1
|
Böttger LH, DeWeese DE, Iyer SR, Komor AJ, Rogers MS, Sutherlin K, Jacobs AB, Yoda Y, Kitao S, Kobayashi Y, Zhao J, Alp EE, Saito M, Seto M, Que L, Lipscomb JD, Solomon EI. Nature of the Reactive Biferric Peroxy Intermediate P' in the Arylamine Oxygenases and Related Binuclear Fe Enzymes. J Am Chem Soc 2025; 147:11707-11725. [PMID: 40167320 PMCID: PMC12057066 DOI: 10.1021/jacs.4c11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Binuclear nonheme iron enzymes activate O2 to perform a wide range of chemical transformations. The process of O2 activation typically involves a biferric peroxy-level intermediate P. It has been previously found that this intermediate undergoes further activation, either protonation or rearrangement to form P' or further oxidation to form high-valent intermediates Q or X. This study defines the structure of the P' intermediate in the N-oxygenases CmlI (and AurF based on previous data) using nuclear resonance vibrational spectroscopy (NRVS) in conjugation with density functional theory (DFT) calculations. These results, combined with variable temperature variable field (VTVH) magnetic circular dichroism (MCD) spectroscopy on the 1-electron cryoreduced P', define the structure of the P' intermediate as a μ-1,2-hydroxoperoxo biferric site with a second hydroxide bridge. Reaction coordinate calculations demonstrate that single electron transfer (SET) is facilitated by protonation of the peroxo, activating its reductive cleavage, and that the additional hydroxide bridge does not impact this reaction. VTVH MCD studies further reveal that the hydroxide bridge is absent in the biferrous site, suggesting that during the O2 reaction with the biferrous site, a water molecule forms the hydroxide bridge in providing the proton that activates the peroxide in P' for reactivity.
Collapse
Affiliation(s)
- Lars H Böttger
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dory E DeWeese
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Shyam R Iyer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna J Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Melanie S Rogers
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kyle Sutherlin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ari B Jacobs
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Shinji Kitao
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Jiyong Zhao
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Esen Ercan Alp
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Makina Saito
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
- Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D Lipscomb
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Liu C, Rao G, Nguyen J, Britt RD, Rittle J. O 2 Activation and Enzymatic C-H Bond Activation Mediated by a Dimanganese Cofactor. J Am Chem Soc 2025; 147:2148-2157. [PMID: 39741465 PMCID: PMC11819613 DOI: 10.1021/jacs.4c16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Dioxygen (O2) is a potent oxidant used by aerobic organisms for energy transduction and critical biosynthetic processes. Numerous metalloenzymes harness O2 to mediate C-H bond hydroxylation reactions, but most commonly feature iron or copper ions in their active site cofactors. In contrast, many manganese-activated enzymes─such as glutamine synthetase and isocitrate lyase─perform redox neutral chemical transformations and very few are known to activate O2 or C-H bonds. Here, we report that the dimanganese-metalated form of the cambialistic monooxygenase SfbO (Mn2-SfbO) can efficiently mediate enzymatic C-H bond hydroxylation. The activity of the dimanganese form of SfbO toward substrate hydroxylation is comparable to that of its heterobimetallic Mn/Fe form but exhibits distinct kinetic profiles. Kinetic, spectroscopic, and structural studies invoke a mixed-valent dimanganese cofactor (MnIIMnIII) in O2 activation and evidence a stoichiometric role for superoxide in maturing an O2-inert MnII2 cofactor. Computational studies support a hypothesis wherein superoxide addition to the MnII2 cofactor installs a critical bridging hydroxide ligand that stabilizes higher-valent manganese oxidation states. These findings establish the viability of proteinaceous dimanganese cofactors in mediating complex, multistep redox transformations.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Jessica Nguyen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Jonathan Rittle
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Powell M, Rao G, Britt RD, Rittle J. Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor. J Am Chem Soc 2023; 145:16526-16537. [PMID: 37471626 PMCID: PMC10401708 DOI: 10.1021/jacs.3c03419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 07/22/2023]
Abstract
The aerobic oxidation of carbon-hydrogen (C-H) bonds in biology is currently known to be accomplished by a limited set of cofactors that typically include heme, nonheme iron, and copper. While manganese cofactors perform difficult oxidation reactions, including water oxidation within Photosystem II, they are generally not known to be used for C-H bond activation, and those that do catalyze this important reaction display limited intrinsic reactivity. Here we report that the 2-aminoisobutyric acid hydroxylase from Rhodococcus wratislaviensis, AibH1H2, requires manganese to functionalize a strong, aliphatic C-H bond (BDE = 100 kcal/mol). Structural and spectroscopic studies of this enzyme reveal a redox-active, heterobimetallic manganese-iron active site at the locus of O2 activation and substrate coordination. This result expands the known reactivity of biological manganese-iron cofactors, which was previously restricted to single-electron transfer or stoichiometric protein oxidation. Furthermore, the AibH1H2 cofactor is supported by a protein fold distinct from typical bimetallic oxygenases, and bioinformatic analyses identify related proteins abundant in microorganisms. This suggests that many uncharacterized monooxygenases may similarly require manganese to perform oxidative biochemical tasks.
