1
|
Woodbury BM, Newcomer RL, Leroux MN, Alexandrescu AT, Teschke CM. Templated trimerization of the phage L decoration protein on capsids. Protein Sci 2025; 34:e70089. [PMID: 40100157 PMCID: PMC11917118 DOI: 10.1002/pro.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
The 134-residue phage L decoration protein (Dec) forms a capsid-stabilizing homotrimer that has an asymmetric tripod-like structure when bound to phage L capsids. The N-termini of the trimer subunits consist of spatially separated globular OB-fold domains that interact with the virions of phage L or the related phage P22. The C-termini of the trimer form a spike structure that accounts for nearly all the interactions that stabilize the trimer. A Dec mutant with the spike residues 99-134 deleted (Dec1-98) was used to demonstrate that the globular OB-fold domain folds independently of the C-terminal residues. However, Dec1-98 was unable to bind phage P22 virions, indicating the C-terminal spike is essential for stable capsid interaction. The full-length Dec trimer is disassembled into monomers by acidification to pH <2. These monomers retain the folded globular OB-fold domain structure, but the spike is unfolded. Increasing the pH of the Dec monomer solution to pH 6 allowed for slow trimer formation in vitro over the course of days. The infectious cycle of phage L is only around an hour, thereby implying Dec trimer assembly in vivo is templated by the phage capsid. The thermodynamic hypothesis holds that protein folding is determined by the amino acid sequence. Dec serves as an unusual example of an oligomeric folding step that is kinetically accelerated by a viral capsid template. The capsid templating mechanism could satisfy the flexibility needed for Dec to adapt to the unusual quasi-symmetric binding site on the mature phage L capsid.
Collapse
Affiliation(s)
- Brianna M. Woodbury
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Rebecca L. Newcomer
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Makayla N. Leroux
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Carolyn M. Teschke
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of ChemistryUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
2
|
Rawson B, Yang Q, Catalano CE, Smith DE. Single-molecule measurements of bacteriophage lambda DNA packaging using purified terminase motor proteins and E. coli integration host factor. Sci Rep 2025; 15:7093. [PMID: 40016253 PMCID: PMC11868608 DOI: 10.1038/s41598-024-74915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/27/2024] [Indexed: 03/01/2025] Open
Abstract
Biomotor-driven DNA packaging is a key step in the life cycle of many viruses. We previously developed single-molecule methods using optical tweezers to measure packaging dynamics of the bacteriophage lambda motor. The lambda system is more complex than others examined via single-molecule assays with respect to the packaging substrate and ancillary proteins required. Because of this, previous studies which efficiently detected packaging events used crude E. coli cell extracts containing host factors and the terminase packaging enzyme. However, use of extracts is suboptimal for biochemical manipulation and obfuscates interrogation of additional factors that affect the process. Here we describe an optical tweezers assay using purified lambda terminase holoenzyme. Packaging events are as efficient as with crude extracts, but only if purified E. coli integration host factor (IHF) is included in the motor assembly reactions. We find that the ATP-driven DNA translocation dynamics, motor force generation, and motor-DNA interactions without nucleotide are virtually identical to those measured with extracts. Thus, single-molecule packaging activity can be fully recapitulated in a minimal system containing only purified lambda procapsids, purified terminase, IHF, and ATP. This sets the stage for single-molecule studies to investigate additional phage proteins known to play essential roles in the packaging reaction.
