1
|
Goulet D, Bignucolo MW, Siemann S. Accessibility of Carboxypeptidase A-bound Zinc to Chelation Correlates with an Intermediate State in the Protein's Unfolding Pathway. Biochemistry 2025; 64:1244-1256. [PMID: 40059844 PMCID: PMC11925051 DOI: 10.1021/acs.biochem.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
In view of the emerging role of metal ions in improper protein folding (a phenomenon associated with a variety of diseases), new tools to characterize structural changes that accompany folding transitions are highly sought. Using a combination of fluorescence spectroscopy and studies involving the chromophoric chelator 4-(2-pyridylazo)resorcinol (PAR), we here show that the prototypical zinc protease carboxypeptidase A (CPA) unfolds in the presence of guanidine hydrochloride via a previously unidentified folding intermediate that resembles a molten globular state and retains the zinc ion. The spontaneous dissociation of the metal ion from CPA was observed only upon transition of the intermediate to the fully unfolded state of the protein. Furthermore, an analysis of zinc ion binding during CPA unfolding using PAR revealed the intermediate state to directly correlate with the ability of the chelator to gain access to the active site and to associate with the protein-bound metal ion. This observation is indicative of CPA's active site being PAR-inaccessible in the native state but becoming PAR-accessible in the folding intermediate. Taken together, the current study demonstrates the usefulness of PAR as a simple spectrophotometric tool to assess structural changes during the unfolding of CPA and potentially other zinc proteins. Hence, zinc accessibility probes (ZAPs) such as PAR may find utility in gaining further insight into the mechanism(s) of metalloprotein folding.
Collapse
Affiliation(s)
- Danica
L. Goulet
- eConsult
Centre of Excellence, The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- School of Natural Sciences, Laurentian
University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Matthew W. Bignucolo
- School of Natural Sciences, Laurentian
University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Stefan Siemann
- School of Natural Sciences, Laurentian
University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
2
|
Amesaka H, Hara M, Sakai Y, Shintani A, Sue K, Yamanaka T, Tanaka S, Furukawa Y. Engineering a monobody specific to monomeric Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis. Protein Sci 2024; 33:e4961. [PMID: 38511674 PMCID: PMC10955725 DOI: 10.1002/pro.4961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Misfolding of mutant Cu/Zn-superoxide dismutase (SOD1) has been implicated in familial form of amyotrophic lateral sclerosis (ALS). A natively folded SOD1 forms a tight homodimer, and the dimer dissociation has been proposed to trigger the oligomerization/aggregation of SOD1. Besides increasing demand for probes allowing the detection of monomerized forms of SOD1 in various applications, the development of probes has been limited to conventional antibodies. Here, we have developed Mb(S4) monobody, a small synthetic binding protein based on the fibronectin type III scaffold, that recognizes a monomeric but not dimeric form of SOD1 by performing combinatorial library selections using phage and yeast-surface display methods. Although Mb(S4) was characterized by its excellent selectivity to the monomeric conformation of SOD1, the monomeric SOD1/Mb(S4) complex was not so stable (apparent Kd ~ μM) as to be detected in conventional pull-down experiments. Instead, the complex of Mb(S4) with monomeric but not dimeric SOD1 was successfully trapped by proximity-enabled chemical crosslinking even when reacted in the cell lysates. We thus anticipate that Mb(S4) binding followed by chemical crosslinking would be a useful strategy for in vitro and also ex vivo detection of the monomeric SOD1 proteins.
Collapse
Affiliation(s)
- Hiroshi Amesaka
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Mizuho Hara
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Yuki Sakai
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | | | - Kaori Sue
- Department of ChemistryKeio UniversityYokohamaJapan
| | - Tomoyuki Yamanaka
- Department of Neuroscience of DiseaseBrain Research Institute, Niigata UniversityNiigataJapan
| | - Shun‐ichi Tanaka
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | | |
Collapse
|
3
|
Bakavayev S, Stavsky A, Argueti-Ostrovsky S, Yehezkel G, Fridmann-Sirkis Y, Barak Z, Gitler D, Israelson A, Engel S. Blocking an epitope of misfolded SOD1 ameliorates disease phenotype in a model of amyotrophic lateral sclerosis. Brain 2023; 146:4594-4607. [PMID: 37394908 DOI: 10.1093/brain/awad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023] Open
Abstract
The current strategies to mitigate the toxicity of misfolded superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis via blocking SOD1 expression in the CNS are indiscriminative for misfolded and intact proteins, and as such, entail a risk of depriving CNS cells of their essential antioxidant potential. As an alternative approach to neutralize misfolded and spare unaffected SOD1 species, we developed scFv-SE21 antibody that blocks the β6/β7 loop epitope exposed exclusively in misfolded SOD1. The β6/β7 loop epitope has previously been proposed to initiate amyloid-like aggregation of misfolded SOD1 and mediate its prion-like activity. The adeno-associated virus-mediated expression of scFv-SE21 in the CNS of hSOD1G37R mice rescued spinal motor neurons, reduced the accumulation of misfolded SOD1, decreased gliosis and thus delayed disease onset and extended survival by 90 days. The results provide evidence for the role of the exposed β6/β7 loop epitope in the mechanism of neurotoxic gain-of-function of misfolded SOD1 and open avenues for the development of mechanism-based anti-SOD1 therapeutics, whose selective targeting of misfolded SOD1 species may entail a reduced risk of collateral oxidative damage to the CNS.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yael Fridmann-Sirkis
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
4
|
Harnden KA, Roy A, Hosseinzadeh P. Overview of Methods for Purification and Characterization of Metalloproteins. Curr Protoc 2021; 1:e234. [PMID: 34436821 DOI: 10.1002/cpz1.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metalloproteins make up one third of all proteins and perform some of the most essential reactions on earth. The unique properties of the metal ions within these proteins, and in particular of redox-active metal ions, enables the use of a number of characterization techniques. It also necessitates unique considerations in terms of purification and characterization. In this overview, we describe the considerations and methods used for metalloprotein purification and characterization. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Anindya Roy
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, Washington
| | | |
Collapse
|
5
|
Mulligan VK, Kang CS, Sawaya MR, Rettie S, Li X, Antselovich I, Craven TW, Watkins AM, Labonte JW, DiMaio F, Yeates TO, Baker D. Computational design of mixed chirality peptide macrocycles with internal symmetry. Protein Sci 2021; 29:2433-2445. [PMID: 33058266 PMCID: PMC7679966 DOI: 10.1002/pro.3974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022]
Abstract