Collapse
Affiliation(s)
- Magan
M. Powell
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Guodong Rao
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Jonathan Rittle
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Powell MM, Rao G, Britt RD, Rittle J. Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532131. [PMID: 36945426 PMCID: PMC10029006 DOI: 10.1101/2023.03.10.532131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Manganese cofactors activate strong chemical bonds in many essential enzymes. Yet very few manganese-dependent enzymes are known to functionalize ubiquitous carbon-hydrogen (C-H) bonds, and those that catalyze this important reaction display limited intrinsic reactivity. Herein, we report that the 2-aminoisobutyric acid hydroxylase from Rhodococcus wratislaviensis requires manganese to functionalize a C-H bond possessing a bond dissociation enthalpy (BDE) exceeding 100 kcal/mol. Structural and spectroscopic studies of this enzyme reveal a redox-active, heterobimetallic manganese-iron active site that utilizes a manganese ion at the locus for O 2 activation and substrate coordination. Accordingly, this enzyme represents the first documented Mn-dependent monooxygenase in biology. Related proteins are widespread in microorganisms suggesting that many uncharacterized monooxygenases may utilize manganese-containing cofactors to accomplish diverse biological tasks.
Collapse
|
5
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
6
|
Song X, Liu J, Wang B. Emergence of Function from Nonheme Diiron Oxygenases: A Quantum Mechanical/Molecular Mechanical Study of Oxygen Activation and Organophosphonate Catabolism Mechanisms by PhnZ. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xitong Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
7
|
Nóbile ML, Stricker AM, Marchesano L, Iribarren AM, Lewkowicz ES. N-oxygenation of amino compounds: Early stages in its application to the biocatalyzed preparation of bioactive compounds. Biotechnol Adv 2021; 51:107726. [PMID: 33675955 DOI: 10.1016/j.biotechadv.2021.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Among the compounds that contain unusual functional groups, nitro is perhaps one of the most interesting due to the valuable properties it confers on pharmaceuticals and explosives. Traditional chemistry has for many years used environmentally unfriendly strategies; in contrast, the biocatalyzed production of this type of products offers a promising alternative. The small family of enzymes formed by N-oxygenases allows the conversion of an amino group to a nitro through the sequential addition of oxygen. These enzymes also make it possible to obtain other less oxidized N-O functions, such as hydroxylamine or nitroso, present in intermediate or final products. The current substrates on which these enzymes are reported to work encompass a few aromatic molecules and sugars. The unique characteristics of N-oxygenases and the great economic value of the products that they could generate, place them in a position of very high scientific and industrial interest. The most important and best studied N-oxygenases will be presented here.
Collapse
Affiliation(s)
- Matías L Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina.
| | - Abigail M Stricker
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Lucas Marchesano
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Adolfo M Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Elizabeth S Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| |
Collapse
|
8
|
Affiliation(s)
- Siddharth S. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Dhaval B. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| | - Hitesh D. Patel
- Department of Chemistry, School of Sciences Gujarat University Ahmedabad India
| |
Collapse
|
9
|
Nóbile ML, Stricker AM, Iribarren AM, Lewkowicz ES. Streptomyces griseus: A new biocatalyst with N-oxygenase activity. J Biotechnol 2020; 327:36-42. [PMID: 33373628 DOI: 10.1016/j.jbiotec.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Aromatic nitro compounds are key building blocks for many industrial syntheses and are also components of explosives, drugs and pesticides. Due to the environmentally unfriendly experimental conditions involved in their chemical syntheses, industrial processes would benefit from the use of biocatalysts. Among potentially useful enzymes, N-oxygenases, whose role is to oxygenate primary amines, are becoming relevant. These enzymes are involved in different secondary metabolic pathways in Streptomyces and in few other bacteria, forming part of the enzyme pools implicated in antibiotic synthesis. In this work, a group of Streptomyces strains, whose biomass was obtained from simple and novel culture media, were identified as new sources of N-oxygenase activity. Furthermore, the use of unspecific metabolic stimulation strategies allowed substantial improvements in the activity of whole cells as biocatalysts. It is remarkable the 6 to 50-fold increase in nitro compound yields compared to the biotransformation under standard conditions when Streptomyces griseus was the biocatalyst. In addition, biocatalyst substrate acceptance was studied in order to determine the biocatalytic potential of this enzyme.
