18396. [PMID: 36178288 DOI: 10.1021/jacs.2c06532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioconjugation is a powerful protein modification strategy to improve protein properties. Herein, we report mechano-bioconjugation as a novel approach to empower fusion protein therapeutics and demonstrate its utility by a protein heterocatenane (cat-IFN-ABD) containing interferon-α2b (IFN) mechanically interlocked with a consensus albumin-binding domain (ABD). The conjugate was selectively synthesized in cellulo following a cascade of post-translational events using a pair of heterodimerizing p53dim variants and two orthogonal split-intein reactions. The catenane topology was proven by combined techniques of LC-MS, SDS-PAGE, SEC, and controlled proteolytic digestion. Not only did cat-IFN-ABD retain activities comparable to those of the wild-type IFN and ABD, the conjugate also exhibited enhanced aggregation resistance and prolonged circulation time over the simple linear and cyclic fusions. Consequently, cat-IFN-ABD potently inhibited tumor growth in the mouse xenograft model. Therefore, mechano-bioconjugation by catenation accomplishes function integration with additional benefits, providing an alternative pathway for developing advanced protein therapeutics.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Xilin Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
12
|
Verma J, Sourirajan A, Dev K. Bacterial diversity in 110 thermal hot springs of Indian Himalayan Region (IHR). 3 Biotech 2022; 12:238. [PMID: 36003895 PMCID: PMC9393120 DOI: 10.1007/s13205-022-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Thermal hot springs are present throughout the world and constitute a unique habitat for microbial diversity. The current investigation is conducted to study the bacterial diversity of thermophilic microorganisms in thermal hot springs of the Indian Himalayan Region (IHR). As of today, 110 geothermal hot springs have been explored for microbial diversity. In this study, we observed that the growth of thermophilic bacteria isolated from thermal hot springs of IHR ranges between 40 and 100 °C, and pH of 3.5-8 have been reported in the literature. The major bacterial species reported from the thermal hot springs of IHR are Bacillus spp., Geobacillus spp., Paenibacillus spp., Pseudomonas spp., Anoxybacillus, Paenibacillus, Brevibacillus, Aneurinibacillus, Thermus aquaticus, Aquimonas, Flavobacterium, etc. Furthermore, bacterial isolates from thermal hot springs of IHR have been reported to produce various enzymes and metabolites such as amylase, β-galactosidase, cellulase, nitrate reductase, acetoin, caffeine degradation enzymes, lipase, urease, and laccase. Metagenomic study and the entire genomic shotgun project have established the impact of physicochemical parameters (temperature and pH) on developing the microbiome. We have discussed the discoveries of microbiological data on the hot springs of IHR until the end of year 2021. As a whole, the microbiome adapts themselves as successful inhabitants to extreme environmental conditions and also serves as a diverse resource for potential applications in health, food, and environment.
Collapse
Affiliation(s)
- Jagdish Verma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| |
Collapse
|
13
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
14
|
Abstract
SignificanceDuring the past decades, the development of efficient methodologies for the creation of mechanically interlocked molecules (MIMs), such as catenanes and rotaxanes, has not only laid the foundation for the design and syntheses of artificial molecular machines (AMMs) but also opened up new research opportunities in multiple disciplines, ranging from contemporary chemistry to materials science. In this study, we describe a suitane-based strategy for the construction of three-dimensional (3D) catenanes, a subset of MIMs that are far from easy to make. Together with synthetic methodologies based on the metal coordination and dynamic covalent chemistry, this approach brings us one step closer to realizing routine syntheses of 3D catenanes.