Cyclic symmetry is frequent in protein and peptide homo‐oligomers, but extremely rare within a single chain, as it is not compatible with free N‐ and C‐termini. Here we describe the computational design of mixed‐chirality peptide macrocycles with rigid structures that feature internal cyclic symmetries or improper rotational symmetries inaccessible to natural proteins. Crystal structures of three C2‐ and C3‐symmetric macrocycles, and of six diverse S2‐symmetric macrocycles, match the computationally‐designed models with backbone heavy‐atom RMSD values of 1 Å or better. Crystal structures of an S4‐symmetric macrocycle (consisting of a sequence and structure segment mirrored at each of three successive repeats) designed to bind zinc reveal a large‐scale zinc‐driven conformational change from an S4‐symmetric apo‐state to a nearly inverted S4‐symmetric holo‐state almost identical to the design model. These symmetric structures provide promising starting points for applications ranging from design of cyclic peptide based metal organic frameworks to creation of high affinity binders of symmetric protein homo‐oligomers. More generally, this work demonstrates the power of computational design for exploring symmetries and structures not found in nature, and for creating synthetic switchable systems. PDB Code(s): 6UFU, 6UG2, 6UG3, 6UG6, 6UGB, 6UGC, 6UCX, 6UD9, 6UDR, 6UDW, 6UDZ, 6UF4, 6UF7, 6UF8, 6UFA and 6UF9;
Collapse
Affiliation(s)
- Vikram Khipple Mulligan
- Systems Biology, Center for Computational Biology, Flatiron Institute, New York, New York, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Christine S Kang
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California-Los Angeles (UCLA), Los Angeles, California, USA.,UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - Stephen Rettie
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Xinting Li
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Inna Antselovich
- Department of Chemistry and Biochemistry, University of California-Los Angeles (UCLA), Los Angeles, California, USA.,UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - Timothy W Craven
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Jason W Labonte
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Frank DiMaio
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California-Los Angeles (UCLA), Los Angeles, California, USA.,UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Doyle CM, Naser D, Bauman HA, Rumfeldt JA, Meiering EM. Spectrophotometric method for simultaneous measurement of zinc and copper in metalloproteins using 4-(2-pyridylazo)resorcinol. Anal Biochem 2019; 579:44-56. [DOI: 10.1016/j.ab.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 12/26/2022]
|
8
|
Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H 2O 2 via cysteine-dependent redox short-circuit. Sci Rep 2019; 9:10826. [PMID: 31346243 PMCID: PMC6658568 DOI: 10.1038/s41598-019-47326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The Cu/Zn−superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme’s active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1WT (holo-SOD1WT) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1G93A, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of H2O2 through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
Collapse
|
9
|
Tompa DR, Kadhirvel S. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. J Biomol Struct Dyn 2017; 36:4085-4098. [PMID: 29157189 DOI: 10.1080/07391102.2017.1407675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| | - Saraboji Kadhirvel
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| |
Collapse
|
10
|
Mera-Adasme R, Erdmann H, Bereźniak T, Ochsenfeld C. Destabilization of the metal site as a hub for the pathogenic mechanism of five ALS-linked mutants of copper, zinc superoxide dismutase. Metallomics 2017; 8:1141-1150. [PMID: 27603566 DOI: 10.1039/c6mt00085a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, with no effective pharmacological treatment. Its pathogenesis is unknown, although a subset of the cases is linked to genetic mutations. A significant fraction of the mutations occur in one protein, copper, zinc superoxide dismutase (SOD1). The toxic function of mutant SOD1 has not been elucidated, but damage to the metal site of the protein is believed to play a major role. In this work, we study the electrostatic loop of SOD1, which we had previously proposed to work as a "solvent seal" isolating the metal site from water molecules. Out of the five contact points identified between the electrostatic loop and its dock in the rest of the protein, three points were found to be affected by ALS-linked mutations, with a total of five mutations identified. The effect of the five mutations was studied using methods of computational chemistry. We found that four of the mutations destabilize the proposed solvent seal, while the fifth mutation directly affects the metal-site stability. In the two contact points unaffected by ALS-linked mutations, the side chains of the residues were not found to play a stabilizing role. Our results show that the docking of the electrostatic loop to the rest of SOD1 plays a role in ALS pathogenesis, in support of that structure acting as a solvent barrier for the metal site. The results provide a unified pathogenic mechanism for five different ALS-linked mutations of SOD1.
Collapse
Affiliation(s)
- Raúl Mera-Adasme
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| | - Hannes Erdmann
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| | - Tomasz Bereźniak
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| |
Collapse
|
11
|
Ip P, Sharda PR, Cunningham A, Chakrabartty S, Pande V, Chakrabartty A. Quercitrin and quercetin 3-β-d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Eng Des Sel 2017; 30:431-440. [PMID: 28475686 DOI: 10.1093/protein/gzx025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022] Open
Abstract
In many cases of familial amyotrophic lateral sclerosis (ALS), mutant forms of the Cu,Zn superoxide dismutase protein (SOD1) misfold and aggregate in motor neurons. Monomers of the normally homodimeric SOD1 have been found in patient tissue, presymptomatic mouse models of ALS, and in vitro misfolding assays which suggests that monomerization might be an early step in the pathological SOD1 misfolding pathway. In this study, we targeted the dimer interface with small molecules that might act as chemical chaperones to stabilize the native dimer and prevent downstream misfolding and aggregation. We performed a computational screen with a library of ~4400 drugs and natural compounds that were docked to two pockets around the SOD1 dimer interface. Of the resultant hits, seven were tested for misfolding and aggregation inhibition activity with A4V mutant SOD1. Quercitrin, quercetin-3-β-d-glucoside (Q3BDG), and, to a markedly lesser extent, epigallocatechin gallate (EGCG) were found to combat misfolding and aggregation induced by hydrogen peroxide, a physiologically relevant stress, as assessed by a gel-based assay and 8-anilinonaphthalene-1-suflonic acid (ANS) fluorescence. Isothermal titration calorimetry (ITC) and a colourimetric assay determined that these molecules directly bind A4V SOD1. Based on these findings, we speculate that quercitrin and Q3BDG may be potential therapeutic inhibitors of misfolding and aggregation in SOD1-associated ALS.
