1
|
Trogisch FA, Koser F, Michel S, Liem DA, Florea BI, Hecker M, Drews O. Genetic ablation of Lmp2 increases the susceptibility for impaired cardiac function. Front Mol Biosci 2024; 11:1148948. [PMID: 38516190 PMCID: PMC10955435 DOI: 10.3389/fmolb.2024.1148948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Proteasome degradation is an integral part of cellular growth and function. Proteasomal intervention may mitigate adverse myocardial remodeling, but is associated with the onset of heart failure. Previously, we have demonstrated that increasing abundance of cardiac Lmp2 and its incorporation into proteasome complexes is an endogenous mechanism for proteasome regulation during hypertrophic remodeling of the heart induced by chronic ß-adrenoreceptor stimulation. Here, we investigated whether Lmp2 is required for myocardial remodeling not driven by inflammation and show that Lmp2 is a tipping element for growth and function in the heart but not for proteasome insufficiency. While it has no apparent impact under unchallenged conditions, myocardial remodeling without Lmp2 exacerbates hypertrophy and restricts cardiac function. Under chronic ß-adrenoreceptor stimulation, as seen in the development of cardiovascular disease and the manifestation of heart failure, genetic ablation of Lmp2 in mice caused augmented concentric hypertrophy of the left ventricle. While the heart rate was similarly elevated as in wildtype, myocardial contractility was not maintained without Lmp2, and apparently uncoupled of the ß-adrenergic response. Normalized to the exacerbated myocardial mass, contractility was reduced by 41% of the pretreatment level, but would appear preserved at absolute level. The lack of Lmp2 interfered with elevated 26S proteasome activities during early cardiac remodeling reported previously, but did not cause bulk proteasome insufficiency, suggesting the Lmp2 containing proteasome subpopulation is required for a selected group of proteins to be degraded. In the myocardial interstitium, augmented collagen deposition suggested matrix stiffening in the absence of Lmp2. Indeed, echocardiography of left ventricular peak relaxation velocity (circumferential strain rate) was reduced in this treatment group. Overall, targeting Lmp2 in a condition mimicking chronic ß-adrenoreceptor stimulation exhibited the onset of heart failure. Anticancer therapy inhibiting proteasome activity, including Lmp2, is associated with adverse cardiac events, in particular heart failure. Sparing Lmp2 may be an avenue to reduce adverse cardiac events when chronic sympathetic nervous system activation cannot be excluded.
Collapse
Affiliation(s)
- Felix A. Trogisch
- European Center for Angioscience, Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Franziska Koser
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Synje Michel
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - David A. Liem
- Departments of Physiology and Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Oliver Drews
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University, Linz, Austria
| |
Collapse
|
2
|
Watanabe A, Yashiroda H, Ishihara S, Lo M, Murata S. The Molecular Mechanisms Governing the Assembly of the Immuno- and Thymoproteasomes in the Presence of Constitutive Proteasomes. Cells 2022; 11:cells11091580. [PMID: 35563886 PMCID: PMC9105311 DOI: 10.3390/cells11091580] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
The proteasome is a large protein complex responsible for proteolysis in cells. Though the proteasome is widely conserved in all eukaryotes, vertebrates additionally possess tissue-specific proteasomes, termed immunoproteasomes and thymoproteasomes. These specialized proteasomes diverge from constitutive proteasomes in the makeup of their catalytic 20S core particle (CP), whereby the constitutive β1, β2, and β5 catalytic subunits are replaced by β1i, β2i, and β5i in immunoproteasomes, or β1i, β2i, and β5t in thymoproteasomes. However, as constitutive β1, β2, and β5 are also present in tissues and cells expressing immuno- and thymoproteasomes, the specialized proteasomes must be able to selectively incorporate their specific subunits. Here, we review the mechanisms governing the assembly of constitutive and specialized proteasomes elucidated thus far. Studies have revealed that β1i and β2i are added onto the α-ring of the CP prior to the other β subunits. Furthermore, β5i and β5t can be incorporated independent of β4, whereas constitutive β5 incorporation is dependent on β4. These mechanisms allow the immuno- and thymoproteasomes to integrate tissue-specific β-subunits without contamination from constitutive β1, β2, and β5. We end the review with a brief discussion on the diseases caused by mutations to the immunoproteasome and the proteins involved with its assembly.
Collapse
|
3
|
Ben-Nissan G, Katzir N, Füzesi-Levi MG, Sharon M. Biology of the Extracellular Proteasome. Biomolecules 2022; 12:619. [PMID: 35625547 PMCID: PMC9139032 DOI: 10.3390/biom12050619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Proteasomes are traditionally considered intracellular complexes that play a critical role in maintaining proteostasis by degrading short-lived regulatory proteins and removing damaged proteins. Remarkably, in addition to these well-studied intracellular roles, accumulating data indicate that proteasomes are also present in extracellular body fluids. Not much is known about the origin, biological role, mode(s) of regulation or mechanisms of extracellular transport of these complexes. Nevertheless, emerging evidence indicates that the presence of proteasomes in the extracellular milieu is not a random phenomenon, but rather a regulated, coordinated physiological process. In this review, we provide an overview of the current understanding of extracellular proteasomes. To this end, we examine 143 proteomic datasets, leading us to the realization that 20S proteasome subunits are present in at least 25 different body fluids. Our analysis also indicates that while 19S subunits exist in some of those fluids, the dominant proteasome activator in these compartments is the PA28α/β complex. We also elaborate on the positive correlations that have been identified in plasma and extracellular vesicles, between 20S proteasome and activity levels to disease severity and treatment efficacy, suggesting the involvement of this understudied complex in pathophysiology. In addition, we address the considerations and practical experimental methods that should be taken when investigating extracellular proteasomes. Overall, we hope this review will stimulate new opportunities for investigation and thoughtful discussions on this exciting topic that will contribute to the maturation of the field.
Collapse
Affiliation(s)
| | | | | | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (G.B.-N.); (N.K.); (M.G.F.-L.)
| |
Collapse
|
4
|
A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021; 10:cells10081929. [PMID: 34440698 PMCID: PMC8394499 DOI: 10.3390/cells10081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
At the heart of the ubiquitin-proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.
Collapse
|
5
|
Bo Kim K. Proteasomal adaptations to FDA-approved proteasome inhibitors: a potential mechanism for drug resistance? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:634-645. [PMID: 34308274 PMCID: PMC8297691 DOI: 10.20517/cdr.2021.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With proteasome inhibitors (PIs) becoming clinically available since 2003, outcomes for patients with multiple myeloma (MM) have dramatically changed, improving quality of life and survival. Despite the impressive treatment success, however, almost all MM patients who initially respond to these PIs eventually develop resistance. Furthermore, a portion of MM patients is inherently unresponsive to the PIs. Extensive mechanistic investigations identified several non-proteasomal signaling pathways suspected to be linked to the PI resistance, for which several excellent reviews are currently available. On the other hand, it is still unclear how cancer cells under high PI environments adapt to spare proteasome activity essential for survival and proliferation regardless of cancer evolution stages. This review outlines current progress towards understanding the proteasomal adaptations of cells in response to PI treatment to maintain necessary proteasome activity. A better understanding of cellular proteasomal changes in response to the PIs could provide a rationale to develop new therapeutics that could be used to overcome resistance to existing PI drugs.
Collapse
Affiliation(s)
- Kyung Bo Kim
- Department of Pharmaceutics, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| |
Collapse
|
6
|
Dwivedi V, Yaniv K, Sharon M. Beyond cells: The extracellular circulating 20S proteasomes. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166041. [PMID: 33338594 DOI: 10.1016/j.bbadis.2020.166041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence arising from numerous clinical studies indicate that assembled and functional 20S proteasome complexes circulate freely in plasma. Elevated levels of this core proteolytic complex have been found in the plasma of patients suffering from blood, skin and solid cancers, autoimmune disorders, trauma and sepsis. Moreover, in various diseases, there is a positive correlation between circulating 20S proteasome (c20S) levels and treatment efficacy and survival rates, suggesting the involvement of this under-studied c20S complex in pathophysiology. However, many aspects of this system remain enigmatic, as we still do not know the origin, biological role or mechanisms of extracellular transport and regulation of c20S proteasomes. In this review, we provide an overview of the current understanding of the c20S proteasome system and discuss the remaining gaps in knowledge.
