1
|
Ferguson L, Upton HE, Pimentel SC, Jeans C, Ingolia NT, Collins K. Improved precision, sensitivity, and adaptability of ordered two-template relay cDNA library preparation for RNA sequencing. RNA (NEW YORK, N.Y.) 2025; 31:224-244. [PMID: 39626888 PMCID: PMC11789487 DOI: 10.1261/rna.080318.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Sequencing RNAs that are biologically processed or degraded to less than ∼100 nt typically involves multistep, low-yield protocols with bias and information loss inherent to ligation and/or polynucleotide tailing. We recently introduced ordered two-template relay (OTTR), a method that captures obligatorily end-to-end sequences of input molecules and, in the same reverse transcription step, also appends 5' and 3' sequencing adapters of choice. OTTR has been thoroughly benchmarked for optimal production of microRNA, tRNA and tRNA fragments, and ribosome-protected mRNA footprint libraries. Here we sought to characterize, quantify, and ameliorate any remaining bias or imprecision in the end-to-end capture of RNA sequences. We introduce new metrics for the evaluation of sequence capture and use them to optimize reaction buffers, reverse transcriptase sequence, adapter oligonucleotides, and overall workflow. Modifications of the reverse transcriptase and adapter oligonucleotides increased the 3' and 5' end-precision of sequence capture and minimized overall library bias. Improvements in recombinant expression and purification of the truncated Bombyx mori R2 reverse transcriptase used in OTTR reduced nonproductive sequencing reads by minimizing bacterial nucleic acids that compete with low-input RNA molecules for cDNA synthesis, such that with miRNA input of 3 pg (<1 fmol), fewer than 10% of sequencing reads are bacterial nucleic acid contaminants. We also introduce a rapid, automation-compatible OTTR protocol that enables gel-free, length-agnostic enrichment of cDNA duplexes from unwanted adapter-only side products. Overall, this work informs considerations for unbiased end-to-end capture and annotation of RNAs independent of their sequence, structure, or posttranscriptional modifications.
Collapse
Affiliation(s)
- Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Chris Jeans
- MacroLab, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Ferguson L, Upton HE, Pimentel SC, Jeans C, Ingolia NT, Collins K. Improved precision, sensitivity, and adaptability of Ordered Two-Template Relay cDNA library preparation for RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622813. [PMID: 39574714 PMCID: PMC11581009 DOI: 10.1101/2024.11.09.622813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sequencing RNAs that are biologically processed or degraded to less than ~100 nucleotides typically involves multi-step, low-yield protocols with bias and information loss inherent to ligation and/or polynucleotide tailing. We recently introduced Ordered Two-Template Relay (OTTR), a method that captures obligatorily end-to-end sequences of input molecules and, in the same reverse transcription step, also appends 5' and 3' sequencing adapters of choice. OTTR has been thoroughly benchmarked for optimal production of microRNA, tRNA and tRNA fragments, and ribosome-protected mRNA footprint libraries. Here we sought to characterize, quantify, and ameliorate any remaining bias or imprecision in the end-to-end capture of RNA sequences. We introduce new metrics for the evaluation of sequence capture and use them to optimize reaction buffers, reverse transcriptase sequence, adapter oligonucleotides, and overall workflow. Modifications of the reverse transcriptase and adapter oligonucleotides increased the 3' and 5' end-precision of sequence capture and minimized overall library bias. Improvements in recombinant expression and purification of the truncated Bombyx mori R2 reverse transcriptase used in OTTR reduced non-productive sequencing reads by minimizing bacterial nucleic acids that compete with low-input RNA molecules for cDNA synthesis, such that with miRNA input of 3 picograms (less than 1 fmol), fewer than 10% of sequencing reads are bacterial nucleic acid contaminants. We also introduce a rapid, automation-compatible OTTR protocol that enables gel-free, length-agnostic enrichment of cDNA duplexes from unwanted adapter-only side products. Overall, this work informs considerations for unbiased end-to-end capture and annotation of RNAs independent of their sequence, structure, or post-transcriptional modifications.
Collapse
Affiliation(s)
- Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Present address: Addition Therapeutics, 201 Haskins Way, South San Francisco, CA 94080
| | - Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Present address: NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016
| | - Chris Jeans
- MacroLab, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| |
Collapse
|
3
|
Potapov V, Krudup S, Maguire S, Unlu I, Guan S, Buss JA, Smail BA, van Eeuwen T, Taylor MS, Burns KH, Ong JL, Trachman RJ. Discrete measurements of RNA polymerase and reverse transcriptase fidelity reveal evolutionary tuning. RNA (NEW YORK, N.Y.) 2024; 30:1246-1258. [PMID: 38942481 PMCID: PMC11331410 DOI: 10.1261/rna.080002.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
Direct methods for determining the fidelity of DNA polymerases are robust, with relatively little sample manipulation before sequencing. In contrast, methods for measuring RNA polymerase and reverse transcriptase fidelities are complicated by additional preparation steps that introduce ambiguity and error. Here, we describe a sequencing method, termed Roll-Seq, for simultaneously determining the individual fidelities of RNA polymerases and reverse transcriptases (RT) using Pacific Biosciences single molecule real-time sequencing. By using reverse transcriptases with high rolling-circle activity, Roll-Seq generates long concatemeric cDNA from a circular RNA template. To discern the origin of a mutation, errors are recorded and determined to occur within a single concatemer (reverse transcriptase error) or all concatemers (RNA polymerase error) over the cDNA strand. We used Roll-Seq to measure the fidelities of T7 RNA polymerases, a Group II intron-encoded RT (Induro), and two LINE RTs (Fasciolopsis buski R2-RT and human LINE-1). Substitution rates for Induro and R2-RT are the same for cDNA and second-strand synthesis while LINE-1 has 2.5-fold lower fidelity when performing second-strand synthesis. Deletion and insertion rates increase for all RTs during second-strand synthesis. In addition, we find that a structured RNA template impacts fidelity for both RNA polymerase and RT. The accuracy and precision of Roll-Seq enable this method to be applied as a complementary analysis to structural and mechanistic characterization of RNA polymerases and reverse transcriptases or as a screening method for RNAP and RT fidelity.