Collapse
Affiliation(s)
- Philbert Ip
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Department of Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, Ontario, CanadaM5G 1L7
| | - Priya Roy Sharda
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Department of Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, Ontario, CanadaM5G 1L7
| | - Anna Cunningham
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Drive, Stanford, CA, 94305-5174, USA
| | - Sumon Chakrabartty
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Department of Medical Biophysics, University of Toronto, TMDT 4-307, 101 College Street, Toronto, Ontario, CanadaM5G 1L7
| | - Vijay Pande
- Department of Chemistry, Stanford University, CA94305, USA
| | - Avijit Chakrabartty
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Department of Medical Biophysics, University of Toronto, TMDT 4-307, 101 College Street, Toronto, Ontario, CanadaM5G 1L7
| |
Collapse
|
12
|
Doyle CM, Rumfeldt JA, Broom HR, Sekhar A, Kay LE, Meiering EM. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts. Biochemistry 2016; 55:1346-61. [PMID: 26849066 DOI: 10.1021/acs.biochem.5b01133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Lewis E Kay
- Program in Molecular Structure and Function, Hospital for Sick Children , Toronto, Canada
| | | |
Collapse
|
13
|
Chattopadhyay M, Nwadibia E, Strong CD, Gralla EB, Valentine JS, Whitelegge JP. The Disulfide Bond, but Not Zinc or Dimerization, Controls Initiation and Seeded Growth in Amyotrophic Lateral Sclerosis-linked Cu,Zn Superoxide Dismutase (SOD1) Fibrillation. J Biol Chem 2015; 290:30624-36. [PMID: 26511321 DOI: 10.1074/jbc.m115.666503] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Aggregation of copper-zinc superoxide dismutase (SOD1) is a defining feature of familial ALS caused by inherited mutations in the sod1 gene, and misfolded and aggregated forms of wild-type SOD1 are found in both sporadic and familial ALS cases. Mature SOD1 owes its exceptional stability to a number of post-translational modifications as follows: formation of the intramolecular disulfide bond, binding of copper and zinc, and dimerization. Loss of stability due to the failure to acquire one or more of these modifications is proposed to lead to aggregation in vivo. Previously, we showed that the presence of apo-, disulfide-reduced SOD1, the most immature form of SOD1, results in initiation of fibrillation of more mature forms that have an intact Cys-57-Cys-146 disulfide bond and are partially metallated. In this study, we examine the ability of each of the above post-translational modifications to modulate fibril initiation and seeded growth. Cobalt or zinc binding, despite conferring great structural stability, neither inhibits the initiation propensity of disulfide-reduced SOD1 nor consistently protects disulfide-oxidized SOD1 from being recruited into growing fibrils across wild-type and a number of ALS mutants. In contrast, reduction of the disulfide bond, known to be necessary for fibril initiation, also allows for faster recruitment during seeded amyloid growth. These results identify separate factors that differently influence seeded growth and initiation and indicate a lack of correlation between the overall thermodynamic stability of partially mature SOD1 states and their ability to initiate fibrillation or be recruited by a growing fibril.
Collapse
Affiliation(s)
- Madhuri Chattopadhyay
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095,
| | - Ekeoma Nwadibia
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095
| | - Cynthia D Strong
- the Department of Chemistry, Cornell College, Mt. Vernon, Iowa 52314, and
| | - Edith Butler Gralla
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095
| | | | - Julian P Whitelegge
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095, the The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
14
|
Lo SY, Säbel CE, Mapletoft JP, Siemann S. Influence of chemical denaturants on the activity, fold and zinc status of anthrax lethal factor. Biochem Biophys Rep 2015; 1:68-77. [PMID: 29124135 PMCID: PMC5668564 DOI: 10.1016/j.bbrep.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/17/2022] Open
Abstract
Anthrax lethal factor (LF) is a zinc-dependent endopeptidase which, through a process facilitated by protective antigen, translocates to the host cell cytosol in a partially unfolded state. In the current report, the influence of urea and guanidine hydrochloride (GdnHCl) on LF׳s catalytic function, fold and metal binding was assessed at neutral pH. Both urea and GdnHCl were found to inhibit LF prior to the onset of unfolding, with the inhibition by the latter denaturant being a consequence of its ionic strength. With the exception of demetallated LF (apoLF) in urea, unfolding, as monitored by tryptophan fluorescence spectroscopy, was found to follow a two-state (native to unfolded) mechanism. Analysis of the metal status of LF with 4-(2-pyridylazoresorcinol) (PAR) following urea or GdnHCl exposure suggests the enzyme to be capable of maintaining its metal ion passed the observed unfolding transition in a chelator-inaccessible form. Although an increase in the concentration of the denaturants eventually allowed the chelator access to the protein׳s zinc ion, such process is not correlated with the release of the metal ion. Indeed, significant dissociation of the zinc ion from LF was not observed even at 6 M urea, and only high concentrations of GdnHCl (>3 M) were capable of inducing the release of the metal ion from the protein. Hence, the current study demonstrates not only the propensity of LF to tightly bind its zinc ion beyond the spectroscopically determined unfolding transition, but also the utility of PAR as a structural probe. Lethal factor (LF) is strongly inhibited by guanidine hydrochloride. Except of apoLF in urea, unfolding follows a two-state mechanism. LF shields and retains its zinc ion in an unfolded state. Pyridylazoresorcinol is a useful probe to assess metal accessibility and release.