Collapse
Affiliation(s)
- Brandon Rawson
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qin Yang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. Nat Commun 2024; 15:250. [PMID: 38177118 PMCID: PMC10767040 DOI: 10.1038/s41467-023-44596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Coby Y Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Tran H Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Subramanian S, Bergland Drarvik SM, Tinney KR, Parent KN. Cryo-EM structure of a Shigella podophage reveals a hybrid tail and novel decoration proteins. Structure 2024; 32:24-34.e4. [PMID: 37909043 PMCID: PMC10842012 DOI: 10.1016/j.str.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
There is a paucity of high-resolution structures of phages infecting Shigella, a human pathogen and a serious threat to global health. HRP29 is a Shigella podophage belonging to the Autographivirinae family, and has very low sequence identity to other known phages. Here, we resolved the structure of the entire HRP29 virion by cryo-EM. Phage HRP29 has a highly unusual tail that is a fusion of a T7-like tail tube and P22-like tailspikes mediated by interactions from a novel tailspike adaptor protein. Understanding phage tail structures is critical as they mediate hosts interactions. Furthermore, we show that the HRP29 capsid is stabilized by two novel, and essential decoration proteins, gp47 and gp48. Only one high resolution structure is currently available for Shigella podophages. The presence of a hybrid tail and an adapter protein suggests that it may be a product of horizontal gene transfer, and may be prevalent in other phages.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Silje M Bergland Drarvik
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kendal R Tinney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545104. [PMID: 37398449 PMCID: PMC10312762 DOI: 10.1101/2023.06.15.545104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a unique protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M. C. Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Coby Y. Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Tran H. Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Bong S, Park CB, Cho SG, Bae J, Hapsari N, Jin X, Heo S, Lee JE, Hashiya K, Bando T, Sugiyama H, Jung KH, Sung B, Jo K. AT-specific DNA visualization revisits the directionality of bacteriophage λ DNA ejection. Nucleic Acids Res 2023; 51:5634-5646. [PMID: 37158237 PMCID: PMC10287942 DOI: 10.1093/nar/gkad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
In this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid. To support our observations, we conducted computer simulations that revealed that both ends of the DNA molecule are randomized, resulting in the observed near 50% probability. Additionally, we found that the length of the ejected DNA by LIFO was consistently longer than that by First In First Out (FIFO) during in vitro phage ejection. Our simulations attributed this difference in length to the stiffness difference of the remaining DNA within the phage capsid. In conclusion, this study demonstrates that a DNA molecule within an extremely dense phage capsid exhibits a degree of mobility, allowing it to switch ends during ejection.
Collapse
Affiliation(s)
- Serang Bong
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Chung Bin Park
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Shin-Gyu Cho
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Jaeyoung Bae
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Natalia Diyah Hapsari
- Department of Chemistry, Sogang University, Seoul 04107, Korea
- Chemistry Education Program, Department of Mathematics and Science Education, Sanata Dharma University, Yogyakarta 55282, Indonesia
| | - Xuelin Jin
- Department of Chemistry, Sogang University, Seoul 04107, Korea
- College of Agriculture, Yanbian University, Yanji133000, China
| | - Sujung Heo
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Ji-eun Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto606-8502, Japan
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| |
Collapse
|
7
|
Witeof AE, McClary W, Rea LT, Yang Q, Davis MM, Funke H, Catalano C, Randolph T. Atomic-Layer Deposition Processes Applied to Phage λ and a Phage-Like Particle Platform Yield Thermostable, Single-Shot Vaccines. J Pharm Sci 2022; 111:1354-1362. [DOI: 10.1016/j.xphs.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
|
8
|
Mechanical Capsid Maturation Facilitates the Resolution of Conflicting Requirements for Herpesvirus Assembly. J Virol 2021; 96:e0183121. [PMID: 34878808 PMCID: PMC8865421 DOI: 10.1128/jvi.01831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.
Collapse
|
9
|
UL25 capsid binding facilitates mechanical maturation of the Herpesvirus capsid and allows retention of pressurized DNA. J Virol 2021; 95:e0075521. [PMID: 34346766 DOI: 10.1128/jvi.00755-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maturation process that occurs in most viruses is evolutionarily driven as it resolves several conflicting virion assembly requirements. During herpesvirus assembly in a host cell nucleus, micron-long double-stranded herpes DNA is packaged into a nanometer-sized procapsid. This leads to strong confinement of the viral genome with resulting tens of atmospheres of intra-capsid DNA pressure. Yet, the procapsid is unstable due to weak, reversible interactions between its protein subunits, which ensures free energy minimization and reduces assembly errors. In this work we show that herpesviruses resolve these contradictory capsid requirements through a mechanical capsid maturation process facilitated by multi-functional auxiliary protein UL25. Through mechanical interrogation of herpes simplex virus type 1 (HSV-1) capsid with atomic force microscopy nano-indentation, we show that UL25 binding at capsid vertices post-assembly provides the critical capsid reinforcement required for stable DNA encapsidation; the absence of UL25 binding leads to capsid rupture. Furthermore, we demonstrate that gradual capsid reinforcement is a feasible maturation mechanism facilitated by progressive UL25 capsid binding, which is likely correlated with DNA packaging progression. This work provides insight into elegantly programmed viral assembly machinery where targeting of capsid assembly mechanics presents a new antiviral strategy that is resilient to development of drug resistance. Importance: Most viruses undergo a maturation process from a weakly assembled particle to a stable virion. Herpesvirus capsid undergoes mechanical maturation to withstand tens of atmospheres of DNA pressure. We demonstrate that this mechanical capsid maturation is mainly facilitated through binding of auxiliary protein UL25 in HSV-1 capsid vertices. We show that UL25 binding provides the critical capsid reinforcement required for stable DNA encapsidation. Our data also suggests that gradual capsid reinforcement by progressive UL25 binding is a feasible capsid maturation mechanism, correlated with DNA packaging progression.