Collapse
Affiliation(s)
| | - Stanislas Krudup
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
- École Supérieure de Biotechnologie de Strasbourg, 67400 Strasbourg, France
| | - Sean Maguire
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Irem Unlu
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Jackson A Buss
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Benedict A Smail
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Martin S Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jennifer L Ong
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
4
|
Martín-Alonso S, Álvarez M, Nevot M, Martínez MÁ, Menéndez-Arias L. Defective Strand-Displacement DNA Synthesis Due to Accumulation of Thymidine Analogue Resistance Mutations in HIV-2 Reverse Transcriptase. ACS Infect Dis 2020; 6:1140-1153. [PMID: 32129987 DOI: 10.1021/acsinfecdis.9b00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retroviral reverse transcriptases (RTs) have the ability to carry out strand displacement DNA synthesis in the absence of accessory proteins. Although studies with RTs and other DNA polymerases suggest that fingers subdomain residues participate in strand displacement, molecular determinants of this activity are still unknown. A mutant human immunodeficiency virus type 2 (HIV-2) RT (M41L/D67N/K70R/S215Y) with low strand displacement activity was identified after screening a panel of purified enzymes, including several antiretroviral drug-resistant HIV-1 and HIV-2 RTs. In HIV-1, resistance to zidovudine and other thymidine analogues is conferred by different combinations of M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q (designated as thymidine analogue resistance-associated mutations (TAMs)). However, those changes are rarely selected in HIV-2. We show that the strand displacement activity of HIV-2ROD mutants M41L/S215Y and D67N/K70R was only slightly reduced compared to the wild-type RT. In contrast, mutants D67N/K70R/S215Y and M41L/D67N/K70R/S215Y were the most defective RTs in reactions carried out with nicked and gapped substrates. Moreover, these enzymes showed the lowest nucleotide incorporation rates in assays carried out with strand displacement substrates. Unlike in HIV-2, substitutions M41L/T215Y and D67N/K70R/T215Y/K219Q had no effect on the strand displacement activity of HIV-1BH10 RT. The strand displacement efficiencies of HIV-2ROD RTs were consistent with the lower replication capacity of HIV-2 strains bearing the four major TAMs in their RT. Our results highlight the role of the fingers subdomain in strand displacement. These findings might be important for the development of strand-displacement defective RTs.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - María Nevot
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Miguel Á. Martínez
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| |
Collapse
|
5
|
Khadgi BB, Govindaraju A, Christensen SM. Completion of LINE integration involves an open '4-way' branched DNA intermediate. Nucleic Acids Res 2019; 47:8708-8719. [PMID: 31392993 PMCID: PMC6895275 DOI: 10.1093/nar/gkz673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Long Interspersed Elements (LINEs), also known as non-LTR retrotransposons, encode a multifunctional protein that reverse transcribes its mRNA into DNA at the site of insertion by target primed reverse transcription. The second half of the integration reaction remains very poorly understood. Second-strand DNA cleavage and second-strand DNA synthesis were investigated in vitro using purified components from a site-specific restriction-like endonuclease (RLE) bearing LINE. DNA structure was shown to be a critical component of second-strand DNA cleavage. A hitherto unknown and unexplored integration intermediate, an open ‘4-way’ DNA junction, was recognized by the element protein and cleaved in a Holliday junction resolvase-like reaction. Cleavage of the 4-way junction resulted in a natural primer-template pairing used for second-strand DNA synthesis. A new model for RLE LINE integration is presented.