Collapse
Key Words
- 4-(2-pyridylazo)resorcinol
- CD, circular dichroism
- Chemical denaturants
- DPA, dipicolinic acid
- EDTA, ethylenediaminetetraacetic acid
- EF, edema factor
- LF, anthrax lethal factor
- Lethal factor
- MWCO, molecular weight cut-off
- PA, protective antigen
- PAR, 4-(2-pyridylazo)resorcinol
- Protein folding
- S-pNA, lethal factor substrate
- SASA, solvent-accessible surface area
- SOD, superoxide dismutase
- Tryptophan fluorescence
- Zinc
- ZnLF, zinc-containing lethal factor
- cps, counts per second
Collapse
Affiliation(s)
- Suet Y. Lo
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Crystal E. Säbel
- Bharti School of Engineering, Laurentian University, Sudbury, Ontario, Canada
| | | | - Stefan Siemann
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Correspondence to: Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6. Tel.: +1 705 675 1151; fax: +1 705 675 4844.
| |
Collapse
|
15
|
Szpryngiel S, Oliveberg M, Mäler L. Diffuse binding of Zn(2+) to the denatured ensemble of Cu/Zn superoxide dismutase 1. FEBS Open Bio 2015; 5:56-63. [PMID: 25685664 PMCID: PMC4309841 DOI: 10.1016/j.fob.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022] Open
Abstract
Nearly complete backbone assignments for monomeric SOD1 were obtained. Monomeric SOD1 is unstructured in 9 M urea. Zn2+-binding to monomeric SOD1 occurs through diffuse coordination to most His residues. The binding geometry of Zn2+ is different than in the native, folded SOD1.
The stability and structural properties of the metalloprotein superoxide dismutase 1 (SOD1) are found to depend critically on metal ions. Native SOD1 monomers coordinate one structural Zn2+ and one redox-active Cu2+/1+ to the active site. To do this, the Zn2+ ions need to interact with the SOD1 protein on the denatured side of the folding barrier, prior to the formation of the folding nucleus. In this study, we have examined at residue level the nature of this early Zn2+ binding by NMR studies on the urea denatured-state of SOD1. Nearly complete backbone chemical shift assignments were obtained in 9 M urea at physiological pH, conditions at which NMR studies are scarce. Our results demonstrate that SOD1 is predominantly unstructured under these conditions. Chemical-shift changes upon Zn2+ titration show that denatured SOD1 retains a significant affinity to Zn2+ ions, even in 9 M urea. However, the Zn2+ interactions are not limited to the native metal-binding ligands in the two binding sites, but are seen for all His residues. Moreover, the native Cu2+/1+ ligand H46 seems not to bind as well as the other His residues, while the nearby non-native H43 does bind, indicating that the binding geometry is relaxed. The result suggests that the Zn2+-binding observed to catalyze folding of SOD1 in physiological buffer is initiated by diffuse, non-specific coordination to the coil, which subsequently funnels by ligand exchange into the native coordination geometry of the folded monomer. Altogether, this diffuse binding is a result with fundamental implications for folding of metalloproteins in general.
Collapse
Affiliation(s)
- Scarlett Szpryngiel
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
16
|
Sun Y, Arslan PE, Won A, Yip CM, Chakrabartty A. Binding of TDP-43 to the 3'UTR of its cognate mRNA enhances its solubility. Biochemistry 2014; 53:5885-94. [PMID: 25171271 DOI: 10.1021/bi500617x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TAR DNA binding protein of 43 kDa (TDP-43) has been implicated in the pathogenesis of a broad range of neurodegenerative diseases termed TDP-43 proteinopathies, which encompass a spectrum of diseases ranging from amyotrophic lateral sclerosis to frontotemporal dementia. Pathologically misfolded and aggregated forms of TDP-43 are found in cytoplasmic inclusion bodies of affected neurons in these diseases. The mechanism by which TDP-43 misfolding causes disease is not well-understood. Current hypotheses postulate that the TDP-43 aggregation process plays a major role in pathogenesis. We amplify that hypothesis and suggest that binding of cognate ligands to TDP-43 can stabilize the native functional state of the protein and ameliorate aggregation. We expressed recombinant TDP-43 containing an N-terminal Venus yellow fluorescent protein tag in Escherichia coli and induced its aggregation by altering solvent salt concentrations and examined the extent to which various oligonucleotide molecules affect its aggregation in vitro using aggregation-induced turbidity assays. We show that vYFP-TDP-43 binding to its naturally occurring RNA target that comprises a sequence on the 3'UTR region of its mRNA improves its solubility, suggesting interplay among TDP-43 solubility, oligonucleotide binding, and TDP-43 autoregulation.
Collapse
Affiliation(s)
- Yulong Sun
- Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
17
|
Wild-type Cu/Zn superoxide dismutase stabilizes mutant variants by heterodimerization. Neurobiol Dis 2013; 62:479-88. [PMID: 24200866 DOI: 10.1016/j.nbd.2013.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) are responsible for a subset of amyotrophic lateral sclerosis cases presumably by the acquisition of as yet unknown toxic properties. Additional overexpression of wild-type SOD1 in mutant SOD1 transgenic mice did not improve but rather accelerated the disease course. Recently, it was documented that the presence of wild-type SOD1 (SOD(WT)) reduced the aggregation propensity of mutant SOD1 by the formation of heterodimers between mutant and SOD1(WT) and that these heterodimers displayed at least a similar toxicity in cellular and animal models. In this study we investigated the biochemical and biophysical properties of obligate SOD1 dimers that were connected by a peptide linker. Circular dichroism spectra indicate an increased number of unstructured residues in SOD1 mutants. However, SOD1(WT) stabilized the folding of heterodimers compared to mutant homodimers as evidenced by an increase in resistance against proteolytic degradation. Heterodimerization also reduced the affinity of mutant SOD1 to antibodies detecting misfolded SOD1. In addition, the formation of obligate dimers resulted in a detection of substantial dismutase activity even of the relatively labile SOD1(G85R) mutant. These data indicate that soluble, dismutase-active SOD1 dimers might contribute at least partially to mutant SOD1 toxicity.