Collapse
Affiliation(s)
- Matías L Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina.
| | - Abigail M Stricker
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| | - Adolfo M Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| | - Elizabeth S Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, LBB, Roque Sáenz Peña 352, Quilmes, 1876, Argentina
| |
Collapse
|
10
|
Sulzbach M, Kunjapur AM. The Pathway Less Traveled: Engineering Biosynthesis of Nonstandard Functional Groups. Trends Biotechnol 2020; 38:532-545. [PMID: 31954529 DOI: 10.1016/j.tibtech.2019.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
The field of metabolic engineering has achieved biochemical routes for conversion of renewable inputs to structurally diverse chemicals, but these products contain a limited number of chemical functional groups. In this review, we provide an overview of the progression of uncommon or 'nonstandard' functional groups from the elucidation of their biosynthetic machinery to the pathway optimization framework of metabolic engineering. We highlight exemplary efforts from primarily the last 5 years for biosynthesis of aldehyde, ester, terminal alkyne, terminal alkene, fluoro, epoxide, nitro, nitroso, nitrile, and hydrazine functional groups. These representative nonstandard functional groups vary in development stage and showcase the pipeline of chemical diversity that could soon appear within customized, biologically produced molecules.
Collapse
Affiliation(s)
- Morgan Sulzbach
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
11
|
Wei W, Siegbahn PEM, Liao R. Mechanism of the Dinuclear Iron Enzymep‐Aminobenzoate N‐oxygenase from Density Functional Calculations. ChemCatChem 2018. [DOI: 10.1002/cctc.201801072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius LaboratoryStockholm University Stockholm SE-10691 Sweden
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
12
|
Komor AJ, Jasniewski AJ, Que L, Lipscomb JD. Diiron monooxygenases in natural product biosynthesis. Nat Prod Rep 2018; 35:646-659. [PMID: 29552683 PMCID: PMC6051903 DOI: 10.1039/c7np00061h] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2017 The participation of non-heme dinuclear iron cluster-containing monooxygenases in natural product biosynthetic pathways has been recognized only recently. At present, two families have been discovered. The archetypal member of the first family, CmlA, catalyzes β-hydroxylation of l-p-aminophenylalanine (l-PAPA) covalently linked to the nonribosomal peptide synthetase (NRPS) CmlP, thereby effecting the first step in the biosynthesis of chloramphenicol by Streptomyces venezuelae. CmlA houses the diiron cluster in a metallo-β-lactamase protein fold instead of the 4-helix bundle fold of nearly every other diiron monooxygenase. CmlA couples O2 activation and substrate hydroxylation via a structural change caused by formation of the l-PAPA-loaded CmlP:CmlA complex. The other new diiron family is typified by two enzymes, AurF and CmlI, which catalyze conversion of aryl-amine substrates to aryl-nitro products with incorporation of oxygen from O2. AurF from Streptomyces thioluteus catalyzes the formation of p-nitrobenzoate from p-aminobenzoate as a precursor to the biostatic compound aureothin, whereas CmlI from S. venezuelae catalyzes the ultimate aryl-amine to aryl-nitro step in chloramphenicol biosynthesis. Both enzymes stabilize a novel type of peroxo-intermediate as the reactive species. The rare 6-electron N-oxygenation reactions of CmlI and AurF involve two progressively oxidized pathway intermediates. The enzymes optimize efficiency by utilizing one of the reaction pathway intermediates as an in situ reductant for the diiron cluster, while simultaneously generating the next pathway intermediate. For CmlI, this reduction allows mid-pathway regeneration of the peroxo intermediate required to complete the biosynthesis. CmlI ensures specificity by carrying out the multistep aryl-amine oxygenation without dissociating intermediate products.
Collapse
Affiliation(s)
- Anna J Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Andrew J Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
13
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Komor AJ, Rivard BS, Fan R, Guo Y, Que L, Lipscomb JD. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates. Biochemistry 2017; 56:4940-4950. [PMID: 28823151 PMCID: PMC5605456 DOI: 10.1021/acs.biochem.7b00695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CmlI catalyzes the six-electron oxidation of an aryl-amine precursor (NH2-CAM) to the aryl-nitro group of chloramphenicol (CAM). The active site of CmlI contains a (hydr)oxo- and carboxylate-bridged dinuclear iron cluster. During catalysis, a novel diferric-peroxo intermediate P is formed and is thought to directly effect oxygenase chemistry. Peroxo intermediates can facilitate at most two-electron oxidations, so the biosynthetic pathway of CmlI must involve at least three steps. Here, kinetic techniques are used to characterize the rate and/or dissociation constants for each step by taking advantage of the remarkable stability of P in the absence of substrates (decay t1/2 = 3 h at 4 °C) and the visible chromophore of the diiron cluster. It is found that diferrous CmlI (CmlIred) can react with NH2-CAM and O2 in either order to form a P-NH2-CAM intermediate. P-NH2-CAM undergoes rapid oxygen transfer to form a diferric CmlI (CmlIox) complex with the aryl-hydroxylamine [NH(OH)-CAM] pathway intermediate. CmlIox-NH(OH)-CAM undergoes a rapid internal redox reaction to form a CmlIred-nitroso-CAM (NO-CAM) complex. O2 binding results in formation of P-NO-CAM that converts to CmlIox-CAM by enzyme-mediated oxygen atom transfer. The kinetic analysis indicates that there is little dissociation of pathway intermediates as the reaction progresses. Reactions initiated by adding pathway intermediates from solution occur much more slowly than those in which the intermediate is generated in the active site as part of the catalytic process. Thus, CmlI is able to preserve efficiency and specificity while avoiding adventitious chemistry by performing the entire six-electron oxidation in one active site.