Collapse
|
10
|
Dedeo CL, Teschke CM, Alexandrescu AT. Keeping It Together: Structures, Functions, and Applications of Viral Decoration Proteins. Viruses 2020; 12:v12101163. [PMID: 33066635 PMCID: PMC7602432 DOI: 10.3390/v12101163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Decoration proteins are viral accessory gene products that adorn the surfaces of some phages and viral capsids, particularly tailed dsDNA phages. These proteins often play a "cementing" role, reinforcing capsids against accumulating internal pressure due to genome packaging, or environmental insults such as extremes of temperature or pH. Many decoration proteins serve alternative functions, including target cell recognition, participation in viral assembly, capsid size determination, or modulation of host gene expression. Examples that currently have structures characterized to high-resolution fall into five main folding motifs: β-tulip, β-tadpole, OB-fold, Ig-like, and a rare knotted α-helical fold. Most of these folding motifs have structure homologs in virus and target cell proteins, suggesting horizontal gene transfer was important in their evolution. Oligomerization states of decoration proteins range from monomers to trimers, with the latter most typical. Decoration proteins bind to a variety of loci on capsids that include icosahedral 2-, 3-, and 5-fold symmetry axes, as well as pseudo-symmetry sites. These binding sites often correspond to "weak points" on the capsid lattice. Because of their unique abilities to bind virus surfaces noncovalently, decoration proteins are increasingly exploited for technology, with uses including phage display, viral functionalization, vaccination, and improved nanoparticle design for imaging and drug delivery. These applications will undoubtedly benefit from further advances in our understanding of these versatile augmenters of viral functions.
Collapse
|
11
|
Yang Q, Catalano CE. ATP serves as a nucleotide switch coupling the genome maturation and packaging motor complexes of a virus assembly machine. Nucleic Acids Res 2020; 48:5006-5015. [PMID: 32255177 PMCID: PMC7229814 DOI: 10.1093/nar/gkaa205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
The assembly of double-stranded DNA viruses, from phages to herpesviruses, is strongly conserved. Terminase enzymes processively excise and package monomeric genomes from a concatemeric DNA substrate. The enzymes cycle between a stable maturation complex that introduces site-specific nicks into the duplex and a dynamic motor complex that rapidly translocates DNA into a procapsid shell, fueled by ATP hydrolysis. These tightly coupled reactions are catalyzed by terminase assembled into two functionally distinct nucleoprotein complexes; the maturation complex and the packaging motor complex, respectively. We describe the effects of nucleotides on the assembly of a catalytically competent maturation complex on viral DNA, their effect on maturation complex stability and their requirement for the transition to active packaging motor complex. ATP plays a major role in regulating all of these activities and may serve as a 'nucleotide switch' that mediates transitions between the two complexes during processive genome packaging. These biological processes are recapitulated in all of the dsDNA viruses that package monomeric genomes from concatemeric DNA substrates and the nucleotide switch mechanism may have broad biological implications with respect to virus assembly mechanisms.
Collapse
Affiliation(s)
- Qin Yang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlos E Catalano
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure. Nat Commun 2019; 10:4471. [PMID: 31578335 PMCID: PMC6775164 DOI: 10.1038/s41467-019-12341-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/31/2019] [Indexed: 12/21/2022] Open
Abstract
The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly. Viral capsids need to protect the genome against harsh environmental conditions and cope with high internal pressure from the packaged genome. Here, the authors determine the structure of the thermostable phage P74-26 capsid at 2.8-Å resolution and identify features underlying enhanced capsid capacity and structural stability.
Collapse
|
13
|
Ortiz D, delToro D, Ordyan M, Pajak J, Sippy J, Catala A, Oh CS, Vu A, Arya G, Feiss M, Smith DE, Catalano CE. Evidence that a catalytic glutamate and an 'Arginine Toggle' act in concert to mediate ATP hydrolysis and mechanochemical coupling in a viral DNA packaging motor. Nucleic Acids Res 2019; 47:1404-1415. [PMID: 30541105 PMCID: PMC6379665 DOI: 10.1093/nar/gky1217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role. All changes of Glu179 are lethal: non-conservative changes abrogate ATP hydrolysis and DNA translocation, while the conservative E179D change attenuates ATP hydrolysis and alters single molecule translocation dynamics, consistent with a slowed chemical hydrolysis step. Molecular dynamics simulations of several homologous terminases suggest a novel mechanism, supported by experiments, wherein the conserved Walker A arginine ‘toggles’ between interacting with a glutamate residue in the ‘lid’ subdomain and the catalytic glutamate upon ATP binding; this switch helps mediate a transition from an ‘open’ state to a ‘closed’ state that tightly binds nucleotide and DNA, and also positions the catalytic glutamate next to the γ-phosphate to align the hydrolysis transition state. Concomitant reorientation of the lid subdomain may mediate mechanochemical coupling of ATP hydrolysis and DNA translocation. Given the strong conservation of these structural elements in terminase enzymes, this mechanism may be universal for viral packaging motors.