Collapse
|
18
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
19
|
Orlova MA, Osipova EY, Rumyantsev SA, Ashurko SP. Effect of the 67Zn isotope on leukemic cells and normal lymphocytes. Russ Chem Bull 2012. [DOI: 10.1007/s11172-012-0057-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Zetterström P, Graffmo KS, Andersen PM, Brännström T, Marklund SL. Composition of soluble misfolded superoxide dismutase-1 in murine models of amyotrophic lateral sclerosis. Neuromolecular Med 2012; 15:147-58. [PMID: 23076707 DOI: 10.1007/s12017-012-8204-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
A common cause of amyotrophic lateral sclerosis is mutations in superoxide dismutase-1, which provoke the disease by an unknown mechanism. We have previously found that soluble hydrophobic misfolded mutant human superoxide dismutase-1 species are enriched in the vulnerable spinal cords of transgenic model mice. The levels were broadly inversely correlated with life spans, suggesting involvement in the pathogenesis. Here, we used methods based on antihuman superoxide dismutase-1 peptide antibodies specific for misfolded species to explore the composition and amounts of soluble misfolded human superoxide dismutase-1 in tissue extracts. Mice expressing 5 different human superoxide dismutase-1 variants with widely variable structural characteristics were examined. The levels were generally higher in spinal cords than in other tissues. The major portion of misfolded superoxide dismutase-1 was shown to be monomers lacking the C57-C146 disulfide bond with large hydrodynamic volume, indicating a severely disordered structure. The remainder of the misfolded protein appeared to be non-covalently associated in 130- and 250-kDa complexes. The malleable monomers should be prone to aggregate and associate with other cellular components, and should be easily translocated between compartments. They may be the primary cause of toxicity in superoxide dismutase-1-induced amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 85, Umeå, Sweden
| | | | | | | | | |
Collapse
|
21
|
Kayatekin C, Cohen NR, Matthews CR. Enthalpic barriers dominate the folding and unfolding of the human Cu, Zn superoxide dismutase monomer. J Mol Biol 2012; 424:192-202. [PMID: 22999954 DOI: 10.1016/j.jmb.2012.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/14/2012] [Accepted: 09/10/2012] [Indexed: 01/16/2023]
Abstract
The rate-limiting step in the formation of the native dimeric state of human Cu, Zn superoxide dismutase (SOD1) is a very slow monomer folding reaction that governs the lifetime of its unfolded state. Mutations at dozens of sites in SOD1 are known to cause a fatal motor neuron disease, amyotrophic lateral sclerosis, and recent experiments implicate the unfolded state as a source of soluble oligomers and histologically observable aggregates thought to be responsible for toxicity. To determine the thermodynamic properties of the transition state ensemble (TSE) limiting the folding of this high-contact-order β-sandwich motif, we performed a combined thermal/urea denaturation thermodynamic/kinetic analysis. The barriers to folding and unfolding are dominated by the activation enthalpy at 298 K and neutral pH; the activation entropy is favorable and reduces the barrier height for both reactions. The absence of secondary structure formation or large-scale chain collapse prior to crossing the barrier for folding led to the conclusion that dehydration of nonpolar surfaces in the TSE is responsible for the large and positive activation enthalpy. Although the activation entropy favors the folding reaction, the transition from the unfolded state to the native state is entropically disfavored at 298 K. The opposing entropic contributions to the free energies of the TSE and the native state during folding provide insights into structural properties of the TSE. The results also imply a crucial role for water in governing the productive folding reaction and enhancing the propensity for the aggregation of SOD1.
Collapse
Affiliation(s)
- Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
22
|
Mulligan VK, Kerman A, Laister RC, Sharda PR, Arslan PE, Chakrabartty A. Early Steps in Oxidation-Induced SOD1 Misfolding: Implications for Non-Amyloid Protein Aggregation in Familial ALS. J Mol Biol 2012; 421:631-52. [DOI: 10.1016/j.jmb.2012.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 04/12/2012] [Accepted: 04/14/2012] [Indexed: 12/14/2022]
|
23
|
Abstract
Mutations in SOD1, causative for a subset of familial ALS cases, are associated with the formation of non-normal SOD1 conformers. Recent studies have defined this pool of SOD1 as misfolded and new antibodies have been developed to selectively detect misfolded SOD1 in vivo and in vitro. We will review these new tools and expand on the evidence demonstrating mitochondria as a common intersecting point for misfolded SOD1.
Collapse
Affiliation(s)
- Sarah Pickles
- Centre d'excellence en neuromique de l'Université de Montréal, Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | | |
Collapse
|
24
|
Mulligan VK, Hadley KC, Chakrabartty A. Analyzing complicated protein folding kinetics rapidly by analytical Laplace inversion using a Tikhonov regularization variant. Anal Biochem 2012; 421:181-90. [DOI: 10.1016/j.ab.2011.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/25/2011] [Accepted: 10/29/2011] [Indexed: 11/25/2022]
|
25
|
ZHANG YJ, JIANG JH, XIE J, YANG L, Paul SUNGKL. Lysyl Oxidases Related to Human Diseases*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Proctor EA, Ding F, Dokholyan NV. Structural and thermodynamic effects of post-translational modifications in mutant and wild type Cu, Zn superoxide dismutase. J Mol Biol 2011; 408:555-67. [PMID: 21396374 PMCID: PMC3082150 DOI: 10.1016/j.jmb.2011.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Aggregation of Cu,Zn superoxide dismutase (SOD1) is implicated in amyotrophic lateral sclerosis. Glutathionylation and phosphorylation of SOD1 is omnipresent in the human body, even in healthy individuals, and has been shown to increase SOD1 dimer dissociation, which is the first step on the pathway toward SOD1 aggregation. We found that post-translational modification of SOD1, especially glutathionylation, promotes dimer dissociation. We discovered an intermediate state in the pathway to dissociation, a conformational change that involves a "loosening" of the β-barrels and a loss or shift of dimer interface interactions. In modified SOD1, this intermediate state is stabilized as compared to unmodified SOD1. The presence of post-translational modifications could explain the environmental factors involved in the speed of disease progression. Because post-translational modifications such as glutathionylation are often induced by oxidative stress, post-translational modification of SOD1 could be a factor in the occurrence of sporadic cases of amyotrophic lateral sclerosis, which represent 90% of all cases of the disease.