Collapse
Affiliation(s)
- Vandita Dwivedi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Karina Yaniv
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
7
|
Karim MR, Fisher CR, Kapphahn RJ, Polanco JR, Ferrington DA. Investigating AKT activation and autophagy in immunoproteasome-deficient retinal cells. PLoS One 2020; 15:e0231212. [PMID: 32275682 PMCID: PMC7147741 DOI: 10.1371/journal.pone.0231212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 12/04/2022] Open
Abstract
Two major proteolytic systems, the proteasome and the autophagy pathway, are key components of the proteostasis network. The immunoproteasome, a proteasome subtype, and autophagy are upregulated under stress conditions, forming a coordinated unit designed to minimize the effect of cell stress. We investigated how genetic ablation of the LMP2 immunoproteasome subunit affects autophagy in retinal pigment epithelium (RPE) from WT and LMP2 knockout mice. We monitored autophagy regulation by measuring LC3, phosphorylation of AKT (S473), and phosphorylation of S6, a downstream readout of AKT (mTOR) pathway activation. We also evaluated transcription factor EB (TFEB) nuclear translocation, a transcription factor that controls expression of autophagy and lysosome genes. WT and LMP2 KO cells were monitored after treatment with EBSS to stimulate autophagy, insulin to stimulate AKT, or an AKT inhibitor (trehalose or MK-2206). Under basal conditions, we observed hyper-phosphorylation of AKT and S6, as well as lower nuclear-TFEB content in LMP2 KO RPE compared with WT. AKT inhibitors MK-2206 and trehalose significantly inhibited AKT phosphorylation and stimulated nuclear translocation of TFEB. Starvation and AKT inhibition upregulated autophagy, albeit to a lesser extent in LMP2 KO RPE. These data support the idea that AKT hyper-activation is an underlying cause of defective autophagy regulation in LMP2 KO RPE, revealing a unique link between two proteolytic systems and a previously unknown function in autophagy regulation by the immunoproteasome.
Collapse
Affiliation(s)
- Md. Razaul Karim
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cody R. Fisher
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rebecca J. Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jorge R. Polanco
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Khilji MS, Verstappen D, Dahlby T, Burstein Prause MC, Pihl C, Bresson SE, Bryde TH, Keller Andersen PA, Klindt K, Zivkovic D, Bousquet-Dubouch MP, Tyrberg B, Mandrup-Poulsen T, Marzec MT. The intermediate proteasome is constitutively expressed in pancreatic beta cells and upregulated by stimulatory, low concentrations of interleukin 1 β. PLoS One 2020; 15:e0222432. [PMID: 32053590 PMCID: PMC7018053 DOI: 10.1371/journal.pone.0222432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
A central and still open question regarding the pathogenesis of autoimmune diseases, such as type 1 diabetes, concerns the processes that underlie the generation of MHC-presented autoantigenic epitopes that become targets of autoimmune attack. Proteasomal degradation is a key step in processing of proteins for MHC class I presentation. Different types of proteasomes can be expressed in cells dictating the repertoire of peptides presented by the MHC class I complex. Of particular interest for type 1 diabetes is the proteasomal configuration of pancreatic β cells, as this might facilitate autoantigen presentation by β cells and thereby their T-cell mediated destruction. Here we investigated whether so-called inducible subunits of the proteasome are constitutively expressed in β cells, regulated by inflammatory signals and participate in the formation of active intermediate or immuno-proteasomes. We show that inducible proteasomal subunits are constitutively expressed in human and rodent islets and an insulin-secreting cell-line. Moreover, the β5i subunit is incorporated into active intermediate proteasomes that are bound to 19S or 11S regulatory particles. Finally, inducible subunit expression along with increase in total proteasome activities are further upregulated by low concentrations of IL-1β stimulating proinsulin biosynthesis. These findings suggest that the β cell proteasomal repertoire is more diverse than assumed previously and may be highly responsive to a local inflammatory islet environment.
Collapse
Affiliation(s)
- Muhammad Saad Khilji
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Danielle Verstappen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Radboud Universiteit, Nijmegen, Netherlands
| | - Tina Dahlby
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Celina Pihl
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Emilie Bresson
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenna Holgersen Bryde
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Phillip Alexander Keller Andersen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Klindt
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dusan Zivkovic
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Mandrup-Poulsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michal Tomasz Marzec
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
10
|
Xin BT, Espinal C, de Bruin G, Filippov DV, van der Marel GA, Florea BI, Overkleeft HS. Two-Step Bioorthogonal Activity-Based Protein Profiling of Individual Human Proteasome Catalytic Sites. Chembiochem 2020; 21:248-255. [PMID: 31597011 DOI: 10.1002/cbic.201900551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry allows the selective modification of biomolecules in complex biological samples. One application of this methodology is in two-step activity-based protein profiling (ABPP), a methodology that is particularly attractive where direct ABPP using fluorescent or biotinylated probes is ineffective. Herein we describe a set of norbornene-modified, mechanism-based proteasome inhibitors aimed to be selective for each of the six catalytic sites of human constitutive proteasomes and immunoproteasomes. The probes developed for β1i, β2i, β5c, and β5i proved to be useful two-step ABPs that effectively label their developed proteasome subunits in both Raji cell extracts and living Raji cells through inverse-electron-demand Diels-Alder (iEDDA) ligation. The compound developed for β1c proved incapable of penetrating the cell membrane, but effectively labels β1c in vitro. The compound developed for β2c proved not selective, but its azide-containing analogue LU-002c proved effective in labeling of β2c via azide-alkyne click ligation chemistry both in vitro and in situ. In total, our results contribute to the growing list of proteasome activity tools to include five subunit-selective activity-based proteasome probes, four of which report on proteasome activities in living cells.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Christofer Espinal
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.,Present address, Acerta Pharma B.V., Industrielaan 63, 5349 AE, Oss, The Netherlands
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
11
|
Textoris-Taube K, Cammann C, Henklein P, Topfstedt E, Ebstein F, Henze S, Liepe J, Zhao F, Schadendorf D, Dahlmann B, Uckert W, Paschen A, Mishto M, Seifert U. ER-aminopeptidase 1 determines the processing and presentation of an immunotherapy-relevant melanoma epitope. Eur J Immunol 2019; 50:270-283. [PMID: 31729751 DOI: 10.1002/eji.201948116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Dissecting the different steps of the processing and presentation of tumor-associated antigens is a key aspect of immunotherapies enabling to tackle the immune response evasion attempts of cancer cells. The immunodominant glycoprotein gp100209-217 epitope, which is liberated from the melanoma differentiation antigen gp100PMEL17 , is part of immunotherapy trials. By analyzing different human melanoma cell lines, we here demonstrate that a pool of N-terminal extended peptides sharing the common minimal epitope is generated by melanoma proteasome subtypes. In vitro and in cellulo experiments indicate that ER-resident aminopeptidase 1 (ERAP1)-but not ERAP2-defines the processing of this peptide pool thereby modulating the T-cell recognition of melanoma cells. By combining the outcomes of our studies and others, we can sketch the complex processing and endogenous presentation pathway of the gp100209-217 -containing epitope/peptides, which are produced by proteasomes and are translocated to the vesicular compartment through different pathways, where the precursor peptides that reach the endoplasmic reticulum are further processed by ERAP1. The latter step enhances the activation of epitope-specific T lymphocytes, which might be a target to improve the efficiency of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Kathrin Textoris-Taube
- Shared Facility for Mass Spectrometry, Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Henze
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juliane Liepe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fang Zhao
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Burkhardt Dahlmann
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz Gemeinschaft, Berlin, Germany
| | - Annette Paschen
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi", University of Bologna, Bologna, Italy
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Ebstein F, Poli Harlowe MC, Studencka-Turski M, Krüger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS). Front Immunol 2019; 10:2756. [PMID: 31827472 PMCID: PMC6890838 DOI: 10.3389/fimmu.2019.02756] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type I interferonopathies cover a phenotypically heterogeneous group of rare genetic diseases including the recently described proteasome-associated autoinflammatory syndromes (PRAAS). By definition, PRAAS are caused by inherited and/or de novo loss-of-function mutations in genes encoding proteasome subunits such as PSMB8, PSMB9, PSMB7, PSMA3, or proteasome assembly factors including POMP and PSMG2, respectively. Disruption of any of these subunits results in perturbed intracellular protein homeostasis including accumulation of ubiquitinated proteins which is accompanied by a type I interferon (IFN) signature. The observation that, similarly to pathogens, proteasome dysfunctions are potent type I IFN inducers is quite unexpected and, up to now, the underlying molecular mechanisms of this process remain largely unknown. One promising candidate for triggering type I IFN under sterile conditions is the unfolded protein response (UPR) which is typically initiated in response to an accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER) (also referred to as ER stress). The recent observation that the UPR is engaged in subjects carrying POMP mutations strongly suggests its possible implication in the cause-and-effect relationship between proteasome impairment and interferonopathy onset. The purpose of this present review is therefore to discuss the possible role of the UPR in the pathogenesis of PRAAS. We will particularly focus on pathways initiated by the four ER-membrane proteins ATF6, PERK, IRE1-α, and TCF11/Nrf1 which undergo activation under proteasome inhibition. An overview of the current understanding of the mechanisms and potential cross-talk between the UPR and inflammatory signaling casacades is provided to convey a more integrated picture of the pathophysiology of PRAAS and shed light on potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - María Cecilia Poli Harlowe