Collapse
Affiliation(s)
- Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brent S. Rivard
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J Am Chem Soc 2017; 139:10472-10485. [PMID: 28673082 PMCID: PMC5568637 DOI: 10.1021/jacs.7b05389] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nat Chem Biol 2017; 13:916-921. [DOI: 10.1038/nchembio.2421] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
|
17
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
18
|
Sohn YS, Lee SG, Lee KH, Ku B, Shin HC, Cha SS, Kim YG, Lee HS, Kang SG, Oh BH. Identification of a Highly Conserved Hypothetical Protein TON_0340 as a Probable Manganese-Dependent Phosphatase. PLoS One 2016; 11:e0167549. [PMID: 27907125 PMCID: PMC5132392 DOI: 10.1371/journal.pone.0167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
A hypothetical protein TON_0340 of a Thermococcus species is a protein conserved in a variety of organisms including human. Herein, we present four different crystal structures of TON_0340, leading to the identification of an active-site cavity harboring a metal-binding site composed of six invariant aspartate and glutamate residues that coordinate one to three metal ions. Biochemical and mutational analyses involving many phosphorous compounds show that TON_0340 is a Mn2+-dependent phosphatase. Mg2+ binds to TON_0340 less tightly and activates the phosphatase activity less efficiently than Mn2+. Whereas Ca2+ and Zn2+ are able to bind to the protein, they are unable to activate its enzymatic activity. Since the active-site cavity is small and largely composed of nearly invariant stretches of 11 or 13 amino acids, the physiological substrates of TON_0340 and its homologues are likely to be a small and the same molecule. The Mn2+-bound TON_0340 structure provides a canonical model for the ubiquitously present TON_0340 homologues and lays a strong foundation for the elucidation of their substrate and biological function.
Collapse
Affiliation(s)
- Young-Sik Sohn
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kwang-Hoon Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Ansan, Korea
| | - Sung-Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Ansan, Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- * E-mail:
| |
Collapse
|
19
|
Kositzki R, Mebs S, Marx J, Griese JJ, Schuth N, Högbom M, Schünemann V, Haumann M. Protonation State of MnFe and FeFe Cofactors in a Ligand-Binding Oxidase Revealed by X-ray Absorption, Emission, and Vibrational Spectroscopy and QM/MM Calculations. Inorg Chem 2016; 55:9869-9885. [PMID: 27610479 DOI: 10.1021/acs.inorgchem.6b01752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzymes with a dimetal-carboxylate cofactor catalyze reactions among the top challenges in chemistry such as methane and dioxygen (O2) activation. Recently described proteins bind a manganese-iron cofactor (MnFe) instead of the classical diiron cofactor (FeFe). Determination of atomic-level differences of homo- versus hetero-bimetallic cofactors is crucial to understand their diverse redox reactions. We studied a ligand-binding oxidase from the bacterium Geobacillus kaustophilus (R2lox) loaded with a FeFe or MnFe cofactor, which catalyzes O2 reduction and an unusual tyrosine-valine ether cross-link formation, as revealed by X-ray crystallography. Advanced X-ray absorption, emission, and vibrational spectroscopy methods and quantum chemical and molecular mechanics calculations provided relative Mn/Fe contents, X-ray photoreduction kinetics, metal-ligand bond lengths, metal-metal distances, metal oxidation states, spin configurations, valence-level degeneracy, molecular orbital composition, nuclear quadrupole splitting energies, and vibrational normal modes for both cofactors. A protonation state with an axial water (H2O) ligand at Mn or Fe in binding site 1 and a metal-bridging hydroxo group (μOH) in a hydrogen-bonded network is assigned. Our comprehensive picture of the molecular, electronic, and dynamic properties of the cofactors highlights reorientation of the unique axis along the Mn-OH2 bond for the Mn1(III) Jahn-Teller ion but along the Fe-μOH bond for the octahedral Fe1(III). This likely corresponds to a more positive redox potential of the Mn(III)Fe(III) cofactor and higher proton affinity of its μOH group. Refined model structures for the Mn(III)Fe(III) and Fe(III)Fe(III) cofactors are presented. Implications of our findings for the site-specific metalation of R2lox and performance of the O2 reduction and cross-link formation reactions are discussed.