Collapse
Affiliation(s)
- Brijesh B Khadgi
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aruna Govindaraju
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
6
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
7
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
8
|
Moelling K, Broecker F, Russo G, Sunagawa S. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Front Microbiol 2017; 8:1745. [PMID: 28959243 PMCID: PMC5603734 DOI: 10.3389/fmicb.2017.01745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of ZurichZurich, Switzerland
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New YorkNY, United States
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology, ETH ZurichZurich, Switzerland
| |
Collapse
|
9
|
Feng Y, Goubran MH, Follack TB, Chelico L. Deamination-independent restriction of LINE-1 retrotransposition by APOBEC3H. Sci Rep 2017; 7:10881. [PMID: 28883657 PMCID: PMC5589869 DOI: 10.1038/s41598-017-11344-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022] Open
Abstract
The APOBEC3 family of cytosine deaminase enzymes are able to restrict replication of retroelements, such as LINE-1. However, each of the seven APOBEC3 enzymes have been reported to act differentially to prevent LINE-1 retrotransposition and the mechanisms of APOBEC3-mediated LINE-1 inhibition has not been well understood. The prevailing view for many years was that APOBEC3-mediated LINE-1 inhibition was deamination-independent and relied on APOBEC3s blocking the LINE-1 reverse transcriptase DNA polymerization or transport of the LINE-1 RNA into the nucleus. However, recently it was shown that APOBEC3A can deaminate cytosine, to form uracil, on transiently exposed single-stranded LINE-1 cDNA and this leads to LINE-1 cDNA degradation. In this study, we confirmed that APOBEC3A is a potent deamination-dependent inhibitor of LINE-1 retrotransposition, but show that in contrast, A3H haplotype II and haplotype V restrict LINE-1 activity using a deamination-independent mechanism. Our study supports the model that different APOBEC3 proteins have evolved to inhibit LINE-1 retrotransposition through distinct mechanisms.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Mariam H Goubran
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Tyson B Follack
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
10
|
McCullers TJ, Steiniger M. Transposable elements in Drosophila. Mob Genet Elements 2017; 7:1-18. [PMID: 28580197 PMCID: PMC5443660 DOI: 10.1080/2159256x.2017.1318201] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/09/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can mobilize within host genomes. As TEs comprise more than 40% of the human genome and are linked to numerous diseases, understanding their mechanisms of mobilization and regulation is important. Drosophila melanogaster is an ideal model organism for the study of eukaryotic TEs as its genome contains a diverse array of active TEs. TEs universally impact host genome size via transposition and deletion events, but may also adopt unique functional roles in host organisms. There are 2 main classes of TEs: DNA transposons and retrotransposons. These classes are further divided into subgroups of TEs with unique structural and functional characteristics, demonstrating the significant variability among these elements. Despite this variability, D. melanogaster and other eukaryotic organisms utilize conserved mechanisms to regulate TEs. This review focuses on the transposition mechanisms and regulatory pathways of TEs, and their functional roles in D. melanogaster.
Collapse
Affiliation(s)
| | - Mindy Steiniger
- Department of Biology, University of Missouri, St. Louis, MO, USA
| |
Collapse
|
11
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Abstract
R2 elements are sequence specific non-LTR retrotransposons that exclusively insert in the 28S rRNA genes of animals. R2s encode an endonuclease that cleaves the insertion site and a reverse transcriptase that uses the cleaved DNA to prime reverse transcription of the R2 transcript, a process termed target primed reverse transcription. Additional unusual properties of the reverse transcriptase as well as DNA and RNA binding domains of the R2 encoded protein have been characterized. R2 expression is through co-transcription with the 28S gene and self-cleavage by a ribozyme encoded at the R2 5' end. Studies in laboratory stocks and natural populations of Drosophila suggest that R2 expression is tied to the distribution of R2-inserted units within the rDNA locus. Most individuals have no R2 expression because only a small fraction of their rRNA genes need to be active, and a contiguous region of the locus free of R2 insertions can be selected for activation. However, if the R2-free region is not large enough to produce sufficient rRNA, flanking units - including those inserted with R2 - must be activated. Finally, R2 copies rapidly turnover within the rDNA locus, yet R2 has been vertically maintained in animal lineages for hundreds of millions of years. The key to this stability is R2's ability to remain dormant in rDNA units outside the transcribed regions for generations until the stochastic nature of the crossovers that drive the concerted evolution of the rDNA locus inevitably reshuffle the inserted and uninserted units, resulting in transcription of the R2-inserted units.
Collapse
|
13
|
Jamburuthugoda VK, Eickbush TH. Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase. Nucleic Acids Res 2014; 42:8405-15. [PMID: 24957604 PMCID: PMC4117753 DOI: 10.1093/nar/gku514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
R2 non-LTR retrotransposons insert at a specific site in the 28S rRNA genes of many animal phyla. R2 elements encode a single polypeptide with reverse transcriptase, endonuclease and nucleic acid binding domains. Integration involves separate cleavage of the two DNA strands at the target site and utilization of the released 3' ends to prime DNA synthesis. Critical to this integration is the ability of the protein to specifically bind 3' and 5' regions of the R2 RNA. In this report, alanine mutations in two conserved motifs N-terminal to the reverse transcriptase domain were generated and shown to result in proteins that retained the ability to cleave the first strand of the DNA target, to reverse transcribe RNA from an annealed primer and to displace annealed RNA when using DNA as a template. However, the mutant proteins had greatly reduced ability to bind 3' and 5' RNA in mobility shift assays, use the DNA target to prime reverse transcription and conduct second-strand DNA cleavage. These motifs thus appear to participate in all activities of the R2 protein known to require specific RNA binding. The similarity of these R2 RNA binding motifs to those of telomerase and group II introns is discussed.
Collapse
Affiliation(s)
| | - Thomas H Eickbush
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
14
|
Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. eLife 2014; 3:e02008. [PMID: 24843014 PMCID: PMC4003774 DOI: 10.7554/elife.02008] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/02/2014] [Indexed: 12/11/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition.DOI: http://dx.doi.org/10.7554/eLife.02008.001.