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Wang S, Li J, Wang T, Bai J, Zhang YL, Lin QY, Li JM, Zhao Q, Guo SB, Li HH. Ablation of Immunoproteasome β5i Subunit Suppresses Hypertensive Retinopathy by Blocking ATRAP Degradation in Mice. Mol Ther 2019; 28:279-292. [PMID: 31636038 DOI: 10.1016/j.ymthe.2019.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation is associated with retinal diseases. Our recent data demonstrate that immunoproteasome catalytic subunit β2i contributes to angiotensin II (Ang II)-induced retinopathy in mice. Here, we investigated the role of another catalytic subunit β5i in regulating retinopathy and its underlying mechanisms. We induced a murine model of retinopathy by infusing Ang II (3,000 ng/kg/min) for 3 weeks into wild-type (WT) mice, β5i-knockout (KO) mice, or WT mice injected with either adenovirus-expressing β5i (Ad-β5i) or angiotensin II type 1 receptor (AT1R)-associated protein (Ad-ATRAP), which inhibits AT1R. The β5i expression and chymotrypsin-like activity were most significantly elevated in Ang II-infused retinas and serum from patients with hypertensive retinopathy. Moreover, Ang II infusion-induced retinopathy was markedly attenuated in β5i-KO mice but aggravated in Ad-β5i-injected mice. Accordingly, β5i KO markedly restored Ang II-induced downregulation of ATRAP and activation of AT1R downstream mediators, which was further enhanced in Ad-β5i-injected mice. Interestingly, overexpression of ATRAP significantly abrogated Ang II-induced retinopathy in Ad-β5i-injected mice. This study found that β5i promoted Ang II-induced retinopathy by promoting ATRAP degradation and activation of AT1R-mediated signals.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China.
| | - Jing Li
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Tong Wang
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Jie Bai
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jing-Min Li
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Qi Zhao
- Department of Ophthalmology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Shu-Bin Guo
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
14
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
16
|
Ganesan M, Krutik VM, Makarov E, Mathews S, Kharbanda KK, Poluektova LY, Casey CA, Osna NA. Acetaldehyde suppresses the display of HBV-MHC class I complexes on HBV-expressing hepatocytes. Am J Physiol Gastrointest Liver Physiol 2019; 317:G127-G140. [PMID: 31141391 PMCID: PMC6734374 DOI: 10.1152/ajpgi.00064.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) infection and alcoholism are major public health problems worldwide, contributing to the development of end-stage liver disease. Alcohol intake affects HBV infection pathogenesis and treatment outcomes. HBV-specific cytotoxic T lymphocytes (CTLs) play an important role in HBV clearance. Many previous studies have focused on alcohol-induced impairments of the immune response. However, it is not clear whether alcohol alters the presentation of HBV peptide-major histocompatibility complex (MHC) class I complexes on infected hepatocytes resulting in escape of its recognition by CTLs. Hence, the focus of this study was to investigate the mechanisms by which ethanol metabolism affects the presentation of CTL epitope on HBV-infected hepatocytes. As demonstrated here, although continuous cell exposure to acetaldehyde-generating system (AGS) increased HBV load in HepG2.2.15 cells, it decreased the expression of HBV core peptide 18-27-human leukocyte antigen-A2complex (CTL epitope) on the cell surface. Moreover, we observed AGS-induced suppression of chymotrypsin- and trypsin-like proteasome activities necessary for peptide processing by proteasome as well as a decline in IFNγ-stimulated immunoproteasome (IPR) function and expression of PA28 activator and immunoproteasome subunits LMP7 and LMP2. Furthermore, IFNγ-induced activation of peptide-loading complex (PLC) components, such as transporter associated with antigen processing (TAP1) and tapasin, were suppressed by AGS. The attenuation of IPR and PLC activation was attributed to AGS-triggered impairment of IFNγ signaling in HepG2.2.15 cells. Collectively, all these downstream events reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, which may suppress CTL activation and the recognition of CTL epitopes on HBV-expressing hepatocytes by immune cells, thereby leading to persistence of liver inflammation.NEW & NOTEWORTHY Our study shows that in HBV-expressing HepG2.2.15 cells, acetaldehyde alters HBV peptide processing by suppressing chymotrypsin- and trypsin-like proteasome activities and decreases IFNγ-stimulated immunoproteasome function and expression of PA28 activator and immunoproteasome subunits. It also suppresses IFNγ-induced activation of peptide-loading complex (PLC) components due to impairment of IFNγ signaling via the JAK-STAT1 pathway. These acetaldehyde-induced dysfunctions reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, thereby leading to persistence of HBV infection.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vjaceslav M Krutik
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
17
|
Morozov AV, Karpov VL. Biological consequences of structural and functional proteasome diversity. Heliyon 2018; 4:e00894. [PMID: 30417153 PMCID: PMC6218844 DOI: 10.1016/j.heliyon.2018.e00894] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cell homeostasis and regulation of metabolic pathways are ensured by synthesis, proper folding and efficient degradation of a vast amount of proteins. Ubiquitin-proteasome system (UPS) degrades most intracellular proteins and thus, participates in regulation of cellular metabolism. Within the UPS, proteasomes are the elements that perform substrate cleavage. However, the proteasomes in the organism are diverse. Structurally different proteasomes are present not only in different types of cells, but also in a single cell. The reason for proteasome heterogeneity is not fully understood. This review briefly encompasses mammalian proteasome structure and function, and discusses biological relevance of proteasome diversity for a range of important cellular functions including internal and external signaling.
Collapse
Affiliation(s)
- Alexey V Morozov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| | - Vadim L Karpov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| |
Collapse
|
18
|
Lubos M, Dębowski D, Barcińska E, Meid A, Inkielewicz‐Stepniak I, Burster T, Rolka K. Inhibition of human constitutive 20S proteasome and 20S immunoproteasome with novel
N
‐terminally modified peptide aldehydes and their antitumor activity. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Lubos
- Department of Molecular Biochemistry, Faculty of ChemistryUniversity of Gdansk Gdansk Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of ChemistryUniversity of Gdansk Gdansk Poland
| | - Ewelina Barcińska
- Department of Medical ChemistryMedical University of Gdansk Gdansk Poland
| | - Annika Meid
- Department of Neurosurgery, Surgery CenterUlm University Medical Center Ulm Germany
| | | | - Timo Burster
- Department of BiologySchool of Science and Technology, Nazarbayev University Astana Kazakhstan Republic
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of ChemistryUniversity of Gdansk Gdansk Poland
| |
Collapse
|
19
|
Ramos de Carvalho JE, Verwoert MT, Vogels IM, Reits EA, Van Noorden CJ, Klaassen I, Schlingemann RO. Involvement of the ubiquitin-proteasome system in the expression of extracellular matrix genes in retinal pigment epithelial cells. Biochem Biophys Rep 2018; 13:83-92. [PMID: 29387813 PMCID: PMC5789218 DOI: 10.1016/j.bbrep.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/06/2023] Open
Abstract
Emerging evidence suggests that dysfunction of the ubiquitin-proteasome system is involved in the pathogenesis of numerous senile degenerative diseases including retinal disorders. The aim of this study was to assess whether there is a link between proteasome regulation and retinal pigment epithelium (RPE)-mediated expression of extracellular matrix genes. For this purpose, human retinal pigment epithelial cells (ARPE-19) were treated with different concentrations of transforming growth factor-β (TGFβ), connective tissue growth factor (CTGF), interferon-γ (IFNγ) and the irreversible proteasome inhibitor epoxomicin. First, cytotoxicity and proliferation assays were carried out. The expression of proteasome-related genes and proteins was assessed and proteasome activity was determined. Then, expression of fibrosis-associated factors fibronectin (FN), fibronectin EDA domain (FN EDA), metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinases-1 (TIMP-1) and peroxisome proliferator-associated receptor-γ (PPARγ) was assessed. The proteasome inhibitor epoxomicin strongly arrested cell cycle progression and down-regulated TGFβ gene expression, which in turn was shown to induce expression of pro-fibrogenic genes in ARPE-19 cells. Furthermore, epoxomicin induced a directional shift in the balance between MMP-2 and TIMP-1 and was associated with down-regulation of transcription of extracellular matrix genes FN and FN-EDA and up-regulation of the anti-fibrogenic factor PPARγ. In addition, both CTGF and TGFβ were shown to affect expression of proteasome-associated mRNA and protein levels. Our results suggest a link between proteasome activity and pro-fibrogenic mechanisms in the RPE, which could imply a role for proteasome-modulating agents in the treatment of retinal disorders characterized by RPE-mediated fibrogenic responses.