Collapse
|
15
|
Wei J, Xu L, Wu WH, Sun F, Zhang WB. Genetically engineered materials: Proteins and beyond. Sci China Chem 2022; 65:486-496. [PMID: 35154293 PMCID: PMC8815391 DOI: 10.1007/s11426-021-1183-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023]
Abstract
Information-rich molecules provide opportunities for evolution. Genetically engineered materials are superior in that their properties are coded within genetic sequences and could be fine-tuned. In this review, we elaborate the concept of genetically engineered materials (GEMs) using examples ranging from engineered protein materials to engineered living materials. Protein-based materials are the materials of choice by nature. Recent progress in protein engineering has led to opportunities to tune their sequences for optimal material performance. Proteins also play a central role in living materials where they act in concert with other biological components as well as nonbiological cofactors, giving rise to living features. While the existing GEMs are often limited to those constructed by building blocks of biological origin, being genetically engineerable does not preclude nonbiologic or synthetic materials, the latter of which have yet to be fully explored.
![]()
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000 China
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
16
|
Peng Y, Gong C. New Strategy for Improving Protein Therapeutics by Mechano-bioconjugation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Greń BA, Dabrowski-Tumanski P, Niemyska W, Sulkowska JI. Lasso Proteins-Unifying Cysteine Knots and Miniproteins. Polymers (Basel) 2021; 13:3988. [PMID: 34833285 PMCID: PMC8621785 DOI: 10.3390/polym13223988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Complex lasso proteins are a recently identified class of biological compounds that are present in considerable fraction of proteins with disulfide bridges. In this work, we look at complex lasso proteins as a generalization of well-known cysteine knots and miniproteins (lasso peptides). In particular, we show that complex lasso proteins with the same crucial topological features-cysteine knots and lasso peptides-are antimicrobial proteins, which suggests that they act as a molecular plug. Based on an analysis of the stability of the lasso piercing residue, we also introduce a method to determine which lasso motif is potentially functional. Using this method, we show that the lasso motif in antimicrobial proteins, as well in that in cytokines, is functionally relevant. We also study the evolution of lasso motifs, their conservation, and the usefulness of the lasso fingerprint, which extracts all topologically non-triviality concerning covalent loops. The work is completed by the presentation of extensive statistics on complex lasso proteins to analyze, in particular, the strange propensity for "negative" piercings. We also identify 21 previously unknown complex lasso proteins with an ester and a thioester bridge.
Collapse
Affiliation(s)
- Bartosz Ambroży Greń
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (B.A.G.); (P.D.-T.)
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Wanda Niemyska
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | - Joanna Ida Sulkowska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (B.A.G.); (P.D.-T.)
| |
Collapse
|
18
|
Wu WH, Bai X, Shao Y, Yang C, Wei J, Wei W, Zhang WB. Higher Order Protein Catenation Leads to an Artificial Antibody with Enhanced Affinity and In Vivo Stability. J Am Chem Soc 2021; 143:18029-18040. [PMID: 34664942 DOI: 10.1021/jacs.1c06169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chemical topology is a unique dimension for protein engineering, yet the topological diversity and architectural complexity of proteins remain largely untapped. Herein, we report the biosynthesis of complex topological proteins using a rationally engineered, cross-entwining peptide heterodimer motif derived from p53dim (an entangled homodimeric mutant of the tetramerization domain of the tumor suppressor protein p53). The incorporation of an electrostatic interaction at specific sites converts the p53dim homodimer motif into a pair of heterodimer motifs with high specificity for directing chain entanglement upon folding. Its combination with split-intein-mediated ligation and/or SpyTag/SpyCatcher chemistry facilitates the programmed synthesis of protein heterocatenane or [n]catenanes in cells, leading to a general and modular approach to complex protein catenanes containing various proteins of interest. Concatenation enhances not only the target protein's affinity but also the in vivo stability as shown by its prolonged circulation time in blood. As a proof of concept, artificial antibodies have been developed by embedding a human epidermal growth factor receptor 2-specific affibody onto the [n]catenane scaffolds and shown to exhibit a higher affinity and a better pharmacokinetic profile than the wild-type affibody. These results suggest that topology engineering holds great promise in the development of therapeutic proteins.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xilin Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chao Yang
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
19
|