Collapse
Affiliation(s)
- Elizabeth A. Proctor
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Center for Computational and Systems Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Nikolay V. Dokholyan
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Center for Computational and Systems Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
27
|
Ip P, Mulligan VK, Chakrabartty A. ALS-causing SOD1 mutations promote production of copper-deficient misfolded species. J Mol Biol 2011; 409:839-52. [PMID: 21549128 DOI: 10.1016/j.jmb.2011.04.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/01/2011] [Accepted: 04/11/2011] [Indexed: 12/14/2022]
Abstract
Point mutations scattered throughout the sequence of Cu,Zn superoxide dismutase (SOD1) cause a subset of amyotrophic lateral sclerosis (ALS) cases. SOD1 is a homodimer in which each subunit binds one copper atom and one zinc atom. Inclusions containing misfolded SOD1 are seen in motor neurons of SOD1-associated ALS cases. The mechanism by which these diverse mutations cause misfolding and converge on the same disease is still not well understood. Previously, we developed several time-resolved techniques to monitor structural changes in SOD1 as it unfolds in guanidine hydrochloride. By measuring the rates of Cu and Zn release using an absorbance-based assay, dimer dissociation through chemical cross-linking, and β-barrel conformation changes by tryptophan fluorescence, we established that wild-type SOD1 unfolds by a branched pathway involving a Zn-deficient monomer as the dominant intermediate of the major pathway, and with various metal-loaded and Cu-deficient dimers populated along the minor pathway. We have now compared the unfolding pathway of wild-type SOD1 with those of A4V, G37R, G85R, G93A, and I113T ALS-associated mutant SOD1. The kinetics of unfolding of the mutants were generally much faster than those of wild type. However, all of the mutants utilize the minority pathway to a greater extent than the wild-type protein, leading to greater populations of Cu-deficient intermediates and decreases in Zn-deficient intermediates relative to the wild-type protein. The greater propensity of the mutants to populate Cu-deficient states potentially implicates these species as a pathogenic form of SOD1 in SOD1-associated ALS and provides a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Philbert Ip
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Department of Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | | | | |
Collapse
|
28
|
Sahawneh MA, Ricart KC, Roberts BR, Bomben VC, Basso M, Ye Y, Sahawneh J, Franco MC, Beckman JS, Estévez AG. Cu,Zn-superoxide dismutase increases toxicity of mutant and zinc-deficient superoxide dismutase by enhancing protein stability. J Biol Chem 2010; 285:33885-97. [PMID: 20663894 PMCID: PMC2962488 DOI: 10.1074/jbc.m110.118901] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When replete with zinc and copper, amyotrophic lateral sclerosis (ALS)-associated mutant SOD proteins can protect motor neurons in culture from trophic factor deprivation as efficiently as wild-type SOD. However, the removal of zinc from either mutant or wild-type SOD results in apoptosis of motor neurons through a copper- and peroxynitrite-dependent mechanism. It has also been shown that motor neurons isolated from transgenic mice expressing mutant SODs survive well in culture but undergo apoptosis when exposed to nitric oxide via a Fas-dependent mechanism. We combined these two parallel approaches for understanding SOD toxicity in ALS and found that zinc-deficient SOD-induced motor neuron death required Fas activation, whereas the nitric oxide-dependent death of G93A SOD-expressing motor neurons required copper and involved peroxynitrite formation. Surprisingly, motor neuron death doubled when Cu,Zn-SOD protein was either delivered intracellularly to G93A SOD-expressing motor neurons or co-delivered with zinc-deficient SOD to nontransgenic motor neurons. These results could be rationalized by biophysical data showing that heterodimer formation of Cu,Zn-SOD with zinc-deficient SOD prevented the monomerization and subsequent aggregation of zinc-deficient SOD under thiol-reducing conditions. ALS mutant SOD was also stabilized by mutating cysteine 111 to serine, which greatly increased the toxicity of zinc-deficient SOD. Thus, stabilization of ALS mutant SOD by two different approaches augmented its toxicity to motor neurons. Taken together, these results are consistent with copper-containing zinc-deficient SOD being the elusive "partially unfolded intermediate" responsible for the toxic gain of function conferred by ALS mutant SOD.
Collapse
Affiliation(s)
- Mary Anne Sahawneh
- From the Burke Medical Research Institute, White Plains, New York 10605, ,the Department of Neurology and Neurosciences, Weill Medical College, New York, New York 10022
| | - Karina C. Ricart
- the Departments of Pathology and ,the Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Blaine R. Roberts
- the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | | | - Manuela Basso
- From the Burke Medical Research Institute, White Plains, New York 10605, ,the Department of Neurology and Neurosciences, Weill Medical College, New York, New York 10022
| | - Yaozu Ye
- From the Burke Medical Research Institute, White Plains, New York 10605
| | - John Sahawneh
- From the Burke Medical Research Institute, White Plains, New York 10605
| | - Maria Clara Franco
- From the Burke Medical Research Institute, White Plains, New York 10605, ,the Department of Neurology and Neurosciences, Weill Medical College, New York, New York 10022
| | - Joseph S. Beckman
- the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Alvaro G. Estévez
- From the Burke Medical Research Institute, White Plains, New York 10605, ,the Department of Neurology and Neurosciences, Weill Medical College, New York, New York 10022, , To whom correspondence should be addressed. Tel.: 541-737-4517; Fax: 541-737-0481; E-mail:
| |
Collapse
|
29
|
Abstract
The p53 tumor suppressor is a transcription factor that contains a single zinc ion near its DNA binding interface. Zn(2+) is required for site-specific DNA binding and proper transcriptional activation. In addition to its functional significance, zinc plays a dominant role in determining whether p53 folds productively or misfolds. Insufficient zinc and excess zinc cause p53 to misfold by distinct mechanisms which both result in functional loss. The zinc-binding status of p53 in the cell is impacted significantly by the presence of tumorigenic mutations and by metal ion homeostasis. This review discusses mechanisms by which zinc modulates folding and misfolding of p53, how improper metal binding and release leads to loss of function and cancer, and how misfolding can be rescued by metallochaperones.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
30
|
Svensson AKE, Bilsel O, Kayatekin C, Adefusika JA, Zitzewitz JA, Matthews CR. Metal-free ALS variants of dimeric human Cu,Zn-superoxide dismutase have enhanced populations of monomeric species. PLoS One 2010; 5:e10064. [PMID: 20404910 PMCID: PMC2852398 DOI: 10.1371/journal.pone.0010064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/22/2010] [Indexed: 12/05/2022] Open
Abstract
Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals.