Collapse
Key Words
- AMD, age-related macular degeneration
- ARPE-19, human retinal pigment epithelial cells
- CNV, choroidal neovascularization
- CTGF
- CTGF, connective tissue growth factor
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- Epoxomicin
- FN EDA, fibronectin EDA domain
- FN, fibronectin
- Fibrosis
- IFNγ, interferon-γ
- MMP-2, matrix metalloproteinase-2
- PPARγ
- PPARγ, peroxisome proliferator-associated receptor-γ
- Proteasome
- RPE
- RPE, retinal pigment epithelium
- Retina
- TGFβ
- TGFβ, transforming growth factor-β
- TIMP-1, tissue inhibitor of metalloproteinases-1
- UPS, ubiquitin-proteasome system
- nAMD, neovascular age-related macular degeneration
Collapse
Affiliation(s)
- J. Emanuel Ramos de Carvalho
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Milan T. Verwoert
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilse M.C. Vogels
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J.F. Van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling. Leukemia 2017; 32:809-819. [PMID: 28744013 PMCID: PMC5669462 DOI: 10.1038/leu.2017.225] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/16/2017] [Accepted: 07/04/2017] [Indexed: 01/15/2023]
Abstract
Several somatic ribosome defects have recently been discovered in cancer, yet their oncogenic mechanisms remain poorly understood. Here we investigated the pathogenic role of the recurrent R98S mutation in ribosomal protein L10 (RPL10 R98S) found in T-cell acute lymphoblastic leukemia (T-ALL). The JAK-STAT signaling pathway is a critical controller of cellular proliferation and survival. A proteome screen revealed overexpression of several Jak-Stat signaling proteins in engineered RPL10 R98S mouse lymphoid cells, which we confirmed in hematopoietic cells from transgenic Rpl10 R98S mice and T-ALL xenograft samples. RPL10 R98S expressing cells displayed JAK-STAT pathway hyper-activation upon cytokine stimulation, as well as increased sensitivity to clinically used JAK-STAT inhibitors like pimozide. A mutually exclusive mutation pattern between RPL10 R98S and JAK-STAT mutations in T-ALL patients further suggests that RPL10 R98S functionally mimics JAK-STAT activation. Mechanistically, besides transcriptional changes, RPL10 R98S caused reduction of apparent programmed ribosomal frameshifting at several ribosomal frameshift signals in mouse and human Jak-Stat genes, as well as decreased Jak1 degradation. Of further medical interest, RPL10 R98S cells showed reduced proteasome activity and enhanced sensitivity to clinical proteasome inhibitors. Collectively, we describe modulation of the JAK-STAT cascade as a novel cancer-promoting activity of a ribosomal mutation, and expand the relevance of this cascade in leukemia.
Collapse
|
21
|
Broekaart DWM, van Scheppingen J, Geijtenbeek KW, Zuidberg MRJ, Anink JJ, Baayen JC, Mühlebner A, Aronica E, Gorter JA, van Vliet EA. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway. Epilepsia 2017. [DOI: 10.1111/epi.13823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diede W. M. Broekaart
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Karlijne W. Geijtenbeek
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Mark R. J. Zuidberg
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Jasper J. Anink
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Johannes C. Baayen
- Department of Neurosurgery; VU University Medical Center; Vrije Universiteit; Amsterdam The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
| | - Jan A. Gorter
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
22
|
Kovács J, Poór P, Kaschani F, Chandrasekar B, Hong TN, Misas-Villamil JC, Xin BT, Kaiser M, Overkleeft HS, Tari I, van der Hoorn RAL. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:107. [PMID: 28217134 PMCID: PMC5289967 DOI: 10.3389/fpls.2017.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.
Collapse
Affiliation(s)
- Judit Kovács
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tram N. Hong
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Johana C. Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of CologneCologne, Germany
| | - Bo T. Xin
- Leiden Institute of Chemistry, Leiden UniversityLeiden, Netherlands
| | - Markus Kaiser
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | | | - Irma Tari
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Renier A. L. van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
23
|
Monte ER, Rossato C, Llanos RP, Russo LC, de Castro LM, Gozzo FC, de Araujo CB, Peron JPS, Sant'Anna OA, Ferro ES, Rioli V. Interferon-gamma activity is potentiated by an intracellular peptide derived from the human 19S ATPase regulatory subunit 4 of the proteasome. J Proteomics 2017; 151:74-82. [DOI: 10.1016/j.jprot.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/20/2016] [Accepted: 08/04/2016] [Indexed: 11/24/2022]
|
24
|
Martin RR, Constable F, Tzanetakis IE. Quarantine Regulations and the Impact of Modern Detection Methods. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:189-205. [PMID: 27491434 DOI: 10.1146/annurev-phyto-080615-100105] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Producers worldwide need access to the best plant varieties and cultivars available to be competitive in global markets. This often means moving plants across international borders as soon as they are available. At the same time, quarantine agencies are tasked with minimizing the risk of introducing exotic pests and pathogens along with imported plant material, with the goal to protect domestic agriculture and native fauna and flora. These two drivers, the movement of more plant material and reduced risk of pathogen introduction, are at odds. Improvements in large-scale or next-generation sequencing (NGS) and bioinformatics for data analysis have resulted in improved speed and accuracy of pathogen detection that could facilitate plant trade with reduced risk of pathogen movement. There are concerns to be addressed before NGS can replace existing tools used for pathogen detection in plant quarantine and certification programs. Here, we discuss the advantages and possible pitfalls of this technology for meeting the needs of plant quarantine and certification.
Collapse
Affiliation(s)
- Robert R Martin
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, Oregon 97330;
| | - Fiona Constable
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, Victoria, Australia 3083:
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas 72701;
| |
Collapse
|
25
|
Xin BT, de Bruin G, Huber EM, Besse A, Florea BI, Filippov DV, van der Marel GA, Kisselev AF, van der Stelt M, Driessen C, Groll M, Overkleeft HS. Structure-Based Design of β5c Selective Inhibitors of Human Constitutive Proteasomes. J Med Chem 2016; 59:7177-87. [PMID: 27438186 DOI: 10.1021/acs.jmedchem.6b00705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work reports the development of highly potent and selective inhibitors of the β5c catalytic activity of human constitutive proteasomes. The work describes the design principles, large hydrophobic P3 residue and small hydrophobic P1 residue, that led to the synthesis of a panel of peptide epoxyketones; their evaluation and the selection of the most promising compounds for further analyses. Structure-activity relationships detail how in a logical order the β1c/i, β2c/i, and β5i activities became resistant to inhibition as compounds were diversified stepwise. The most effective compounds were obtained as a mixture of cis- and trans-biscyclohexyl isomers, and enantioselective synthesis resolved this issue. Studies on yeast proteasome structures complexed with some of the compounds provide a rationale for the potency and specificity. Substitution of the N-terminus in the most potent compound for a more soluble equivalent led to a cell-permeable molecule that selectively and efficiently blocks β5c in cells expressing both constitutive proteasomes and immunoproteasomes.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München , 85748 Garching, Germany
| | - Andrej Besse
- Department of Hematology and Oncology, Kantonsspital St. Gallen , 9007 St. Gallen, Switzerland
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexei F Kisselev
- Department of Pharmacology and Toxicology and Norris Cotton Cancer Center, Geisel Cancer School of Medicine at Dartmouth , 1 Medical Center Drive HB7936, Lebanon, New Hampshire 03756, United States
| | - Mario van der Stelt
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Christoph Driessen
- Department of Hematology and Oncology, Kantonsspital St. Gallen , 9007 St. Gallen, Switzerland
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München , 85748 Garching, Germany
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
26
|
de Bruin G, Xin BT, Florea BI, Overkleeft HS. Proteasome Subunit Selective Activity-Based Probes Report on Proteasome Core Particle Composition in a Native Polyacrylamide Gel Electrophoresis Fluorescence-Resonance Energy Transfer Assay. J Am Chem Soc 2016; 138:9874-80. [PMID: 27428761 DOI: 10.1021/jacs.6b04207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mammalian tissues contain a single proteasome species: constitutive proteasomes. Tissues able to express, next to the constitutive proteasome catalytic activities (β1c, β2c, β5c), the three homologous activities, β1i, β2i and β5i, may contain numerous distinct proteasome particles: immunoproteasomes (composed of β1i, β2i and β5i) and mixed proteasomes containing a mix of these activities. This work describes the development of new subunit-selective activity-based probes and their use in an activity-based protein profiling assay that allows the detection of various proteasome particles. Tissue extracts are treated with subunit-specific probes bearing distinct fluorophores and subunit-specific inhibitors. The samples are resolved by native polyacrylamide gel electrophoresis, after which fluorescence-resonance energy transfer (FRET) reports on the nature of proteasomes present.