Collapse
Affiliation(s)
- Ramona Kositzki
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Jennifer Marx
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| | - Nils Schuth
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden.,Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
20
|
Solomon EI, Park K. Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem 2016; 21:575-88. [PMID: 27369780 PMCID: PMC5010389 DOI: 10.1007/s00775-016-1372-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Knoot CJ, Kovaleva EG, Lipscomb JD. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway. J Biol Inorg Chem 2016; 21:589-603. [PMID: 27229511 PMCID: PMC4994471 DOI: 10.1007/s00775-016-1363-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022]
Abstract
The diiron cluster-containing oxygenase CmlI catalyzes the conversion of the aromatic amine precursor of chloramphenicol to the nitroaromatic moiety of the active antibiotic. The X-ray crystal structures of the fully active, N-terminally truncated CmlIΔ33 in the chemically reduced Fe(2+)/Fe(2+) state and a cis μ-1,2(η (1):η (1))-peroxo complex are presented. These structures allow comparison with the homologous arylamine oxygenase AurF as well as other types of diiron cluster-containing oxygenases. The structural model of CmlIΔ33 crystallized at pH 6.8 lacks the oxo-bridge apparent from the enzyme optical spectrum in solution at higher pH. In its place, residue E236 forms a μ-1,3(η (1):η (2)) bridge between the irons in both models. This orientation of E236 stabilizes a helical region near the cluster which closes the active site to substrate binding in contrast to the open site found for AurF. A very similar closed structure was observed for the inactive dimanganese form of AurF. The observation of this same structure in different arylamine oxygenases may indicate that there are two structural states that are involved in regulation of the catalytic cycle. Both the structural studies and single crystal optical spectra indicate that the observed cis μ-1,2(η (1):η (1))-peroxo complex differs from the μ-η (1):η (2)-peroxo proposed from spectroscopic studies of a reactive intermediate formed in solution by addition of O2 to diferrous CmlI. It is proposed that the structural changes required to open the active site also drive conversion of the µ-1,2-peroxo species to the reactive form.
Collapse
Affiliation(s)
- Cory J Knoot
- Department of Biochemistry Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elena G Kovaleva
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - John D Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Komor AJ, Rivard BS, Fan R, Guo Y, Que L, Lipscomb JD. Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI. J Am Chem Soc 2016; 138:7411-21. [PMID: 27203126 PMCID: PMC4914076 DOI: 10.1021/jacs.6b03341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ultimate step in chloramphenicol (CAM) biosynthesis is a six-electron oxidation of an aryl-amine precursor (NH2-CAM) to the aryl-nitro group of CAM catalyzed by the non-heme diiron cluster-containing oxygenase CmlI. Upon exposure of the diferrous cluster to O2, CmlI forms a long-lived peroxo intermediate, P, which reacts with NH2-CAM to form CAM. Since P is capable of at most a two-electron oxidation, the overall reaction must occur in several steps. It is unknown whether P is the oxidant in each step or whether another oxidizing species participates in the reaction. Mass spectrometry product analysis of reactions under (18)O2 show that both oxygen atoms in the nitro function of CAM derive from O2. However, when the single-turnover reaction between (18)O2-P and NH2-CAM is carried out in an (16)O2 atmosphere, CAM nitro groups contain both (18)O and (16)O, suggesting that P can be reformed during the reaction sequence. Such reformation would require reduction by a pathway intermediate, shown here to be NH(OH)-CAM. Accordingly, the aerobic reaction of NH(OH)-CAM with diferric CmlI yields P and then CAM without an external reductant. A catalytic cycle is proposed in which NH2-CAM reacts with P to form NH(OH)-CAM and diferric CmlI. Then the NH(OH)-CAM rereduces the enzyme diiron cluster, allowing P to reform upon O2 binding, while itself being oxidized to NO-CAM. Finally, the reformed P oxidizes NO-CAM to CAM with incorporation of a second O2-derived oxygen atom. The complete six-electron oxidation requires only two exogenous electrons and could occur in one active site.