Collapse
Affiliation(s)
- Anna-Karin E. Svensson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jessica A. Adefusika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jill A. Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (JAZ); (CRM)
| | - C. Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (JAZ); (CRM)
| |
Collapse
|
31
|
Li HT, Jiao M, Chen J, Liang Y. Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase. Acta Biochim Biophys Sin (Shanghai) 2010; 42:183-94. [PMID: 20213043 DOI: 10.1093/abbs/gmq005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural integrity of the ubiquitous enzyme copper, zinc superoxide dismutase (SOD1) depends critically on the correct coordination of zinc and copper. We investigate here the roles of the stoichiometric zinc and copper ions in modulating the oxidative refolding of reduced, denatured bovine erythrocyte SOD1 at physiological pH and room temperature. Fluorescence experiment results showed that the oxidative refolding of the demetalated SOD1 (apo-SOD1) is biphasic, and the addition of stoichiometric Zn(2+) into the refolding buffer remarkably accelerates both the fast phase and the slow phase of the oxidative refolding, compared with without Zn(2+). Aggregation of apo-SOD1 in the presence of stoichiometric Zn(2+) is remarkably slower than that in the absence of Zn(2+). In contrast, the effects of stoichiometric Cu(2+) on both the rates of the oxidative refolding and the aggregation of apo-SOD1 are not remarkable. Experiments of resistance to proteinase K showed that apo-SOD1 forms a conformation with low-level proteinase K resistance during refolding and stoichiometric Cu(2+) has no obvious effect on the resistance to proteinase K. In contrast, when the refolding buffer contains stoichiometric zinc, SOD1 forms a compact conformation with high-level proteinase K resistance during refolding. Our data here demonstrated that stoichiometric zinc plays an important role in the oxidative refolding of low micromolar bovine SOD1 by accelerating the oxidative refolding, suppressing the aggregation during refolding, and helping the protein to form a compact conformation with high protease resistance activity.
Collapse
Affiliation(s)
- Hong-Tao Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
32
|
Kerman A, Liu HN, Croul S, Bilbao J, Rogaeva E, Zinman L, Robertson J, Chakrabartty A. Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathol 2010; 119:335-44. [PMID: 20111867 DOI: 10.1007/s00401-010-0646-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a conformational disease in which misfolding and aggregation of proteins such as SOD1 (familial ALS) and TDP-43 (sporadic ALS) are central features. The conformations adopted by such proteins within motor neurons in affected patients are not well known. We have developed a novel conformation-specific antibody (USOD) targeted against SOD1 residues 42-48 that specifically recognizes SOD1 in which the beta barrel is unfolded. Use of this antibody, in conjunction with the previously described SEDI antibody that recognizes the SOD1 dimer interface, allows a detailed investigation of the in vivo conformation of SOD1 at the residue-specific level. USOD and SEDI immunohistochemistry of spinal cord sections from ALS cases resulting from SOD1 mutations (A4V and DeltaG27/P28) shows that inclusions within remaining motor neurons contain SOD1 with both an unfolded beta barrel and a disrupted dimer interface. Misfolded SOD1 can also be immunoprecipitated from spinal cord extracts of these cases using USOD. However, in ten cases of sporadic ALS, misfolded SOD1 is not detected by either immunohistochemistry or immunoprecipitation. Using the amyloid-specific dyes, Congo Red and Thioflavin S, we find that SOD1-positive inclusions in familial ALS, as well as TDP-43- and ubiquitin-positive inclusions in sporadic ALS, contain non-amyloid protein deposits. We conclude that SOD1 misfolding is not a feature of sporadic ALS, and that both SOD1-ALS and sporadic ALS, rather than being amyloid diseases, are conformational diseases that involve amorphous aggregation of misfolded protein. This knowledge will provide new insights into subcellular events that cause misfolding, aggregation and toxicity.
Collapse
Affiliation(s)
- Aaron Kerman
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, and Department of Laboratory Medicine and Pathobiology, Toronto General Hospital, TMDT 4-305, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Schmidlin T, Kennedy BK, Daggett V. Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V. Biophys J 2009; 97:1709-18. [PMID: 19751676 DOI: 10.1016/j.bpj.2009.06.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/11/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease, and the inherited form, familial ALS (fALS), has been linked to over 100 different point mutations scattered throughout the Cu-Zn superoxide dismutase protein (SOD1). The disease is likely due to a toxic gain of function caused by the misfolding, oligomerization, and eventual aggregation of mutant SOD1, but it is not yet understood how the structurally diverse mutations result in a common disease phenotype. The behavior of the apo-monomer fALS-associated mutant protein A4V was explored using molecular-dynamics simulations to elucidate characteristic structural changes to the protein that may allow the mutant form to improperly associate with other monomer subunits. Simulations showed that the mutant protein is less stable than the WT protein overall, with shifts in residue-residue contacts that lead to destabilization of the dimer and metal-binding sites, and stabilization of nonnative contacts that leads to a misfolded state. These findings provide a unifying explanation for disparate experimental observations, allow a better understanding of alterations of residue contacts that accompany loss of SOD1 structural integrity, and suggest sites where compensatory changes may stabilize the mutant structure.
Collapse
Affiliation(s)
- Tom Schmidlin
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
34
|
Abstract
Zinc is a life-sustaining trace element, serving structural, catalytic, and regulatory roles in cellular biology. It is required for normal mammalian brain development and physiology, such that deficiency or excess of zinc has been shown to contribute to alterations in behavior, abnormal central nervous system development, and neurological disease. In this light, it is not surprising that zinc ions have now been shown to play a role in the neuromodulation of synaptic transmission as well as in cortical plasticity. Zinc is stored in specific synaptic vesicles by a class of glutamatergic or "gluzinergic" neurons and is released in an activity-dependent manner. Because gluzinergic neurons are found almost exclusively in the cerebral cortex and limbic structures, zinc may be critical for normal cognitive and emotional functioning. Conversely, direct evidence shows that zinc might be a relatively potent neurotoxin. Neuronal injury secondary to in vivo zinc mobilization and release occurs in several neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis, in addition to epilepsy and ischemia. Thus, zinc homeostasis is integral to normal central nervous system functioning, and in fact its role may be underappreciated. This article provides an overview of zinc neurobiology and reviews the experimental evidence that implicates zinc signals in the pathophysiology of neuropsychiatric diseases. A greater understanding of zinc's role in the central nervous system may therefore allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
35
|
Säbel CE, Neureuther JM, Siemann S. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Anal Biochem 2009; 397:218-26. [PMID: 19854146 DOI: 10.1016/j.ab.2009.10.037] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 11/29/2022]
Abstract
Zincon (2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene) has long been known as an excellent colorimetric reagent for the detection of zinc and copper ions in aqueous solution. To extend the chelator's versatility to the quantification of metal ions in metalloproteins, the spectral properties of Zincon and its complexes with Zn(2+), Cu(2+), and Co(2+) were investigated in the presence of guanidine hydrochloride and urea, two common denaturants used to labilize metal ions in proteins. These studies revealed the detection of metals to be generally more sensitive with urea. In addition, pH profiles recorded for these metals indicated the optimal pH for complex formation and stability to be 9.0. As a consequence, an optimized method that allows the facile determination of Zn(2+), Cu(2+), and Co(2+) with detection limits in the high nanomolar range is presented. Furthermore, a simple two-step procedure for the quantification of both Zn(2+) and Cu(2+) within the same sample is described. Using the prototypical Cu(2+)/Zn(2+)-protein superoxide dismutase as an example, the effectiveness of this method of dual metal quantification in metalloproteins is demonstrated. Thus, the spectrophotometric determination of metal ions with Zincon can be exploited as a rapid and inexpensive means of assessing the metal contents of zinc-, copper-, cobalt-, and zinc/copper-containing proteins.