Collapse
Affiliation(s)
- Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bo-Tao Xin
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
27
|
Zinyama-Gutsire RBL, Christiansen M, Hedley PL, Rusakaniko S, Hagen C, Stray-Pedersen B, Buzdugan R, Cowan F, Chasela C. HIV-1 Vertical Transmission in Zimbabwe in 622 Mother and Infant Pairs: Rethinking the Contribution of Mannose Binding Lectin Deficiency in Africa. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:433-41. [PMID: 27315016 DOI: 10.1089/omi.2016.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vertical transmission of human immunodeficiency virus (HIV) remains a major global health problem. We assessed the association of mannose binding lectin (MBL) deficiency and vertical transmission of HIV. Novel diagnostics would be a major breakthrough in this regard. MBL is a liver-derived protein and a key component of the innate immune system. MBL levels may be classified as normal, intermediate, or deficient in the plasma and can use MBL2 haplotypes as a proxy. These haplotypes comprise polymorphisms in the MBL2 gene and promoter region and are known to result in varying levels of MBL deficiency. MBL deficiency can be defined as presence of A/O and O/O genotypes in the mothers and their children. MBL deficiency leads to defective opsonization activities of the innate immune system and increased susceptibility to several infections, including HIV-1. We determined the prevalence of MBL deficiency, using MBL2 haplotypes among 622 HIV-positive Zimbabwean mothers and their children aged 9-18 months old, in relation to the HIV-1 vertical transmission risk. The median age of the mothers was 30 (26-34, interquartile range [IQR]) years, and the babies' median age was 13 (11-15, IQR) months old at the time of enrollment. From the sample of 622 mothers who were HIV-1 infected, 574 babies were HIV negative and 48 were HIV-1-positive babies, giving a transmission rate of 7.7%. MBL2 normal structural allele A and variants B (codon 5 A>G), C (codon 57 A>G), and promoter region SNPs -550(H/L) and -221(X/Y) were detected. Prevalence of haplotype-predicted MBL deficiency was 34% among the mothers and 32% among the children. We found no association between maternal MBL2 deficiency and HIV-1 transmission to their children. We found no difference in the distribution of HIV-1 infected and uninfected children between the MBL2 genotypes of the mothers and those of the children. Taken together, the present study in a large sample of mother-infant pairs in Zimbabwe adds to the emerging literature and the hypothesis that MBL2 variation as predicted by haplotypes does not influence the vertical transmission risk for HIV. Research from other populations from the African continent is called for to test this hypothesis further.
Collapse
Affiliation(s)
- Rutendo B L Zinyama-Gutsire
- 1 Faculty of Health Sciences, School of Public Health, University of the Witwatersrand , Johannesburg, South Africa .,2 Medical Research Council of Zimbabwe , Ministry of Health and Child Welfare, Harare, Zimbabwe .,3 Letten Research Foundation , Harare, Zimbabwe .,4 Department of Congenital Disorders, Statens Serum Institut , Copenhagen, Denmark
| | - Michael Christiansen
- 4 Department of Congenital Disorders, Statens Serum Institut , Copenhagen, Denmark
| | - Paula L Hedley
- 4 Department of Congenital Disorders, Statens Serum Institut , Copenhagen, Denmark
| | - Simbarashe Rusakaniko
- 3 Letten Research Foundation , Harare, Zimbabwe .,5 College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Christian Hagen
- 4 Department of Congenital Disorders, Statens Serum Institut , Copenhagen, Denmark
| | - Babill Stray-Pedersen
- 3 Letten Research Foundation , Harare, Zimbabwe .,5 College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe .,6 Division of Women and Children, Rikshospitalet Oslo University Hospital, Institute of Clinical Medicine, University of Oslo , Oslo, Norway
| | - Raluca Buzdugan
- 7 School of Public Health, University of California , Berkeley, California
| | | | - Charles Chasela
- 1 Faculty of Health Sciences, School of Public Health, University of the Witwatersrand , Johannesburg, South Africa .,9 Epidemiology and Strategic Information Unit, HIV/AIDS, STIs and TB (HAST), Human Sciences Research Council , Pretoria, South Africa
| |
Collapse
|
28
|
Sanpool O, Tantrawatpan C, Thanchomnang T, Janwan P, Intapan PM, Rodpai R, Lulitanond V, Taweethavonsawat P, Maleewong W. Pyrosequencing Using SL and 5S rRNA as Molecular Markers for Identifying Zoonotic Filarial Nematodes in Blood Samples and Mosquitoes. Vector Borne Zoonotic Dis 2016; 16:326-33. [PMID: 27008279 DOI: 10.1089/vbz.2015.1914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDS Lymphatic filariasis is principally caused by Wuchereria bancrofti, and Brugia malayi. The other two filarial nematode species, Brugia pahangi and Dirofilaria immitis, possibly cause human zoonotic diseases. METHODS We propose the development of a PCR assay linked with DNA pyrosequencing as a rapid tool to identify W. bancrofti, B. malayi, B. pahangi, and D. immitis in blood samples and mosquitoes. Primers targeting the fragment of the 5S ribosomal RNA and spliced leader sequences were newly designed and developed to identify these four filarial nematodes. Analytical sensitivity and specificity were evaluated. RESULTS Pyrosequencing determination of nucleotide variations within 36 nucleotides for B. malayi and B. pahangi, and 32 nucleotides for W. bancrofti and D. immitis is sufficient for differentiation of those filarial nematodes, and for detection of intraspecies genetic variation of B. malayi. This analysis could detect a single B. malayi, B. pahangi, W. bancrofti, and D. immitis microfilaria in blood samples. CONCLUSIONS Overall, the PCR-linked pyrosequencing-based method was faster than direct sequencing and less expensive than real-time PCR or direct sequencing. This is the possibility of choice that can be applied in a high-throughput platform for identification and surveillance of reservoirs and vectors infected with lymphatic filaria in endemic areas.