Collapse
Affiliation(s)
- Sandra R Richardson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, United States
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, United States
| | - Randy A Planegger
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, United States
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, United States
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, United States Department of Internal Medicine, Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
15
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
16
|
|
17
|
Mukha DV, Pasyukova EG, Kapelinskaya TV, Kagramanova AS. Endonuclease domain of the Drosophila melanogaster R2 non-LTR retrotransposon and related retroelements: a new model for transposition. Front Genet 2013; 4:63. [PMID: 23637706 PMCID: PMC3636483 DOI: 10.3389/fgene.2013.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/05/2013] [Indexed: 01/25/2023] Open
Abstract
The molecular mechanisms of the transposition of non-long terminal repeat (non-LTR) retrotransposons are not well understood; the key questions of how the 3′-ends of cDNA copies integrate and how site-specific integration occurs remain unresolved. Integration depends on properties of the endonuclease (EN) domain of retrotransposons. Using the EN domain of the Drosophila R2 retrotransposon as a model for other, closely related non-LTR retrotransposons, we investigated the EN domain and found that it resembles archaeal Holliday-junction resolvases. We suggest that these non-LTR retrotransposons are co-transcribed with the host transcript. Combined with the proposed resolvase activity of the EN domain, this model yields a novel mechanism for site-specific retrotransposition within this class of retrotransposons, with resolution proceeding via a Holliday junction intermediate.
Collapse
Affiliation(s)
- Dmitry V Mukha
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia
| | | | | | | |
Collapse
|
18
|
Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol 2013; 13:42. [PMID: 23410024 PMCID: PMC3585787 DOI: 10.1186/1471-2148-13-42] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 02/11/2013] [Indexed: 01/07/2023] Open
Abstract
Background Sympatric species pairs are particularly common in freshwater fishes associated with postglacial lakes in northern temperate environments. The nature of divergences between co-occurring sympatric species, factors contributing to reproductive isolation and modes of genome evolution is a much debated topic in evolutionary biology addressed by various experimental tools. To the best of our knowledge, nobody approached this field using molecular cytogenetics. We examined chromosomes and genomes of one postglacial species pair, sympatric European winter-spawning Coregonus albula and the local endemic dwarf-sized spring-spawning C. fontanae, both originating in Lake Stechlin. We have employed molecular cytogenetic tools to identify the genomic differences between the two species of the sympatric pair on the sub-chromosomal level of resolution. Results Fluorescence in situ hybridization (FISH) experiments consistently revealed a distinct variation in the copy number of loci of the major ribosomal DNA (the 45S unit) between C. albula and C. fontanae genomes. In C. fontanae, up to 40 chromosomes were identified to bear a part of the major ribosomal DNA, while in C. albula only 8–10 chromosomes possessed these genes. To determine mechanisms how such extensive genome alternation might have arisen, a PCR screening for retrotransposons from genomic DNA of both species was performed. The amplified retrotransposon Rex1 was used as a probe for FISH mapping onto chromosomes of both species. These experiments showed a clear co-localization of the ribosomal DNA and the retrotransposon Rex1 in a pericentromeric region of one or two acrocentric chromosomes in both species. Conclusion We demonstrated genomic consequences of a rapid ecological speciation on the level undetectable by neither sequence nor karyotype analysis. We provide indirect evidence that ribosomal DNA probably utilized the spreading mechanism of retrotransposons subsequently affecting recombination rates in both genomes, thus, leading to a rapid genome divergence. We attribute these extensive genome re-arrangements associated with speciation event to stress-induced retrotransposons (re)activation. Such causal interplay between genome differentiation, retrotransposons (re)activation and environmental conditions may become a topic to be explored in a broader genomic context in future evolutionary studies.
Collapse
|
19
|
Walters-Conte KB, Johnson DLE, Allard MW, Pecon-Slattery J. Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact. J Hered 2011; 102 Suppl 1:S2-10. [PMID: 21846743 DOI: 10.1093/jhered/esr051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.
Collapse
|
20
|
Ruminski DJ, Webb CHT, Riccitelli NJ, Lupták A. Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem 2011; 286:41286-41295. [PMID: 21994949 DOI: 10.1074/jbc.m111.297283] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many non-long terminal repeat (non-LTR) retrotransposons lack internal promoters and are co-transcribed with their host genes. These transcripts need to be liberated before inserting into new loci. Using structure-based bioinformatics, we show that several classes of retrotransposons in phyla-spanning arthropods, nematodes, and chordates utilize self-cleaving ribozymes of the hepatitis delta virus (HDV) family for processing their 5' termini. Ribozyme-terminated retrotransposons include rDNA-specific R2, R4, and R6, telomere-specific SART, and Baggins and RTE. The self-scission of the R2 ribozyme is strongly modulated by the insertion site sequence in the rDNA, with the most common insertion sequences promoting faster processing. The ribozymes also promote translation initiation of downstream open reading frames in vitro and in vivo. In some organisms HDV-like and hammerhead ribozymes appear to be dedicated to processing long and short interspersed elements, respectively. HDV-like ribozymes serve several distinct functions in non-LTR retrotransposition, including 5' processing, translation initiation, and potentially trans-templating.