Cárdenas-Fernández M, Subrizi F, Dobrijevic D, Hailes HC, Ward JM. Characterisation of a hyperthermophilic transketolase from Thermotoga maritima DSM3109 as a biocatalyst for 7-keto-octuronic acid synthesis. Org Biomol Chem 2021; 19:6493-6500. [PMID: 34250527 PMCID: PMC8317047 DOI: 10.1039/d1ob01237a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Transketolase (TK) is a fundamentally important enzyme in industrial biocatalysis which carries out a stereospecific carbon-carbon bond formation, and is widely used in the synthesis of prochiral ketones. This study describes the biochemical and molecular characterisation of a novel and unusual hyperthermophilic TK from Thermotoga maritima DSM3109 (TKtmar). TKtmar has a low protein sequence homology compared to the already described TKs, with key amino acid residues in the active site highly conserved. TKtmar has a very high optimum temperature (>90 °C) and shows pronounced stability at high temperature (e.g. t1/2 99 and 9.3 h at 50 and 80 °C, respectively) and in presence of organic solvents commonly used in industry (DMSO, acetonitrile and methanol). Substrate screening showed activity towards several monosaccharides and aliphatic aldehydes. In addition, for the first time, TK specificity towards uronic acids was achieved with TKtmar catalysing the efficient conversion of d-galacturonic acid and lithium hydroxypyruvate into 7-keto-octuronic acid, a very rare C8 uronic acid, in high yields (98%, 49 mM).
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK. and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Fabiana Subrizi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
|
21
|
|
22
|
Enzymatic methylation of the amide bond. Curr Opin Struct Biol 2020; 65:79-88. [DOI: 10.1016/j.sbi.2020.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022]
|
23
|
Liu Y, Wu W, Hong S, Fang J, Zhang F, Liu G, Seo J, Zhang W. Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Wen‐Hao Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Sumin Hong
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Geng‐Xin Liu
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Jongcheol Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
24
|
Liu Y, Duan Z, Fang J, Zhang F, Xiao J, Zhang WB. Cellular Synthesis and X-ray Crystal Structure of a Designed Protein Heterocatenane. Angew Chem Int Ed Engl 2020; 59:16122-16127. [PMID: 32506656 DOI: 10.1002/anie.202005490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/24/2023]
Abstract
Herein, we report the biosynthesis of protein heterocatenanes using a programmed sequence of multiple post-translational processing events including intramolecular chain entanglement, in situ backbone cleavage, and spontaneous cyclization. The approach is general, autonomous, and can obviate the need for any additional enzymes. The catenane topology was convincingly proven using a combination of SDS-PAGE, LC-MS, size exclusion chromatography, controlled proteolytic digestion, and protein crystallography. The X-ray crystal structure clearly shows two mechanically interlocked protein rings with intact folded domains. It opens new avenues in the nascent field of protein-topology engineering.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zelin Duan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
25
|
Liu Y, Duan Z, Fang J, Zhang F, Xiao J, Zhang W. Cellular Synthesis and X‐ray Crystal Structure of a Designed Protein Heterocatenane. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Zelin Duan
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
26
|
Liu Y, Wu WH, Hong S, Fang J, Zhang F, Liu GX, Seo J, Zhang WB. Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation. Angew Chem Int Ed Engl 2020; 59:19153-19161. [PMID: 32602613 DOI: 10.1002/anie.202006727] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Entangled proteins have attracted significant research interest. Herein, we report the first rationally designed lasso proteins, or protein [1]rotaxanes, by using a p53dim-entwined dimer for intramolecular entanglement and a SpyTag-SpyCatcher reaction for side-chain ring closure. The lasso structures were confirmed by proteolytic digestion, mutation, NMR spectrometry, and controlled ligation. Their dynamic properties were probed by experiments such as end-capping, proteolytic digestion, and heating/cooling. As a versatile topological intermediate, a lasso protein could be converted to a rotaxane, a heterocatenane, and a "slide-ring" network. Being entirely genetically encoded, this robust and modular lasso-protein motif is a valuable addition to the topological protein repertoire and a promising candidate for protein-based biomaterials.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Sumin Hong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Geng-Xin Liu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
27
|
Zhang G, Zhang J. Topological catenation induced swelling of ring polymers revealed by molecular dynamics simulation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Transient knots in intrinsically disordered proteins and neurodegeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:79-103. [PMID: 32828471 DOI: 10.1016/bs.pmbts.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We provide a brief overview of the topological features found in structured proteins and of the dynamical processes that involve knots. We then discuss the knotted states that arise in the intrinsically disordered polyglutamine and α-synuclein. We argue that the existence of the knotted conformations stalls degradation by proteases and thus enhances aggregation. This mechanism works if the length of a peptide chain exceeds a threshold, as in the Huntington disease. We also study the cavities that form within the conformations of the disordered proteins. The volume of the cavities varies in time in a way that is different than that of the radius of gyration or the end-to-end distance. In addition, we study the traffic between the conformational basins and identify patterns associated with the deep and shallow knots. The results are obtained by molecular dynamics simulations that use coarse-grained and all-atom models (with and without the explicit solvent).