Collapse
Affiliation(s)
- Oranuch Sanpool
- 1 Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand .,2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand .,3 Faculty of Medicine, Mahasarakham University , Mahasarakham, Thailand
| | - Chairat Tantrawatpan
- 2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand .,4 Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University , Pathum Thani, Thailand
| | - Tongjit Thanchomnang
- 2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand .,3 Faculty of Medicine, Mahasarakham University , Mahasarakham, Thailand
| | - Penchom Janwan
- 2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand .,5 Department of Medical Technology, School of Allied Health Sciences and Public Health, Walailak University , Nakhon Si Thammarat, Thailand
| | - Pewpan M Intapan
- 1 Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand .,2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand
| | - Rutchanee Rodpai
- 1 Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand .,2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand
| | - Viraphong Lulitanond
- 2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand .,6 Department of Microbiology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand
| | - Piyanan Taweethavonsawat
- 7 Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - Wanchai Maleewong
- 1 Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand .,2 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University , Khon Kaen, Thailand
| |
Collapse
|
29
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
30
|
Ferrington DA, Sinha D, Kaarniranta K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Retin Eye Res 2015; 51:69-89. [PMID: 26344735 DOI: 10.1016/j.preteyeres.2015.09.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Maintenance of protein homeostasis, also referred to as "Proteostasis", integrates multiple pathways that regulate protein synthesis, folding, translocation, and degradation. Failure in proteostasis may be one of the underlying mechanisms responsible for the cascade of events leading to age-related macular degeneration (AMD). This review covers the major degradative pathways (ubiquitin-proteasome and lysosomal involvement in phagocytosis and autophagy) in the retinal pigment epithelium (RPE) and summarizes evidence of their involvement in AMD. Degradation of damaged and misfolded proteins via the proteasome occurs in coordination with heat shock proteins. Evidence of increased content of proteasome and heat shock proteins in retinas from human donors with AMD is consistent with increased oxidative stress and extensive protein damage with AMD. Phagocytosis and autophagy share key molecules in phagosome maturation as well as degradation of their cargo following fusion with lysosomes. Phagocytosis and degradation of photoreceptor outer segments ensures functional integrity of the neural retina. Autophagy rids the cell of toxic protein aggregates and defective mitochondria. Evidence suggesting a decline in autophagic flux includes the accumulation of autophagic substrates and damaged mitochondria in RPE from AMD donors. An age-related decrease in lysosomal enzymatic activity inhibits autophagic clearance of outer segments, mitochondria, and protein aggregates, thereby accelerating the accumulation of lipofuscin. This cumulative damage over a person's lifetime tips the balance in RPE from a state of para-inflammation, which strives to restore cell homeostasis, to the chronic inflammation associated with AMD.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland.
| |
Collapse
|
31
|
Schuld NJ, Hussong SA, Kapphahn RJ, Lehmann U, Roehrich H, Rageh AA, Heuss ND, Bratten W, Gregerson DS, Ferrington DA. Immunoproteasome deficiency protects in the retina after optic nerve crush. PLoS One 2015; 10:e0126768. [PMID: 25978061 PMCID: PMC4433222 DOI: 10.1371/journal.pone.0126768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/07/2015] [Indexed: 01/31/2023] Open
Abstract
The immunoproteasome is upregulated by disease, oxidative stress, and inflammatory cytokines, suggesting an expanded role for the immunoproteasome in stress signaling that goes beyond its canonical role in generating peptides for antigen presentation. The signaling pathways that are regulated by the immunoproteasome remain elusive. However, previous studies suggest a role for the immunoproteasome in the regulation of PTEN and NF-κB signaling. One well-known pathway upstream of NF-κB and downstream of PTEN is the Akt signaling pathway, which is responsible for mediating cellular survival and is modulated after optic nerve crush (ONC). This study investigated the role of retinal immunoproteasome after injury induced by ONC, focusing on the Akt cell survival pathway. Retinas or retinal pigment epithelial (RPE) cells from wild type (WT) and knockout (KO) mice lacking either one (LMP2) or two (LMP7 and MECL-1) catalytic subunits of the immunoproteasome were utilized in this study. We show that mRNA and protein levels of the immunoproteasome subunits are significantly upregulated in WT retinas following ONC. Mice lacking the immunoproteasome subunits show either a delayed or dampened apoptotic response as well as altered Akt signaling, compared to WT mice after ONC. Treatment of the RPE cells with insulin growth factor-1 (IGF-1) to stimulate Akt signaling confirmed that the immunoproteasome modulates this pathway, and most likely modulates parallel pathways as well. This study links the inducible expression of the immunoproteasome following retinal injury to Akt signaling, which is important in many disease pathways.
Collapse
Affiliation(s)
- Nathan J. Schuld
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stacy A. Hussong
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rebecca J. Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ute Lehmann
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Graduate Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Heidi Roehrich
- Histology Core for Vision Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Abrar A. Rageh
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Neal D. Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wendy Bratten
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dale S. Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Inhibition of immunoproteasome reduces infarction volume and attenuates inflammatory reaction in a rat model of ischemic stroke. Cell Death Dis 2015; 6:e1626. [PMID: 25633295 PMCID: PMC4669779 DOI: 10.1038/cddis.2014.586] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
The detailed knowledge about the contribution of immunoproteasome to the neuroinflammation in ischemic stroke is still not available. The immunoreactivity of low molecular mass peptide 2 (LMP2) and low molecular mass peptide 7 (LMP7) was evident in the ipsilateral ischemic cerebral cortex and striatum following transient middle cerebral artery occlusion (MCAO). Both LMP2 and LMP7 increased as early as 4 h after the MCAO, further increased at 24 h, peaked at 72 h and decreased 7 days later. LMP2 and LMP7 were mainly present in astrocytes and microglia/macrophage cells, respectively. LMP2 knockdown by shRNA (short hairpin RNA) markedly reduced the levels of LMP2 and LMP7 protein and caused 75.5 and 78.6% decrease in the caspase-like (C-L) and chymotrypsin-like (CT-L) activities, respectively. Compared with cont-shRNA group (39.7%, infarction volumes/total ipsilateral hemisphere), the infarction volumes were reduced to 22.5% in LMP2-shRNA group. Additionally, LMP2 knockdown significantly reduced activated astrocytes and microglia, the expression nuclear factor kappa B (NF-κB) p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and caused less accumulation of ischemia-induced protein ubiquitination compared with MG132. These findings demonstrate that inhibition of LMP2 significantly attenuates inflammatory reaction and offers neuroprotection against focal cerebral ischemia in rats, suggesting that selective immunoproteasome inhibitors may be a promising strategy for stroke treatment.
Collapse
|
33
|
Fabre B, Lambour T, Garrigues L, Amalric F, Vigneron N, Menneteau T, Stella A, Monsarrat B, Van den Eynde B, Burlet-Schiltz O, Bousquet-Dubouch MP. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 2015; 11:771. [PMID: 25561571 PMCID: PMC4332148 DOI: 10.15252/msb.20145497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin-proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes.
Collapse
Affiliation(s)
- Bertrand Fabre
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Thomas Lambour
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Luc Garrigues
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - François Amalric
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Thomas Menneteau
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Alexandre Stella
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Bernard Monsarrat
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Odile Burlet-Schiltz
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| |
Collapse
|
34
|
Paniagua Soriano G, De Bruin G, Overkleeft HS, Florea BI. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Antioxid Redox Signal 2014; 21:2419-43. [PMID: 24437477 DOI: 10.1089/ars.2013.5794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Proteasome inhibitors (PIs) are used in the clinic for the treatment of hematopoietic malignancies. PI inhibitors induce endoplasmatic reticulum (ER) stress and oxidative stress, disruption of signaling pathways, mitochondrial dysfunction, and, eventually, cell death by apoptosis. PIs designated as clinical candidates include natural product derivatives and compounds developed by rational design and feature a wide diversity of structural elements. The vast amount of literature on this topic underscores PIs significance in driving basic research alongside therapeutic benefit. RECENT ADVANCES Research in recent years has brought an in-depth insight into the molecular mechanisms of PI-induced apoptosis. However, there are some paradoxes and controversies in the literature. In this review, the advances and uncertainties, in particular on the time course events that make cells commit to apoptosis, are discussed. In addition, some mechanisms of evolved PI resistance are presented, and speculations on the difference in sensitivity between cell or tumor types are brought forward. The review concludes by giving an outlook of recent methods that may be employed to describe the system biology of how PIs impact cell survival decisions. CRITICAL ISSUES The biology of ER stress, reactive oxygen species (ROS) production, and apoptosis as induced by PIs is not well understood. Absorbed by the strong focus on PIs, one might overlook the importance of proteasome activity activators or modulators and the study of enzymatic pathways that lie up- or downstream from the proteasome function. FUTURE DIRECTIONS An increased understanding of the systems biology at mRNA and protein levels and the kinetics behind the interaction between PIs and cells is imperative. The design and synthesis of subunit specific inhibitors for each of the seven known proteasome activities and for the enzymes associated to proteasomes will aid in unraveling biology of the ubiquitin-proteasome system in relation to ER stress, ROS production, and apoptosis and will generate leads for therapeutic intervention.