Collapse
Affiliation(s)
- Dana J Ruminski
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Chiu-Ho T Webb
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | | | - Andrej Lupták
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Department of Chemistry, University of California, Irvine, California 92697; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697.
| |
Collapse
|
21
|
Abstract
Reverse transcriptases have shaped genomes in many ways. A remarkable example of this shaping is found on telomeres of the genus Drosophila, where retrotransposons have a vital role in chromosome structure. Drosophila lacks telomerase; instead, three telomere-specific retrotransposons maintain chromosome ends. Repeated transpositions to chromosome ends produce long head to tail arrays of these elements. In both form and function, these arrays are analogous to the arrays of repeats added by telomerase to chromosomes in other organisms. Distantly related Drosophila exhibit this variant mechanism of telomere maintenance, which was established before the separation of extant Drosophila species. Nevertheless, the telomere-specific elements still have the hallmarks that characterize non-long terminal repeat (non-LTR) retrotransposons; they have also acquired characteristics associated with their roles at telomeres. These telomeric retrotransposons have shaped the Drosophila genome, but they have also been shaped by the genome. Here, we discuss ways in which these three telomere-specific retrotransposons have been modified for their roles in Drosophila chromosomes.
Collapse
|
22
|
Moss WN, Eickbush DG, Lopez MJ, Eickbush TH, Turner DH. The R2 retrotransposon RNA families. RNA Biol 2011; 8:714-8. [PMID: 21734471 DOI: 10.4161/rna.8.5.16033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Analysis of the R2 retrotransposons from multiple silkmoth and fruitfly species have revealed three segments that contain conserved RNA secondary structures. These conserved structures play important roles in the propagation of the R2 element, including R2 RNA processing and transposon integration into the host genome as well as a likely role in translation. Two of the structured regions comprise protein binding sites: one is located in the 3' UTR and the other is in the 5' UTR close to the putative start of the R2 open reading frame (ORF). The 3' structure was deduced from chemical mapping and sequence comparison. The 5' structure was determined using a combination of chemical mapping, oligonucleotide binding, NMR and sequence analysis and contains an unusual pseudoknot structure. The third structure occurs at the 5' end of the R2 RNA and is responsible for self-cleavage of the 5' end of the element from a 28S ribosomal RNA co-transcript. A structure for this fragment was proposed based on motif searching and sequence comparison. There is remarkable similarity in sequence and structure to the hepatitis delta virus (HDV) ribozyme. Seed alignments for the 5' structure and the R2 ribozyme, containing representative sequences and consensus structures, have been submitted to the Rfam database.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| | | | | | | | | |
Collapse
|
23
|
Thompson BK, Christensen SM. Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: Plasticity of integration mechanism. Mob Genet Elements 2011; 1:29-37. [PMID: 22016843 PMCID: PMC3190273 DOI: 10.4161/mge.1.1.16485] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/24/2022] Open
Abstract
Restriction-like endonuclease (RLE) bearing non-LTR retrotransposons are site-specific elements that integrate into the genome through a target primed reverse transcription mechanism (TPRT). R2 elements have been used as a model system for investigating non-LTR retrotransposon integration. We previously demonstrated that R2 retrotransposons require two subunits of the element-encoded multifunctional protein to integrate-one subunit bound upstream of the insertion site and one bound downstream. R2 elements have been phylogenetically categorized into four clades: R2-A, B, C and D, that diverged from a common ancestor more than 850 million years ago. All R2 elements target the same sequence within 28S rDNA. The amino-terminal domain of R2Bm, an R2-D clade element, contains a single zinc finger and a Myb motif that are responsible for binding R2 protein downstream of the insertion site. Target site recognition is of interest as it is the first step in the integration reaction and may help elucidate evolutionary history and integration mechanism. The amino-terminal domain of R2-A clade members contains three zinc fingers and a Myb motif. We show here that R2Lp, an R2-A clade member, uses its amino-terminal DNA binding motifs to bind upstream of the insertion site. Because the R2-A and R2-D clade elements recognize 28S rDNA differently, we conclude the A- and D-clades represent independent targeting events to the 28S site. Our results also indicate a certain plasticity of insertional mechanics exists between the two clades.
Collapse
Affiliation(s)
- Blaine K Thompson
- Department of Biology; University of Texas at Arlington; Arlington, TX USA
| | | |
Collapse
|
24
|
The reverse transcriptase encoded by the non-LTR retrotransposon R2 is as error-prone as that encoded by HIV-1. J Mol Biol 2011; 407:661-72. [PMID: 21320510 DOI: 10.1016/j.jmb.2011.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/20/2022]
Abstract
Reverse transcriptases (RTs) encoded by a wide range of mobile retroelements have had a major impact on the structure and function of genomes. Among the most abundant elements in eukaryotes are the non long terminal repeat (LTR) retrotransposons. Here we compare the dNTP concentration requirements and error rates of the RT encoded by the non-LTR retrotransposon R2 of Bombyx mori with the well-characterized RTs of retroviruses. Surprisingly, R2 was found to have properties more similar to those of lentiviral RTs, such as human immunodeficiency virus type 1 (HIV-1), than to those of oncoretroviral RTs, such as murine leukemia virus. Like HIV-1 RT, R2 RT was able to synthesize DNA at low dNTP concentrations, suggesting that R2 is able to retrotranspose in nondividing cells. R2 RT also showed levels of misincorporation in biased dNTP pools and replication error rates in M13 lacZα forward mutation assays, similar to HIV-1 RT. Most of the R2 base substitutions in the forward mutation assay were caused by the misincorporation of dTMP. Analogous to HIV-1, the high error rate of R2 RT appears to be a result of its ability to extend mismatches once generated. We suggest that the low fidelity of R2 RT is a by-product of the flexibility of its active site/dNTP binding pocket required for the target-primed reverse transcription reaction used by R2 for retrotransposition. Finally, we discuss that in spite of the high R2 RT error rate, the long-term nucleotide substitution rate for R2 is not significantly above that associated with cellular DNA replication, based on the frequency of R2 retrotranspositions determined in natural populations.