Collapse
Affiliation(s)
- Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Brent S. Rivard
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - John D. Lipscomb
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Jayapal P, Ansari A, Rajaraman G. Computational Examination on the Active Site Structure of a (Peroxo)diiron(III) Intermediate in the Amine Oxygenase AurF. Inorg Chem 2015; 54:11077-82. [PMID: 26588098 DOI: 10.1021/acs.inorgchem.5b00872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we report the first computational investigation on the structure and properties of the (peroxo)diiron(III) intermediate of the AurF enzyme. Our calculations predict that, in the oxidized state of the AurF enzyme, the peroxo ligand is depicted in a μ-1,1-coordination mode with a protonated bridging ligand and is not in a μ-η(2):η(2) or μ-1,2 mode. Computed spectral data for the μ-1,1-coordination mode correlate well with experimental observations and unravel the potential of the energetics-spectroscopic approach adapted here.
Collapse
Affiliation(s)
- Prabha Jayapal
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| |
Collapse
|
24
|
Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Eur J Inorg Chem 2015; 2015:3371-3390. [PMID: 27630532 PMCID: PMC5019575 DOI: 10.1002/ejic.201500470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal-binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four-helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron-oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco San Francisco, CA 94158, USA
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
25
|
Indest KJ, Eberly JO, Hancock DE. Expression and characterization of an N-oxygenase from Rhodococcus jostii RHAI. J GEN APPL MICROBIOL 2015; 61:217-23. [DOI: 10.2323/jgam.61.217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Karl J. Indest
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| | - Jed O. Eberly
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| | - Dawn E. Hancock
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| |
Collapse
|
26
|
Shafaat HS, Griese JJ, Pantazis DA, Roos K, Andersson CS, Popović-Bijelić A, Gräslund A, Siegbahn PEM, Neese F, Lubitz W, Högbom M, Cox N. Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J Am Chem Soc 2014; 136:13399-409. [PMID: 25153930 DOI: 10.1021/ja507435t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The electronic structure of the Mn/Fe cofactor identified in a new class of oxidases (R2lox) described by Andersson and Högbom [Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5633] is reported. The R2lox protein is homologous to the small subunit of class Ic ribonucleotide reductase (R2c) but has a completely different in vivo function. Using multifrequency EPR and related pulse techniques, it is shown that the cofactor of R2lox represents an antiferromagnetically coupled Mn(III)/Fe(III) dimer linked by a μ-hydroxo/bis-μ-carboxylato bridging network. The Mn(III) ion is coordinated by a single water ligand. The R2lox cofactor is photoactive, converting into a second form (R2loxPhoto) upon visible illumination at cryogenic temperatures (77 K) that completely decays upon warming. This second, unstable form of the cofactor more closely resembles the Mn(III)/Fe(III) cofactor seen in R2c. It is shown that the two forms of the R2lox cofactor differ primarily in terms of the local site geometry and electronic state of the Mn(III) ion, as best evidenced by a reorientation of its unique (55)Mn hyperfine axis. Analysis of the metal hyperfine tensors in combination with density functional theory (DFT) calculations suggests that this change is triggered by deprotonation of the μ-hydroxo bridge. These results have important consequences for the mixed-metal R2c cofactor and the divergent chemistry R2lox and R2c perform.
Collapse
Affiliation(s)
- Hannah S Shafaat
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Characterization of the N-oxygenase AurF from Streptomyces thioletus. Bioorg Med Chem 2014; 22:5569-77. [PMID: 24973817 DOI: 10.1016/j.bmc.2014.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 11/21/2022]
Abstract
AurF catalyzes the N-oxidation of p-aminobenzoic acid to p-nitrobenzoic acid in the biosynthesis of the antibiotic aureothin. Here we report the characterization of AurF under optimized conditions to explore its potential use in biocatalysis. The pH optimum of the enzyme was established to be 5.5 using phenazine methosulfate (PMS)/NADH as the enzyme mediator system, showing ~10-fold higher activity than previous reports in literature. Kinetic characterization at optimized conditions give a Km of 14.7 ± 1.1 μM, a kcat of 47.5 ± 5.4 min(-1) and a kcat/Km of 3.2 ± 0.4 μM(-1)min(-1). PMS/NADH and the native electron transfer proteins showed significant formation of the p-hydroxylaminobenzoic acid intermediate, however H2O2 produced mostly p-nitrobenzoic acid. Alanine scanning identified the role of important active site residues. The substrate specificity of AurF was examined and rationalized based on the protein crystal structure. Kinetic studies indicate that the Km is the main determinant of AurF activity toward alternative substrates.