Collapse
Affiliation(s)
- Guillem Paniagua Soriano
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre , Leiden, The Netherlands
| | | | | | | |
Collapse
|
35
|
Cornish Carmony K, Sharma LK, Lee DM, Park JE, Lee W, Kim KB. Elucidating the catalytic subunit composition of distinct proteasome subtypes: a crosslinking approach employing bifunctional activity-based probes. Chembiochem 2014; 16:284-92. [PMID: 25477005 DOI: 10.1002/cbic.201402491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Indexed: 12/25/2022]
Abstract
In addition to two well-recognized proteasome subtypes-constitutive proteasomes and immunoproteasomes-mounting evidence also suggests the existence of intermediate proteasome subtypes containing unconventional mixtures of catalytic subunits. Although they appear to play unique biological roles, the lack of practical methods for detecting distinct proteasome subtypes has limited functional investigations. Here, we report the development of activity-based probes that crosslink two catalytic subunits within intact proteasome complexes. Identification of the crosslinked subunit pairs provides direct evidence of the catalytic subunit composition of proteasomes. Using these probes, we found that U266 multiple myeloma cells contain intermediate proteasomes comprising both β1i and β2, but not β1 and β2i, consistent with previous findings with other cell types. Our bifunctional probes can be utilized in functional investigations of distinct proteasome subtypes in various biological settings.
Collapse
Affiliation(s)
- Kimberly Cornish Carmony
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596 (USA)
| | | | | | | | | | | |
Collapse
|
36
|
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 2014; 4:994-1025. [PMID: 25412285 PMCID: PMC4279167 DOI: 10.3390/biom4040994] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.
Collapse
|
37
|
Chang KC, Marton MJ. Past, current and future approaches to querying MAPK pathway activation: status and clinical implications. Per Med 2014; 11:745-760. [PMID: 29764047 DOI: 10.2217/pme.14.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MAPK pathway activation related to cancer development has drawn a great deal of attention in the field of personalized medicine in recent years. Many different approaches and assays have been developed to query the activation of this pathway and to develop life-saving treatments. The goal of this review article is threefold. First, to provide a brief overview of the many mutation assays that have been used to detect MAPK pathway activation, and to compare pros and cons of these assay platforms. Second, to focus on one custom-designed multiplexing mutation assay that is currently used to support an ongoing clinical trial and to show the novel features of this assay and its relevance in addressing unmet clinical needs. Third, to provide future perspectives of these MAPK pathway gene mutation detection efforts and to suggest how what we have learned from past and current approaches should guide future developments.
Collapse
Affiliation(s)
- Ken Cn Chang
- Molecular Biomarkers & Diagnostics, Merck & Co, Inc., Rahway, NJ, USA
| | - Matthew J Marton
- Molecular Biomarkers & Diagnostics, Merck & Co, Inc., Rahway, NJ, USA
| |
Collapse
|
38
|
Nesterov-Mueller A, Maerkle F, Hahn L, Foertsch T, Schillo S, Bykovskaya V, Sedlmayr M, Weber LK, Ridder B, Soehindrijo M, Muenster B, Striffler J, Bischoff FR, Breitling F, Loeffler FF. Particle-Based Microarrays of Oligonucleotides and Oligopeptides. MICROARRAYS 2014; 3:245-62. [PMID: 27600347 PMCID: PMC4979057 DOI: 10.3390/microarrays3040245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/02/2023]
Abstract
In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.
Collapse
Affiliation(s)
- Alexander Nesterov-Mueller
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Frieder Maerkle
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Lothar Hahn
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Tobias Foertsch
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Sebastian Schillo
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Valentina Bykovskaya
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Martyna Sedlmayr
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Laura K Weber
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Barbara Ridder
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Miriam Soehindrijo
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Bastian Muenster
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Jakob Striffler
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - F Ralf Bischoff
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Frank Breitling
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Felix F Loeffler
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
39
|
Abstract
The demand for rapid and accurate diagnosis of plant diseases has risen in the last decade. On-site diagnosis of single or multiple pathogens using portable devices is the first step in this endeavour. Despite extensive attempts to develop portable devices for pathogen detection, current technologies are still restricted to detecting known pathogens with limited detection accuracy. Developing new detection techniques for rapid and accurate detection of multiple plant pathogens and their associated variants is essential. Recent single DNA sequencing technologies are a promising new avenue for developing future portable devices for plant pathogen detection. In this review, we detail the current progress in portable devices and technologies used for detecting plant pathogens, the current position of emerging sequencing technologies for analysis of plant genomics, and the future of portable devices for rapid pathogen diagnosis.
Collapse
Affiliation(s)
- Amir Sanati Nezhad
- McGill University and Genome Quebec Innovation Centre, Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Salam MT. Asthma epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 795:183-99. [PMID: 24162909 DOI: 10.1007/978-1-4614-8603-9_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Asthma is the most common chronic disease of childhood, and a growing body of evidence indicates that epigenetic variations may mediate the effects of environmental exposures on the development and natural history of asthma. Epigenetics is the study of mitotically or meiotically heritable changes in gene expression that occur without directly altering the DNA sequence. DNA methylation, histone modifications and microRNAs are major epigenetic variations in humans that are currently being investigated for asthma etiology and natural history. DNA methylation results from addition of a methyl group to the 5 position of a cytosine ring and occurs almost exclusively on a cytosine in a CpG dinucleotide. Histone modifications involve posttranslational modifications such as acetylation, methylation, phosphorylation and ubiquitination on the tails of core histones. MicroRNAs are short ~22 nucleotide long, non-coding, single-stranded RNAs that binds to complementary sequences in the target mRNAs, usually resulting in gene silencing. While many studies have documented relationships of environmental exposures that have been implicated in asthma etiology with epigenetic alterations, to date, few studies have directly linked epigenetic variations with asthma development. There are several methodological challenges in studying the epigenetics of asthma. In this chapter, the influence of epigenetic variations on asthma pathophysiology, methodological concerns in conducting epigenetic research and future direction of asthma epigenetics research are discussed.
Collapse
Affiliation(s)
- Muhammad T Salam
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N Soto Street, Mail Code 9237, Los Angeles, CA, 90033, USA,
| |
Collapse
|
41
|
Zheng R, Zhu C, Guo Q, Qin L, Wang J, Lu J, Cui H, Cui Z, Ge B, Liu J, Hu Z. Pyrosequencing for rapid detection of tuberculosis resistance in clinical isolates and sputum samples from re-treatment pulmonary tuberculosis patients. BMC Infect Dis 2014; 14:200. [PMID: 24725975 PMCID: PMC4021344 DOI: 10.1186/1471-2334-14-200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/09/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (MDR-TB) is a major public health problem. Early diagnosis of MDR-TB patients is essential for minimizing the risk of Mycobacterium tuberculosis (MTB) transmission. The conventional drug susceptibility testing (DST) methods for detection of drug-resistant M. tuberculosis are laborious and cannot provide the rapid detection for clinical practice. METHODS The aim of this study was to develop a pyrosequencing approach for the simultaneous detection of resistance to rifampin (RIF), isoniazid (INH), ethambutol (EMB), streptomycin (SM), ofloxacin (OFL) and amikacin (AMK) in M. tuberculosis clinical isolates and sputum samples from re-treatment pulmonary tuberculosis (PTB) patients. We identified the optimum conditions for detection mutation of rpoB, katG, rpsl, embB, gyrA and rrs gene by pyrosequencing. Then this approach was applied to detect 205 clinical isolates and 24 sputum samples of M. tuberculosis from re-treatment PTB patients. RESULTS The mutations of rpoB and gyrA gene were detected by pyrosequencig with the SQA mode, and the mutations of katG, rpsl, embB, gyrA and rrs gene were detected by pyrosequencing with SNP mode. Compared with the Bactec MGIT 960 mycobacterial detection system, the accuracy of pyrosequencing for the detection of RIF, INH, EMB, SM, AMK and OFL resistance in clinical isolates was 95.0%, 79.2%, 70.3%, 84.5%, 96.5% and 91.1%, respectively. In sputum samples the accuracy was 83.3%, 83.3%, 60.9%, 83.3%, 87.5% and 91.7%, respectively. CONCLUSIONS The newly established pyrosequencing assay is a rapid and high-throughput method for the detection of resistance to RIF, INH, SM, EMB, OFL and AMK in M. tuberculosis. Pyrosequencing can be used as a practical molecular diagnostic tool for screening and predicting the resistance of re-treatment pulmonary tuberculosis patients.