Collapse
Affiliation(s)
- Crystal E Säbel
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ont., Canada P3E 2C6
| | | | | |
Collapse
|
36
|
Liu HN, Sanelli T, Horne P, Pioro EP, Strong MJ, Rogaeva E, Bilbao J, Zinman L, Robertson J. Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann Neurol 2009; 66:75-80. [PMID: 19670443 DOI: 10.1002/ana.21704] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In familial amyotrophic lateral sclerosis (fALS) harboring superoxide dismutase (SOD1) mutations (fALS1), SOD1 toxicity has been linked to its propensity to misfold and aggregate. It has recently been proposed that misfolded SOD1 may be causative of all types of ALS, including sporadic cases (sALS). In the present study, we have used a specific antibody to test for the presence of monomer/misfolded SOD1 in sALS. METHODS Sections from lumbar spinal cords of 5 fALS1 cases, 13 sALS cases, and 1 non-SOD1 fALS case were labeled immunocytochemically using SOD1-exposed-dimer-interface (SEDI) antibody, which we have previously validated as being specific for pathological monomer/misfolded forms of SOD1. RESULTS Monomer/misfolded SOD1 was detected with SEDI antibody in all 5 of the fALS1 cases, localizing predominantly to hyaline conglomerate inclusions, a specific pathological feature of fALS1. In contrast, monomer/misfolded SOD1 was not detected in any of the 13 sALS cases or in the non-SOD1 fALS cases. These results were confirmed by immunoprecipitation. INTERPRETATION Although SEDI antibody does not necessarily label all misfolded forms of SOD1, these findings show a distinct difference between fALS1 and sALS, and do not support that monomer/misfolded SOD1 is a common disease entity linking all types of ALS. This is important to our understanding of ALS disease pathogenesis and to considerations of the applicability of using therapeutics that target misfolded SOD1 to non-SOD1-related cases. Ann Neurol 2009;66:75-80.
Collapse
Affiliation(s)
- Hsueh-Ning Liu
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Säbel CE, Shepherd JL, Siemann S. A direct spectrophotometric method for the simultaneous determination of zinc and cobalt in metalloproteins using 4-(2-pyridylazo)resorcinol. Anal Biochem 2009; 391:74-6. [DOI: 10.1016/j.ab.2009.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/21/2009] [Accepted: 05/02/2009] [Indexed: 10/20/2022]
|
38
|
Functional features cause misfolding of the ALS-provoking enzyme SOD1. Proc Natl Acad Sci U S A 2009; 106:9667-72. [PMID: 19497878 DOI: 10.1073/pnas.0812046106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural integrity of the ubiquitous enzyme superoxide dismutase (SOD1) relies critically on the correct coordination of Cu and Zn. Loss of these cofactors not only promotes SOD1 aggregation in vitro but also seems to be a key prerequisite for pathogenic misfolding in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We examine here the consequences of Zn(2+) loss by selectively removing the Zn site, which has been implicated as the main modulator of SOD1 stability and disease competence. After Zn-site removal, the remaining Cu ligands can coordinate a nonnative Zn(2+) ion with microM affinity in the denatured state, and then retain this ion throughout the folding reaction. Without the restriction of a metallated Zn site, however, the Cu ligands fail to correctly coordinate the nonnative Zn(2+) ion: Trapping of a water molecule causes H48 to change rotamer and swing outwards. The misligation is sterically incompatible with the native structure. As a consequence, SOD1 unfolds locally and interacts with neighboring molecules in the crystal lattice. The findings point to a critical role for the native Zn site in controlling SOD1 misfolding, and show that even subtle changes of the metal-loading sequence can render the wild-type protein the same structural properties as ALS-provoking mutations. This frustrated character of the SOD1 molecule seems to arise from a compromise between optimization of functional and structural features.
Collapse
|
39
|
Kayatekin C, Zitzewitz JA, Matthews CR. Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase. J Mol Biol 2008; 384:540-55. [PMID: 18840448 PMCID: PMC2756654 DOI: 10.1016/j.jmb.2008.09.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Over 100 amino acid replacements in human Cu,Zn superoxide dismutase (SOD) are known to cause amyotrophic lateral sclerosis, a gain-of-function neurodegenerative disease that destroys motor neurons. Supposing that aggregates of partially folded states are primarily responsible for toxicity, we determined the role of the structurally important zinc ion in defining the folding free energy surface of dimeric SOD by comparing the thermodynamic and kinetic folding properties of the zinc-free and zinc-bound forms of the protein. The presence of zinc was found to decrease the free energies of a peptide model of the unfolded monomer, a stable variant of the folded monomeric intermediate, and the folded dimeric species. The unfolded state binds zinc weakly with a micromolar dissociation constant, and the folded monomeric intermediate and the native dimeric form both bind zinc tightly, with subnanomolar dissociation constants. Coupled with the strong driving force for the subunit association reaction, the shift in the populations toward more well-folded states in the presence of zinc decreases the steady-state populations of higher-energy states in SOD under expected in vivo zinc concentrations (approximately nanomolar). The significant decrease in the population of partially folded states is expected to diminish their potential for aggregation and account for the known protective effect of zinc. The approximately 100-fold increase in the rate of folding of SOD in the presence of micromolar concentrations of zinc demonstrates a significant role for a preorganized zinc-binding loop in the transition-state ensemble for the rate-limiting monomer folding reaction in this beta-barrel protein.
Collapse
Affiliation(s)
- Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA, 01605
| | - Jill A. Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA, 01605
| | - C. Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA, 01605
| |
Collapse
|