Collapse
|
28
|
|
29
|
Reig AJ, Pires MM, Snyder RA, Wu Y, Jo H, Kulp DW, Butch SE, Calhoun JR, Szyperski T, Szyperski TG, Solomon EI, DeGrado WF. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nat Chem 2012; 4:900-6. [PMID: 23089864 PMCID: PMC3568993 DOI: 10.1038/nchem.1454] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
De novo proteins provide a unique opportunity for investigating the structure-function relationships of metalloproteins in a minimal, well-defined, and controlled scaffold. Herein, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the due ferri family. Originally created to catalyze O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyze the selective N-hydroxylation of arylamines by remodeling the substrate access cavity and introducing a critical third His ligand to the metal binding cavity. Additional second-and third-shell modifications were required to stabilize the His ligand in the core of the protein. These changes resulted in at least a 106 –fold increase in the relative rates of the two reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of geometric and electronic factors that influence the catalytic tuning of di-iron active sites.
Collapse
Affiliation(s)
- Amanda J Reig
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The N-oxygenation of an amine group is one of the steps in the biosynthesis of the antibiotic chloramphenicol. The non-heme di-iron enzyme CmlI was identified as the enzyme catalyzing this reaction through bioinformatics studies and reconstitution of enzymatic activity. In vitro reconstitution was achieved using phenazine methosulfate and NADH as electron mediators, while in vivo activity was demonstrated in Escherichia coli using two substrates. Kinetic analysis showed a biphasic behavior of the enzyme. Oxidized hydroxylamine and nitroso compounds in the reaction were detected both in vitro and in vivo based on LC-MS. The active site metal was confirmed to be iron based on a ferrozine assay. These findings provide new insights into the biosynthesis of chloramphenicol and could lead to further development of CmlI as a useful biocatalyst.
Collapse
Affiliation(s)
- Haige Lu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Emmanuel Chanco
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA ; Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
31
|
Arrebola E, Carrión VJ, Cazorla FM, Pérez-García A, Murillo J, de Vicente A. Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiol 2012; 12:10. [PMID: 22251433 PMCID: PMC3298696 DOI: 10.1186/1471-2180-12-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mangotoxin is an antimetabolite toxin that is produced by strains of Pseudomonas syringae pv. syringae; mangotoxin-producing strains are primarily isolated from mango tissues with symptoms of bacterial apical necrosis. The toxin is an oligopeptide that inhibits ornithine N-acetyl transferase (OAT), a key enzyme in the biosynthetic pathway of the essential amino acids ornithine and arginine. The involvement of a putative nonribosomal peptide synthetase gene (mgoA) in mangotoxin production and virulence has been reported. RESULTS In the present study, we performed a RT-PCR analysis, insertional inactivation mutagenesis, a promoter expression analysis and terminator localisation to study the gene cluster containing the mgoA gene. Additionally, we evaluated the importance of mgoC, mgoA and mgoD in mangotoxin production. A sequence analysis revealed an operon-like organisation. A promoter sequence was located upstream of the mgoB gene and was found to drive lacZ transcription. Two terminators were located downstream of the mgoD gene. RT-PCR experiments indicated that the four genes (mgoBCAD) constitute a transcriptional unit. This operon is similar in genetic organisation to those in the three other P. syringae pathovars for which complete genomes are available (P. syringae pv. syringae B728a, P. syringae pv. tomato DC3000 and P. syringae pv. phaseolicola 1448A). Interestingly, none of these three reference strains is capable of producing mangotoxin. Additionally, extract complementation resulted in a recovery of mangotoxin production when the defective mutant was complemented with wild-type extracts. CONCLUSIONS The results of this study confirm that mgoB, mgoC, mgoA and mgoD function as a transcriptional unit and operon. While this operon is composed of four genes, only the last three are directly involved in mangotoxin production.