Collapse
|
25
|
Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons. Proc Natl Acad Sci U S A 2010; 107:21052-7. [PMID: 21088221 DOI: 10.1073/pnas.1015926107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The retrotransposons HeT-A, TART, and TAHRE, which maintain Drosophila telomeres, transpose specifically onto chromosome ends to form long arrays that extend the chromosome and compensate for terminal loss. Because they transpose by target-primed reverse transcription, each element is oriented so that its 5' end serves as the extreme end of the chromosome until another element transposes to occupy the terminal position. Thus 5' sequences are at risk for terminal erosion while the element is at the chromosome end. Here we report that TART elements in Drosophila melanogaster and Drosophila virilis show species-specific innovations in promoter architecture that buffer loss of sequence exposed at chromosome ends. The two elements have evolved different ways to effect this protection. The D. virilis TART (TART(vir)) promoter is found in the 3' UTR of the element directly upstream of the element transcribed. Transcription starts within the upstream element so that a "Tag" of extra sequence is added to the 5' end of the newly transcribed RNA. This Tag provides expendable sequence to buffer end erosion of essential 5' sequence after the RNA is reverse transcribed onto the chromosome. In contrast, the D. melanogaster TART (TART(mel)) promoter initiates transcription deep within the 5' UTR, but the element is able to replace and extend the 5' UTR sequence by copying sequence from its 3' UTR, we believe while being reverse transcribed onto the chromosome end. Astonishingly, end-protection in TART(vir) and HeT-A(mel) are essentially identical (using Tags), whereas HeT-A(vir) is clearly protected from end erosion by an as-yet-unspecified program.
Collapse
|
26
|
Martin SL. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 2010; 7:706-11. [PMID: 21045547 DOI: 10.4161/rna.7.6.13766] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Long interspersed element-1 (LINE-1, or L1) is a non-long terminal repeat (LTR) retrotransposon that has amplified to hundreds of thousands of copies in mammalian evolution. A small number of the individual copies of L1 are active retrotransposons which are presently replicating in most species, including humans and mice. L1 retrotransposition begins with transcription of an active element and ends with a newly inserted cDNA copy, a process which requires the two element-encoded proteins to act in cis on the L1 RNA. The ORF1 protein (ORF1p) is a high-affinity, non-sequence-specific RNA binding protein with nucleic acid chaperone activity, whereas the ORF2 protein (ORF2p) supplies the enzymatic activities for cDNA synthesis. This article reviews the nucleic acid chaperone properties of ORF1p in the context of L1 retrotransposition.
Collapse
Affiliation(s)
- Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
27
|
Kojima KK. Different integration site structures between L1 protein-mediated retrotransposition in cis and retrotransposition in trans. Mob DNA 2010; 1:17. [PMID: 20615209 PMCID: PMC2912911 DOI: 10.1186/1759-8753-1-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Long interspersed nuclear element-1 (LINE-1 or L1) is a dominant repetitive sequence in the human genome. Besides mediating its own retrotransposition, L1 can mobilize Alu and messenger RNA (mRNA) in trans, and probably also SVA and non-coding RNA. The structures of L1 copies and trans-mobilized retrocopies are variable and can be classified into three categories: full-length; 5'-truncated; and 5'-inverted insertions. These structures may be generated by different 5' integration mechanisms. Results In this study, a method to correctly characterize insertions with short target site duplications (TSDs) is developed and extranucleotides, TSDs and microhomologies (MHs) at junctions were analysed for the three types of insertions. Only 5'-truncated L1 insertions were found to be associated with short TSDs. Both full-length and 5'-truncated retrotransposed sequences in trans, including Alu, SVA and mRNA retrocopies and also full-length and 5'-inverted L1, were not associated with short TSDs, indicating the difference of 5' attachment between retrotransposition in cis and retrotransposition in trans. Target sequence analysis suggested that short TSDs were generated in an L1 endonuclease-dependent manner. The MHs were longer for 5'-inverted L1 than for 5'-truncated L1, indicating less dependence on annealing in 5'-truncated L1 insertions. Conclusions The results suggest that insertions flanked by short TSDs occur more often coupled with the insertion of 5'-truncated L1 than with those of other types of insertions in vivo. The method used in this study can be used to characterize elements without any apparent boundary structures.
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-Cho, Midori-Ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
28
|
Han JS. Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mob DNA 2010; 1:15. [PMID: 20462415 PMCID: PMC2881922 DOI: 10.1186/1759-8753-1-15] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/12/2010] [Indexed: 12/22/2022] Open
Abstract
Non-long terminal repeat (non-LTR) retrotransposons are present in most eukaryotic genomes. In some species, such as humans, these elements are the most abundant genome sequence and continue to replicate to this day, creating a source of endogenous mutations and potential genotoxic stress. This review will provide a general outline of the replicative cycle of non-LTR retrotransposons. Recent findings regarding the host regulation of non-LTR retrotransposons will be summarized. Finally, future directions of interest will be discussed.