Collapse
|
29
|
Sulkowska JI. On folding of entangled proteins: knots, lassos, links and θ-curves. Curr Opin Struct Biol 2020; 60:131-141. [PMID: 32062143 DOI: 10.1016/j.sbi.2020.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/02/2020] [Accepted: 01/12/2020] [Indexed: 12/15/2022]
Abstract
Around 6% of protein structures deposited in the PDB are entangled, forming knots, slipknots, lassos, links, and θ-curves. In each of these cases, the protein backbone weaves through itself in a complex way, and at some point passes through a closed loop, formed by other regions of the protein structure. Such a passing can be interpreted as crossing a topological barrier. How proteins overcome such barriers, and therefore different degrees of frustration, challenged scientists and has shed new light on the field of protein folding. In this review, we summarize the current knowledge about the free energy landscape of proteins with non-trivial topology. We describe identified mechanisms which lead proteins to self-tying. We discuss the influence of excluded volume, such as crowding and chaperones, on tying, based on available data. We briefly discuss the diversity of topological complexity of proteins and their evolution. We also list available tools to investigate non-trivial topology. Finally, we formulate intriguing and challenging questions at the boundary of biophysics, bioinformatics, biology, and mathematics, which arise from the discovery of entangled proteins.
Collapse
Affiliation(s)
- Joanna Ida Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
30
|
Da X, Zhang W. Active Template Synthesis of Protein Heterocatenanes. Angew Chem Int Ed Engl 2019; 58:11097-11104. [DOI: 10.1002/anie.201904943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao‐Di Da
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| |
Collapse
|
31
|
Affiliation(s)
- Xiao‐Di Da
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry & Physics of Ministry of EducationCenter for Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 P. R. China
| |
Collapse
|
32
|
Lee SH, Son HF, Kim KJ. Structural insights into the inhibition properties of archaeon citrate synthase from Metallosphaera sedula. PLoS One 2019; 14:e0212807. [PMID: 30794680 PMCID: PMC6386500 DOI: 10.1371/journal.pone.0212807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022] Open
Abstract
Metallosphaera sedula is a thermoacidophilic archaeon and has an incomplete TCA/glyoxylate cycle that is used for production of biosynthetic precursors of essential metabolites. Citrate synthase from M. sedula (MsCS) is an enzyme involved in the first step of the incomplete TCA/glyoxylate cycle by converting oxaloacetate and acetyl-CoA into citrate and coenzyme A. To elucidate the inhibition properties of MsCS, we determined its crystal structure at 1.7 Å resolution. Like other Type-I CS, MsCS functions as a dimer and each monomer consists of two distinct domains, a large domain and a small domain. The oxaloacetate binding site locates at the cleft between the two domains, and the active site was more closed upon binding of the oxaloacetate substrate than binding of the citrate product. Interestingly, the inhibition kinetic analysis showed that, unlike other Type-I CSs, MsCS is non-competitively inhibited by NADH. Finally, amino acids and structural comparison of MsCS with other Type-II CSs, which were reported to be non-competitively inhibited by NADH, revealed that MsCS has quite unique NADH binding mode for non-competitive inhibition.