Collapse
Affiliation(s)
- Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Estación Experimental La Mayora, Algarrobo-Costa, 29750 Málaga, Spain
| | - Víctor J Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| | - Jesús Murillo
- Laboratorio de Patología Vegetal, ETS de Ingenieros Agrónomos, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
32
|
Jayapal P, Rajaraman G. On the controversy of metal ion composition on amine oxygenase (AurF): a computational investigation. Phys Chem Chem Phys 2012; 14:9050-3. [DOI: 10.1039/c2cp40874k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Fries A, Bretschneider T, Winkler R, Hertweck C. A ribonucleotide reductase-like electron transfer system in the nitroaryl-forming N-oxygenase AurF. Chembiochem 2011; 12:1832-5. [PMID: 21678538 DOI: 10.1002/cbic.201100138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander Fries
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
34
|
Cortina NS, Revermann O, Krug D, Müller R. Identification and Characterization of the Althiomycin Biosynthetic Gene Cluster in Myxococcus xanthus DK897. Chembiochem 2011; 12:1411-6. [DOI: 10.1002/cbic.201100154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Indexed: 11/06/2022]
|
35
|
Platter E, Lawson M, Marsh C, Sazinsky MH. Characterization of a non-ribosomal peptide synthetase-associated diiron arylamine N-oxygenase from Pseudomonas syringae pv. phaseolicola. Arch Biochem Biophys 2011; 508:39-45. [DOI: 10.1016/j.abb.2011.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
|
36
|
|
37
|
|
38
|
Fries A, Winkler R, Hertweck C. Structural and biochemical basis for the firm chemo- and regioselectivity of the nitro-forming N-oxygenase AurF. Chem Commun (Camb) 2010; 46:7760-2. [DOI: 10.1039/c0cc02811h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
The manganese/iron-carboxylate proteins: what is what, where are they, and what can the sequences tell us? J Biol Inorg Chem 2009; 15:339-49. [DOI: 10.1007/s00775-009-0606-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Busch B, Hertweck C. Evolution of metabolic diversity in polyketide-derived pyrones: using the non-colinear aureothin assembly line as a model system. PHYTOCHEMISTRY 2009; 70:1833-1840. [PMID: 19651421 DOI: 10.1016/j.phytochem.2009.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 05/28/2023]
Abstract
Polyketide-derived pyrones are structurally diverse secondary metabolites that are represented in all three kingdoms of life and are endowed with various biological functions. The aureothin family of Streptomyces metabolites was chosen as a model to study the factors governing structural diversity and the evolutionary processes involved. This review highlights recent insights into the non-colinear aureothin and neoaureothin modular type I polyketide synthase (PKS), aromatic starter unit biosynthesis, polyketide tailoring reactions, and a non-enzymatic polyene splicing cascade. Pyrone biosynthesis in bacteria, fungi, and plants is compared. Finally, various strategies to increase metabolic diversity of aureothin derivatives through mutasynthesis, pathway engineering, and biotransformation are presented. The unusual aureothin and neoaureothin assembly lines thus not only represent a model for PKS evolution, but provided important insights into non-canonical enzymatic processes that could be employed for the production of antitumor and antifungal agents.
Collapse
Affiliation(s)
- Benjamin Busch
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Department of Biomolecular Chemistry, Jena, Germany
| | | |
Collapse
|
41
|
Korboukh VK, Li N, Barr EW, Bollinger JM, Krebs C. A long-lived, substrate-hydroxylating peroxodiiron(III/III) intermediate in the amine oxygenase, AurF, from Streptomyces thioluteus. J Am Chem Soc 2009; 131:13608-9. [PMID: 19731912 PMCID: PMC2772654 DOI: 10.1021/ja9064969] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amine oxygenase AurF from Streptomyces thioluteus catalyzes the six-electron oxidation of p-aminobenzoate (pABA) to p-nitrobenzoate (pNBA). In this work, we have studied the reaction of its reduced Fe(2)(II/II) cofactor with O(2), which results in generation of a peroxo-Fe(2)(III/III) intermediate. In the absence of substrate, this intermediate is unusually stable (t(1/2) = 7 min at 20 degrees C), allowing for its accumulation to almost stoichiometric amounts. Its decay is accelerated approximately 10(5)-fold by the substrate, pABA, implying that it is the complex that effects the two-electron oxidation of the amine to the hydroxylamine. The nearly quantitative conversion of pABA to pNBA by solutions containing an excess of the intermediate suggests that it may also be competent for the two subsequent two-electron oxidations leading to the product.
Collapse
Affiliation(s)
- Victoria Korneeva Korboukh
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Eric W. Barr
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J. Martin Bollinger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Carsten Krebs
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
42
|
Roth A, Plass W. Carboxylate-Bridged Dinuclear Active Sites in Oxygenases: Diiron, Dimanganese, or is Heterodinuclear Better? Angew Chem Int Ed Engl 2008; 47:7588-91. [DOI: 10.1002/anie.200802366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Roth A, Plass W. Carboxylatverbrückte Zweikernzentren in Oxygenasen: Dieisen, Dimangan oder doch besser heterozweikernig? Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc Natl Acad Sci U S A 2008; 105:6858-63. [PMID: 18458342 DOI: 10.1073/pnas.0712073105] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p-Aminobenzoate N-oxygenase (AurF) from Streptomyces thioluteus catalyzes the formation of unusual polyketide synthase starter unit p-nitrobenzoic acid (pNBA) from p-aminobenzoic acid (pABA) in the biosynthesis of antibiotic aureothin. AurF is a metalloenzyme, but its native enzymatic activity has not been demonstrated in vitro, and its catalytic mechanism is unclear. In addition, the nature of the cofactor remains a controversy. Here, we report the in vitro reconstitution of the AurF enzyme activity, the crystal structure of AurF in the oxidized state, and the cocrystal structure of AurF with its product pNBA. Our combined biochemical and structural analysis unequivocally indicates that AurF is a non-heme di-iron monooxygenase that catalyzes sequential oxidation of aminoarenes to nitroarenes via hydroxylamine and nitroso intermediates.
Collapse
|
45
|
|