Collapse
Affiliation(s)
- Jeffrey S Han
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, USA.
| |
Collapse
|
29
|
Srikanta D, Sen SK, Conlin EM, Batzer MA. Internal priming: an opportunistic pathway for L1 and Alu retrotransposition in hominins. Gene 2009; 448:233-41. [PMID: 19501635 DOI: 10.1016/j.gene.2009.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 01/24/2023]
Abstract
Retrotransposons, specifically Alu and L1 elements, have been especially successful in their expansion throughout primate genomes. While most of these elements integrate through an endonuclease-mediated process termed target primed reverse transcription, a minority integrate using alternative methods. Here we present evidence for one such mechanism, which we term internal priming and demonstrate that loci integrating through this mechanism are qualitatively different from "classical" insertions. Previous examples of this mechanism are limited to cell culture assays, which show that reverse transcription can initiate upstream of the 3' poly-A tail during retrotransposon integration. To detect whether this mechanism occurs in vivo as well as in cell culture, we have analyzed the human genome for internal priming events using recently integrated L1 and Alu elements. Our examination of the human genome resulted in the recovery of twenty events involving internal priming insertions, which are structurally distinct from both classical TPRT-mediated insertions and non-classical insertions. We suggest two possible mechanisms by which these internal priming loci are created and provide evidence supporting a role in staggered DNA double-strand break repair. Also, we demonstrate that the internal priming process is associated with inter-chromosomal duplications and the insertion of filler DNA.
Collapse
Affiliation(s)
- Deepa Srikanta
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
30
|
Stage DE, Eickbush TH. Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila. Genome Biol 2009; 10:R49. [PMID: 19416522 PMCID: PMC2718515 DOI: 10.1186/gb-2009-10-5-r49] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 05/05/2009] [Indexed: 01/31/2023] Open
Abstract
Comparative analysis of 12 Drosophila genomes reveals insights into the evolution and mechanism of integration of R1 and R2 retrotransposons. Background Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements? Results Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis. Conclusions These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis.
Collapse
Affiliation(s)
- Deborah E Stage
- Biology Department, University of Rochester, Rochester NY 14627-0211, USA.
| | | |
Collapse
|
31
|
Kierzek E, Christensen SM, Eickbush TH, Kierzek R, Turner DH, Moss WN. Secondary structures for 5' regions of R2 retrotransposon RNAs reveal a novel conserved pseudoknot and regions that evolve under different constraints. J Mol Biol 2009; 390:428-42. [PMID: 19397915 DOI: 10.1016/j.jmb.2009.04.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 12/24/2022]
Abstract
Sequences from the 5' region of R2 retrotransposons of four species of silk moth are reported. In Bombyx mori, this region of the R2 messenger RNA contains a binding site for R2 protein and mediates interactions critical to R2 element insertion into the host genome. A model of secondary structure for a segment of this RNA is proposed on the basis of binding to oligonucleotide microarrays, chemical mapping, and comparative sequence analysis. Five conserved secondary structures are identified, including a novel pseudoknot. There is an apparent transition from an entirely RNA structure coding function in most of the 5' segment to a protein coding function near the 3' end. This suggests that local regions evolved under separate functional constraints (structural, coding, or both).
Collapse
Affiliation(s)
- Elzbieta Kierzek
- Department of Chemistry, University of Rochester, NY 14627-0216, USA
| | | | | | | | | | | |
Collapse
|
32
|
Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet 2009; 42:587-617. [PMID: 18680436 DOI: 10.1146/annurev.genet.42.110807.091549] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons, also called non-LTR retrotransposons, and extrachromosomally-primed (EP) retrotransposons, also called LTR retrotransposons. The TP retrotransposons considered here are group II introns, LINEs and SINEs, whereas the EP elements considered are the Ty and Tf retrotransposons, with a brief comparison to retroviruses. Recurring themes for these elements, in hosts ranging from bacteria to humans, are tie-ins of the retrotransposons to RNA metabolism, DNA replication and repair, and cellular stress. Likewise, there are parallels among host-cell defenses to combat rampant retrotransposon spread. The interactions between the retrotransposon and the host, and their coevolution to balance the tension between retrotransposon proliferation and host survival, form the basis of this review.