Collapse
Affiliation(s)
- Seul Hoo Lee
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Hyeoncheol Francis Son
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
33
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|
34
|
Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol 2018; 18:177. [PMID: 30400856 PMCID: PMC6219164 DOI: 10.1186/s12866-018-1320-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The ambient temperature of all habitats is a key physical property that shapes the biology of microbes inhabiting them. The optimal growth temperature (OGT) of a microbe, is therefore a key piece of data needed to understand evolutionary adaptations manifested in their genome sequence. Unfortunately there is no growth temperature database or easily downloadable dataset encompassing the majority of cultured microorganisms. We are thus limited in interpreting genomic data to identify temperature adaptations in microbes. Results In this work I significantly contribute to closing this gap by mining data from major culture collection centres to obtain growth temperature data for a nonredundant set of 21,498 microbes. The dataset (10.5281/zenodo.1175608) contains mainly bacteria and archaea and spans psychrophiles, mesophiles, thermophiles and hyperthermophiles. Using this data a full 43% of all protein entries in the UniProt database can be annotated with the growth temperature of the species from which they originate. I validate the dataset by showing a Pearson correlation of up to 0.89 between growth temperature and mean enzyme optima, a physiological property directly influenced by the growth temperature. Using the temperature dataset I correlate the genomic occurance of enzyme functional annotations with growth temperature. I identify 319 enzyme functions that either increase or decrease in occurrence with temperature. Eight metabolic pathways were statistically enriched for these enzyme functions. Furthermore, I establish a correlation between 33 domains of unknown function (DUFs) with growth temperature in microbes, four of which (DUF438, DUF1524, DUF1957 and DUF3458_C) were significant in both archaea and bacteria. Conclusions The growth temperature dataset enables large-scale correlation analysis with enzyme function- and domain-level annotations. Growth-temperature dependent changes in their occurrence highlight potential evolutionary adaptations. A few of the identified changes are previously known, such as the preference for menaquinone biosynthesis through the futalosine pathway in bacteria growing at high temperatures. Others represent important starting points for future studies, such as DUFs where their occurrence change with temperature. The growth temperature dataset should become a valuable community resource and will find additional, important, uses in correlating genomic, transcriptomic, proteomic, metabolomic, phenotypic or taxonomic properties with temperature in future studies. Electronic supplementary material The online version of this article (10.1186/s12866-018-1320-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin K M Engqvist
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
35
|
Cardelli C, Tubiana L, Bianco V, Nerattini F, Dellago C, Coluzza I. Heteropolymer Design and Folding of Arbitrary Topologies Reveals an Unexpected Role of Alphabet Size on the Knot Population. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chiara Cardelli
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Luca Tubiana
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Valentino Bianco
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Francesca Nerattini
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Ivan Coluzza
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE,
Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
36
|
Danon JJ, Leigh DA, Pisano S, Valero A, Vitorica‐Yrezabal IJ. A Six-Crossing Doubly Interlocked [2]Catenane with Twisted Rings, and a Molecular Granny Knot. Angew Chem Int Ed Engl 2018; 57:13833-13837. [PMID: 30152565 PMCID: PMC6221036 DOI: 10.1002/anie.201807135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Indexed: 11/17/2022]
Abstract
A molecular 6 2 3 link (a six crossing, doubly interlocked, [2]catenane with twisted rings) and a 31 #31 granny knot (a composite knot made up of two trefoil tangles of the same handedness) were constructed by ring-closing olefin metathesis of an iron(II)-coordinated 2×2 interwoven grid. The connections were directed by pendant phenyl groups to be between proximal ligand ends on the same faces of the grid. The 6 2 3 link was separated from the topoisomeric granny knot by recycling size-exclusion chromatography. The identity of each topoisomer was determined by tandem mass spectrometry and the structure of the 6 2 3 link confirmed by X-ray crystallography, which revealed two 82-membered macrocycles, each in figure-of-eight conformations, linked through both pairs of loops.