Collapse
Affiliation(s)
- David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexis Catala
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber Vu
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Nucleocapsid Assembly of Baculoviruses. Viruses 2019; 11:v11070595. [PMID: 31266177 PMCID: PMC6669607 DOI: 10.3390/v11070595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 01/27/2023] Open
Abstract
The baculovirus nucleocapsid is formed through a rod-like capsid encapsulating a genomic DNA molecule of 80~180 kbp. The viral capsid is a large oligomer composed of many copies of various protein subunits. The assembly of viral capsids is a complex oligomerization process. The timing of expression of nucleocapsid-related proteins, transport pathways, and their interactions can affect the assembly process of preformed capsids. In addition, the selection of viral DNA and the injection of the viral genome into empty capsids are the critical steps in nucleocapsid assembly. This paper reviews the replication and recombination of baculovirus DNA, expression and transport of capsid proteins, formation of preformed capsids, DNA encapsulation, and nucleocapsid formation. This review will provide a basis for further study of the nucleocapsid assembly mechanism of baculovirus.
Collapse
|
15
|
Newcomer RL, Schrad JR, Gilcrease EB, Casjens SR, Feig M, Teschke CM, Alexandrescu AT, Parent KN. The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy. eLife 2019; 8:e45345. [PMID: 30945633 PMCID: PMC6449081 DOI: 10.7554/elife.45345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Jason R Schrad
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Michael Feig
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Carolyn M Teschke
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| |
Collapse
|
16
|
Catalano CE. Bacteriophage lambda: The path from biology to theranostic agent. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [DOI: 10.1002/wnan.1517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos E. Catalano
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of ColoradoAuroraColorado
| |
Collapse
|
17
|
Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. J Virol 2017; 91:JVI.01068-17. [PMID: 28679756 DOI: 10.1128/jvi.01068-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023] Open
Abstract
VP26 is a herpes simplex virus 1 (HSV-1) small capsomere-interacting protein. In this study, we investigated the function of VP26 in HSV-1-infected cells with the following results. (i) The VP26 null mutation significantly impaired incorporation of minor capsid protein UL25 into nucleocapsids (type C capsids) in the nucleus. (ii) The VP26 mutation caused improper localization of UL25 in discrete punctate domains containing multiple capsid proteins (e.g., the VP5 major capsid protein) in the nucleus; these domains corresponded to capsid aggregates. (iii) The VP26 mutation significantly impaired packaging of replicated viral DNA genomes into capsids but had no effect on viral DNA concatemer cleavage. (iv) The VP26 mutation reduced the frequency of type C capsids, which contain viral DNA but not scaffolding proteins, and produced an accumulation of type A capsids, which lack both viral DNA and scaffold proteins, and had no effect on accumulation of type B capsids, which lack viral DNA but retain cleaved scaffold proteins. Collectively, these results indicated that VP26 was required for efficient viral DNA packaging and proper localization of nuclear capsids. The phenotype of the VP26 null mutation was similar to that reported previously of the UL25 null mutation and of UL25 mutations that preclude UL25 binding to capsids. Thus, VP26 appeared to regulate nucleocapsid maturation by promoting incorporation of UL25 into capsids, which is likely to be required for proper capsid nuclear localization.IMPORTANCE HSV-1 VP26 has been reported to be important for viral replication and virulence in cell cultures and/or mouse models. However, little is known about the function of VP26 during HSV-1 replication, in particular, in viral nucleocapsid maturation although HSV-1 nucleocapsids are estimated to contain 900 copies of VP26. In this study, we present data suggesting that VP26 promoted packaging of HSV-1 DNA genomes into capsids by regulating incorporation of capsid protein UL25 into capsids, which was reported to increase stability of the capsid structure. We also showed that VP26 was required for proper localization of capsids in the infected cell nucleus. This is the first report showing that HSV-1 VP26 is a regulator for nucleocapsid maturation.