Collapse
Affiliation(s)
- Arthur Beauregard
- New York State Department of Health, Center for Medical Sciences, Albany, New York 12208, 12201-2002, USA.
| | | | | |
Collapse
|
33
|
Gilbert C, Pace JK, Waters PD. Target site analysis of RTE1_LA and its AfroSINE partner in the elephant genome. Gene 2008; 425:1-8. [PMID: 18796327 DOI: 10.1016/j.gene.2008.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
SINEs retrotranspose using their partner LINE's enzymatic machinery. It has recently been proposed that AfroSINEs ending with GGTTT 3' tandem repeats were mobilized by RTE elements ending with CAA 3' tandem repeats in the Afrotherian genome. Using sequences from the elephant genome, we show that AfroSINEs derive from RTE ending with GGTTT-like 3' tandem repeats, a subgroup of RTE1_LA that only reached low copy number, and confirm that they were most likely mobilized by RTE ending with CAA(n) tandem repeats (RTE1_LA-CAA(n)). This partnership is supported by sequence similarity between two regions of the elements, overlap in the timing of their activity, common features of their target site consensus that are not shared by other members of the RTE family, and their high copy number. Detailed analyses of pre-insertion loci reveal that like many other apurinic/apyrimidinic endonuclease encoding elements, RTE1_LA-CAA(n) shows loose target site specificity. In addition, the RTE1_LA-CAA(n) target site consensus shares several structural and primary sequence features with that of LINE1, suggesting that these two elements share close functional similarity in the target primed reverse transcription (TPRT) reaction. Interestingly, although globally similar, the target site consensus of AfroSINE(Anc) and RTE1_LA-CAA(n) differ in several aspects. These differences, not observed among all SINE/LINE pairs so far examined, are most likely due to the fact that AfroSINEs and RTE1_LA-CAA(n) are terminated by a different tandem repeat motif. We propose that these differences reflect constraints imposed by base pairing interactions between the mRNA 3' terminal tandem repeats and the target DNA at the onset of TPRT. So in addition to the endonuclease nicking preference, the mRNA of these elements appears to play an important role in integration site choice through a passive, post-nicking, selective process.
Collapse
Affiliation(s)
- Clément Gilbert
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa.
| | | | | |
Collapse
|
34
|
Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM. LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene 2008; 419:1-6. [PMID: 18534786 DOI: 10.1016/j.gene.2008.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
Abstract
Retroelements have contributed over one third of the human genome mass. The currently active LINE-1 (L1) codes for two proteins (ORF1p and ORF2p), both strictly required for retrotransposition. In contrast, the non-coding parasitic SINE (Alu) only appears to need the L1 ORF2p for its own amplification. This requirement was previously determined using a tissue culture assay system in human cells (HeLa). Because HeLa are likely to express functional L1 proteins, it is possible that low levels of endogenous ORF1p are necessary for the observed tagged Alu mobilization. By individually expressing ORF1 and ORF2 proteins from both human (L1RP and LRE3) and rodent (L1A102 and L1spa) L1 sources, we demonstrate that increasing amounts of ORF1 expressing vector enhances tagged Alu mobilization in HeLa cells. In addition, using chicken fibroblast cells as an alternate cell culture source, we confirmed that ORF1p is not strictly required for Alu mobilization in our assay. Supporting our observations in HeLa cells, we find that tagged Alu retrotransposition is improved by supplementation of ORF1p in the cultured chicken cells. We postulate that L1 ORF1p plays either a direct or indirect role in enhancing the interaction between the Alu RNA and the required factors needed for its retrotransposition.
Collapse
Affiliation(s)
- Nicholas Wallace
- Tulane Cancer Center SL-66, Deparment of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
35
|
Eickbush TH, Jamburuthugoda VK. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 2008; 134:221-34. [PMID: 18261821 DOI: 10.1016/j.virusres.2007.12.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/30/2022]
Abstract
A number of abundant mobile genetic elements called retrotransposons reverse transcribe RNA to generate DNA for insertion into eukaryotic genomes. Four major classes of retrotransposons are described here. First, the long-terminal-repeat (LTR) retrotransposons have similar structures and mechanisms to those of the vertebrate retroviruses. Genes that may enable these retrotransposons to leave a cell have been acquired by these elements in a number of animal and plant lineages. Second, the tyrosine recombinase retrotransposons are similar to the LTR retrotransposons except that they have substituted a recombinase for the integrase and recombine into the host chromosomes. Third, the non-LTR retrotransposons use a cleaved chromosomal target site generated by an encoded endonuclease to prime reverse transcription. Finally, the Penelope-like retrotransposons are not well understood but appear to also use cleaved DNA or the ends of chromosomes as primer for reverse transcription. Described in the second part of this review are the enzymatic properties of the reverse transcriptases (RTs) encoded by retrotransposons. The RTs of the LTR retrotransposons are highly divergent in sequence but have similar enzymatic activities to those of retroviruses. The RTs of the non-LTR retrotransposons have several unique properties reflecting their adaptation to a different mechanism of retrotransposition.
Collapse
Affiliation(s)
- Thomas H Eickbush
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
36
|
Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 2008; 18:343-58. [PMID: 18256243 DOI: 10.1101/gr.5558208] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) have shared an exceptionally long coexistence with their host organisms and have come to occupy a significant fraction of eukaryotic genomes. The bulk of the expansion occurring within mammalian genomes has arisen from the activity of type I retrotransposons, which amplify in a "copy-and-paste" fashion through an RNA intermediate. For better or worse, the sequences of these retrotransposons are now wedded to the genomes of their mammalian hosts. Although there are several reported instances of the positive contribution of mobile elements to their host genomes, these discoveries have occurred alongside growing evidence of the role of TEs in human disease and genetic instability. Here we examine, with a particular emphasis on human retrotransposon activity, several newly discovered aspects of mammalian retrotransposon biology. We consider their potential impact on host biology as well as their ultimate implications for the nature of the TE-host relationship.
Collapse
Affiliation(s)
- Victoria P Belancio
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|