Collapse
Affiliation(s)
- Jonathan J. Danon
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Simone Pisano
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alberto Valero
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | |
Collapse
|
37
|
Xu L, Zhang WB. The pursuit of precision in macromolecular science: Concepts, trends, and perspectives. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Wang XW, Zhang WB. Chemical Topology and Complexity of Protein Architectures. Trends Biochem Sci 2018; 43:806-817. [DOI: 10.1016/j.tibs.2018.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
|
39
|
Danon JJ, Leigh DA, Pisano S, Valero A, Vitorica‐Yrezabal IJ. A Six‐Crossing Doubly Interlocked [2]Catenane with Twisted Rings, and a Molecular Granny Knot. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jonathan J. Danon
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - David A. Leigh
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Simone Pisano
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Alberto Valero
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | | |
Collapse
|
40
|
Zhao Y, Cieplak M. Stability of structurally entangled protein dimers. Proteins 2018; 86:945-955. [DOI: 10.1002/prot.25526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yani Zhao
- Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46, Warsaw 02668 Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46, Warsaw 02668 Poland
| |
Collapse
|
41
|
Saura-Sanmartin A, Martinez-Cuezva A, Pastor A, Bautista D, Berna J. Light-driven exchange between extended and contracted lasso-like isomers of a bistable [1]rotaxane. Org Biomol Chem 2018; 16:6980-6987. [DOI: 10.1039/c8ob02234h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoactive hydrogen-bonded lasso having an amide-based [1]rotaxane structure has been constructed from acyclic precursors through a self-templating approach. The stability, structural integrity and switching are described.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Aurelia Pastor
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | | | - Jose Berna
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| |
Collapse
|
42
|
|
43
|
Domínguez-Gil T, Molina R, Dik DA, Spink E, Mobashery S, Hermoso JA. X-ray Structure of Catenated Lytic Transglycosylase SltB1. Biochemistry 2017; 56:6317-6320. [PMID: 29131935 DOI: 10.1021/acs.biochem.7b00932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of catenanes by proteins is rare, with few known examples. We report herein the X-ray structure of a catenane dimer of lytic transglycosylase SltB1 of Pseudomonas aeruginosa. The enzyme is soluble and exists in the periplasmic space, where it modifies the bacterial cell wall. The catenane dimer exhibits the protein monomers in a noncovalent chain-link arrangement, whereby a stretch of 51 amino acids (to become a loop and three helices) from one monomer threads through the central opening of the structure of the partner monomer. The protein folds after threading in a manner that leaves two helices (α1 and α2) as stoppers to impart stability to the dimer structure. The symmetric embrace by the two SltB1 molecules occludes both active sites entirely, an arrangement that is sustained by six electrostatic interactions between the two monomers. In light of the observation of these structural motifs in all members of Family 3 lytic transglycosylases, catenanes might be present for those enzymes, as well. The dimeric catenane might represent a regulated form of SltB1.