Collapse
Affiliation(s)
- Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Changtai Zhu
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600 Yishan Rd, Shanghai 200233, China
| | - Qi Guo
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Junmei Lu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Haiyan Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Jinming Liu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People’s Republic of China
| | - Zhongyi Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| |
Collapse
|
42
|
Park JE, Wu Y, Carmony KC, Miller Z, Sharma LK, Lee DM, Kim DY, Lee W, Kim KB. A FRET-based approach for identification of proteasome catalytic subunit composition. MOLECULAR BIOSYSTEMS 2014; 10:196-200. [PMID: 24301521 PMCID: PMC3898201 DOI: 10.1039/c3mb70471h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian cells have two main types of proteasomes, the constitutive proteasome and the immunoproteasome, each containing a distinct set of three catalytic subunits. Recently, additional proteasome subtypes containing a non-standard mixture of catalytic subunits have gained increasing attention, especially due to their presence in cancer settings. However, practical methods for identifying proteasome subtypes have been lacking. Here, we report the development of the first fluorescence resonance energy transfer (FRET)-based strategy that can be utilized to identify different proteasome subtypes present within cells. We have developed FRET donor- and acceptor-probes that are based on previously reported peptide epoxyketones and selectively target individual proteasome catalytic subunits. Using the purified proteasome and cancer cell lysates, we demonstrate the feasibility of a FRET-based approach for determining the catalytic subunit composition of individual 20S proteasome subtypes. Ultimately, this approach may be utilized to study the functions of individual proteasome subtypes in cells.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA 40536-0596.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gohlke S, Mishto M, Textoris-Taube K, Keller C, Giannini C, Vasuri F, Capizzi E, D’Errico-Grigioni A, Kloetzel PM, Dahlmann B. Molecular alterations in proteasomes of rat liver during aging result in altered proteolytic activities. AGE (DORDRECHT, NETHERLANDS) 2014; 36:57-72. [PMID: 23690132 PMCID: PMC3889881 DOI: 10.1007/s11357-013-9543-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Aging induces alterations of tissue protein homoeostasis. To investigate one of the major systems catalysing intracellular protein degradation we have purified 20S proteasomes from rat liver of young (2 months) and aged (23 months) animals and separated them into three subpopulations containing different types of intermediate proteasomes with standard- and immuno-subunits. The smallest subpopulation ΙΙΙ and the major subpopulation Ι comprised proteasomes containing immuno-subunits β1i and β5i beside small amounts of standard-subunits, whereas proteasomes of subpopulation ΙΙ contained only β5i beside standard-subunits. In favour of a relative increase of the major subpopulation Ι, subpopulation ΙΙ and ΙΙΙ were reduced for about 55 % and 80 %, respectively, in aged rats. Furthermore, in all three 20S proteasome subpopulations from aged animals standard-active site subunits were replaced by immuno-subunits. Overall, this transformation resulted in a relative increase of immuno-subunit-containing proteasomes, paralleled by reduced activity towards short fluorogenic peptide substrates. However, depending on the substrate their hydrolysing activity of long polypeptide substrates was significantly higher or unchanged. Furthermore, our data revealed an altered MHC class I antigen-processing efficiency of 20S proteasomes from liver of aged rats. We therefore suggest that the age-related intramolecular alteration of hepatic proteasomes modifies its cleavage preferences without a general decrease of its activity. Such modifications could have implications on protein homeostasis as well as on MHC class I antigen presentation as part of the immunosenescence process.
Collapse
Affiliation(s)
- Sabrina Gohlke
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Michele Mishto
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
- />Centro Interdipartimentale di Ricerca sul Cancro “Giorgio Prodi”, University of Bologna, Bologna, Italy
| | - Kathrin Textoris-Taube
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Christin Keller
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Carolin Giannini
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Francesco Vasuri
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elisa Capizzi
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Antonia D’Errico-Grigioni
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Peter-Michael Kloetzel
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkhardt Dahlmann
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
44
|
Radomski N, Roguet A, Lucas FS, Veyrier FJ, Cambau E, Accrombessi H, Moilleron R, Behr MA, Moulin L. atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples. BMC Microbiol 2013; 13:277. [PMID: 24299240 PMCID: PMC4219376 DOI: 10.1186/1471-2180-13-277] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. Results Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. Conclusions The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples.
Collapse
Affiliation(s)
- Nicolas Radomski
- Laboratoire Eau Environnement Systèmes Urbains (Leesu) UMR MA 102-AgroParisTech, Université Paris-Est, 6-8 avenue Blaise Pascal Cité, Descartes, FR 77455, Champs sur Marne, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 109:75-112. [PMID: 22727420 DOI: 10.1016/b978-0-12-397863-9.00003-1] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immunoproteasomes contain replacements for the three catalytic subunits of standard proteasomes. In most cells, oxidative stress and proinflammatory cytokines are stimuli that lead to elevated production of immunoproteasomes. Immune system cells, especially antigen-presenting cells, express a higher basal level of immunoproteasomes. A well-described function of immunoproteasomes is to generate peptides with a hydrophobic C terminus that can be processed to fit in the groove of MHC class I molecules. This display of peptides on the cell surface allows surveillance by CD8 T cells of the adaptive immune system for pathogen-infected cells. Functions of immunoproteasomes, other than generating peptides for antigen presentation, are emerging from studies in immunoproteasome-deficient mice, and are complemented by recently described diseases linked to mutations or single-nucleotide polymorphisms in immunoproteasome subunits. Thus, this growing body of literature suggests a more pleiotropic role in cell function for the immunoproteasome.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
46
|
The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1. PLoS One 2013; 8:e59913. [PMID: 23544109 PMCID: PMC3609805 DOI: 10.1371/journal.pone.0059913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022] Open
Abstract
The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein 1(Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.
Collapse
|
47
|
Maldonado M, Kapphahn RJ, Terluk MR, Heuss ND, Yuan C, Gregerson DS, Ferrington DA. Immunoproteasome deficiency modifies the alternative pathway of NFκB signaling. PLoS One 2013; 8:e56187. [PMID: 23457524 PMCID: PMC3572990 DOI: 10.1371/journal.pone.0056187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Immunoproteasome is a protease abundant in immune cells and also present, albeit at lower concentrations, in cells outside the immune system. Recent evidence supports a novel role for the immunoproteasome in the cellular stress response potentially through regulation of NFκB signaling, which is the primary response to multiple stressors. The current study tests whether the Classical or Alternative Pathways are regulated by immunoproteasome following chronic TNFα exposure in cultured retinal pigment epithelial cells isolated from wild-type mice and mice deficient in one (LMP2, L2) or two (LMP7 and MECL-1, L7M1) immunoproteasome subunits. Assays were performed to assess the expression of NFκB responsive genes, the content and activity of NFκB transcription factors (p65, p50, p52, cRel, RelB), and expression and content of regulatory proteins (IκBα, A20, RPS3). Major findings include distinct differences in expression of NFκB responsive genes in both KO cells. The mechanism responsible for the altered gene expression could not be established for L7M1 since no major differences in NFκB transcription factor content or activation were observed. However, L2 cells exhibited substantially higher content and diminished activation of NFκB transcription factors associated with the Alternative Pathway and delayed termination of the Classical Pathway. These results provide strong experimental evidence supporting a role for immunoproteasome in modulating NFκB signaling.
Collapse
Affiliation(s)
- Marcela Maldonado
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rebecca J. Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marcia R. Terluk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Neal D. Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ching Yuan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dale S. Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
The rapid technological developments following the Human Genome Project have made possible the availability of personalized genomes. As the focus now shifts from characterizing genomes to making personalized disease associations, in combination with the availability of other omics technologies, the next big push will be not only to obtain a personalized genome, but to quantitatively follow other omics. This will include transcriptomes, proteomes, metabolomes, antibodyomes, and new emerging technologies, enabling the profiling of thousands of molecular components in individuals. Furthermore, omics profiling performed longitudinally can probe the temporal patterns associated with both molecular changes and associated physiological health and disease states. Such data necessitates the development of computational methodology to not only handle and descriptively assess such data, but also construct quantitative biological models. Here we describe the availability of personal genomes and developing omics technologies that can be brought together for personalized implementations and how these novel integrated approaches may effectively provide a precise personalized medicine that focuses on not only characterization and treatment but ultimately the prevention of disease.
Collapse
|
49
|
Fabre B, Lambour T, Delobel J, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Subcellular distribution and dynamics of active proteasome complexes unraveled by a workflow combining in vivo complex cross-linking and quantitative proteomics. Mol Cell Proteomics 2012; 12:687-99. [PMID: 23242550 DOI: 10.1074/mcp.m112.023317] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins-which modulate proteasome activity, stability, localization, or substrate uptake-rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells.
Collapse
Affiliation(s)
- Bertrand Fabre
- CNRS/Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|