Collapse
Affiliation(s)
- Teresa Domínguez-Gil
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid, Spain
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid, Spain
| | - David A Dik
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Edward Spink
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid, Spain
| |
Collapse
|
44
|
Wang XW, Zhang WB. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| |
Collapse
|
45
|
Wang XW, Zhang WB. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angew Chem Int Ed Engl 2017; 56:13985-13989. [DOI: 10.1002/anie.201705194] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/07/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| |
Collapse
|
46
|
Dabrowski-Tumanski P, Sulkowska JI. To Tie or Not to Tie? That Is the Question. Polymers (Basel) 2017; 9:E454. [PMID: 30965758 PMCID: PMC6418553 DOI: 10.3390/polym9090454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of entangled proteins. Around 6% of protein structures deposited in the PBD are entangled, forming knots, slipknots, lassos and links. We present theoretical methods and tools that enabled discovering and classifying such structures. We discuss the advantages and disadvantages of the non-trivial topology in proteins, based on available data about folding, stability, biological properties and evolutionary conservation. We also formulate intriguing and challenging questions on the border of biophysics, bioinformatics, biology and mathematics, which arise from the discovery of an entanglement in proteins. Finally, we discuss possible applications of entangled proteins in medicine and nanotechnology, such as the chance to design super stable proteins, whose stability could be controlled by chemical potential.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| |
Collapse
|
47
|
Sawada T, Inomata Y, Yamagami M, Fujita M. Self-assembly of a Peptide [2]Catenane through Ω-Loop Folding. CHEM LETT 2017. [DOI: 10.1246/cl.170438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Yuuki Inomata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Motoya Yamagami
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
48
|
Abstract
Twenty years after their discovery, knots in proteins are now quite well understood. They are believed to be functionally advantageous and provide extra stability to protein chains. In this work, we go one step further and search for links-entangled structures, more complex than knots, which consist of several components. We derive conditions that proteins need to meet to be able to form links. We search through the entire Protein Data Bank and identify several sequentially nonhomologous chains that form a Hopf link and a Solomon link. We relate topological properties of these proteins to their function and stability and show that the link topology is characteristic of eukaryotes only. We also explain how the presence of links affects the folding pathways of proteins. Finally, we define necessary conditions to form Borromean rings in proteins and show that no structure in the Protein Data Bank forms a link of this type.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Joanna I Sulkowska
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland;
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
49
|
Abstract
Long, flexible physical filaments are naturally tangled and knotted, from macroscopic string down to long-chain molecules. The existence of knotting in a filament naturally affects its configuration and properties, and may be very stable or disappear rapidly under manipulation and interaction. Knotting has been previously identified in protein backbone chains, for which these mechanical constraints are of fundamental importance to their molecular functionality, despite their being open curves in which the knots are not mathematically well defined; knotting can only be identified by closing the termini of the chain somehow. We introduce a new method for resolving knotting in open curves using virtual knots, which are a wider class of topological objects that do not require a classical closure and so naturally capture the topological ambiguity inherent in open curves. We describe the results of analysing proteins in the Protein Data Bank by this new scheme, recovering and extending previous knotting results, and identifying topological interest in some new cases. The statistics of virtual knots in protein chains are compared with those of open random walks and Hamiltonian subchains on cubic lattices, identifying a regime of open curves in which the virtual knotting description is likely to be important.
Collapse
|
50
|
Dabrowski-Tumanski P, Jarmolinska AI, Niemyska W, Rawdon EJ, Millett KC, Sulkowska JI. LinkProt: a database collecting information about biological links. Nucleic Acids Res 2016; 45:D243-D249. [PMID: 27794552 PMCID: PMC5210653 DOI: 10.1093/nar/gkw976] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 01/01/2023] Open
Abstract
Protein chains are known to fold into topologically complex shapes, such as knots, slipknots or complex lassos. This complex topology of the chain can be considered as an additional feature of a protein, separate from secondary and tertiary structures. Moreover, the complex topology can be defined also as one additional structural level. The LinkProt database (http://linkprot.cent.uw.edu.pl) collects and displays information about protein links - topologically non-trivial structures made by up to four chains and complexes of chains (e.g. in capsids). The database presents deterministic links (with loops closed, e.g. by two disulfide bonds), links formed probabilistically and macromolecular links. The structures are classified according to their topology and presented using the minimal surface area method. The database is also equipped with basic tools which allow users to analyze the topology of arbitrary (bio)polymers.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Aleksandra I Jarmolinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.,Institute of Mathematics, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Eric J Rawdon
- Department of Mathematics, University of St. Thomas, Saint Paul, MN 55105, USA
| | - Kenneth C Millett
- Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
| | - Joanna I Sulkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland .,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|