Collapse
|
18
|
Lambert S, Yang Q, De Angeles R, Chang JR, Ortega M, Davis C, Catalano CE. Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins. Biochemistry 2017; 56:767-778. [DOI: 10.1021/acs.biochem.6b00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shannon Lambert
- Department
of Medicinal Chemistry, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington 98195, United States
| | - Qin Yang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Mail Stop C238, Aurora, Colorado 80045, United States
| | - Rolando De Angeles
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Mail Stop C238, Aurora, Colorado 80045, United States
| | - Jenny R. Chang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Mail Stop C238, Aurora, Colorado 80045, United States
| | - Marcos Ortega
- Department
of Biology, Macalester College, St. Paul, Minnesota 55105, United States
| | - Christal Davis
- Program
in Structural Biology and Biochemistry, University of Colorado, Anschutz Medical Campus, Mail Stop C290, Aurora, Colorado 80045, United States
| | - Carlos Enrique Catalano
- Department
of Medicinal Chemistry, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Chang JR, Song EH, Nakatani-Webster E, Monkkonen L, Ratner DM, Catalano CE. Phage lambda capsids as tunable display nanoparticles. Biomacromolecules 2014; 15:4410-9. [PMID: 25319793 DOI: 10.1021/bm5011646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticle technologies provide a powerful tool for the development of reagents for use in both therapeutic and diagnostic, or "theragnostic" biomedical applications. Two broad classes of particles are under development, viral and synthetic systems, each with their respective strengths and limitations. Here we adapt the phage lambda system to construct modular "designer" nanoparticles that blend these two approaches. We have constructed a variety of modified "decoration" proteins that allow site-specific modification of the shell with both protein and nonproteinaceous ligands including small molecules, carbohydrates, and synthetic display ligands. We show that the chimeric proteins can be used to simultaneously decorate the shell in a tunable surface density to afford particles that are physically homogeneous and that can be manufactured to display a variety of ligands in a defined composition. These designer nanoparticles set the stage for development of lambda as a theragnostic nanoparticle system.
Collapse
Affiliation(s)
- Jenny R Chang
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington H-172, Health Sciences Building, Box 357610, Seattle, Washington 98195-7610, United States
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | | |
Collapse
|
21
|
Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4. Proc Natl Acad Sci U S A 2014; 111:15096-101. [PMID: 25288726 DOI: 10.1073/pnas.1407235111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral DNA packaging motors are among the most powerful molecular motors known. A variety of structural, biochemical, and single-molecule biophysical approaches have been used to understand their mechanochemistry. However, packaging initiation has been difficult to analyze because of its transient and highly dynamic nature. Here, we developed a single-molecule fluorescence assay that allowed visualization of packaging initiation and reinitiation in real time and quantification of motor assembly and initiation kinetics. We observed that a single bacteriophage T4 packaging machine can package multiple DNA molecules in bursts of activity separated by long pauses, suggesting that it switches between active and quiescent states. Multiple initiation pathways were discovered including, unexpectedly, direct DNA binding to the capsid portal followed by recruitment of motor subunits. Rapid succession of ATP hydrolysis was essential for efficient initiation. These observations have implications for the evolution of icosahedral viruses and regulation of virus assembly.
Collapse
|
22
|
Zairi M, Stiege AC, Nhiri N, Jacquet E, Tavares P. The collagen-like protein gp12 is a temperature-dependent reversible binder of SPP1 viral capsids. J Biol Chem 2014; 289:27169-27181. [PMID: 25074929 DOI: 10.1074/jbc.m114.590877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Icosahedral capsids of viruses are lattices of defined geometry and homogeneous size. The (quasi-)equivalent organization of their protein building blocks provides, in numerous systems, the binding sites to assemble arrays of viral polypeptides organized with nanometer precision that protrude from the capsid surface. The capsid of bacterial virus (bacteriophage) SPP1 exposes, at its surface, the 6.6-kDa viral polypeptide gp12 that binds to the center of hexamers of the major capsid protein. Gp12 forms an elongated trimer with collagen-like properties. This is consistent with the fold of eight internal GXY repeats of gp12 to build a stable intersubunit triple helix in a prokaryotic setting. The trimer dissociates and unfolds at near physiological temperatures, as reported for eukaryotic collagen. Its structural organization is reacquired within seconds upon cooling. Interaction with the SPP1 capsid hexamers strongly stabilizes gp12, increasing its Tm to 54 °C. Above this temperature, gp12 dissociates from its binding sites and unfolds reversibly. Multivalent binding of gp12 trimers to the capsid is highly cooperative. The capsid lattice also provides a platform to assist folding and association of unfolded gp12 polypeptides. The original physicochemical properties of gp12 offer a thermoswitchable system for multivalent binding of the polypeptide to the SPP1 capsid surface.
Collapse
Affiliation(s)
- Mohamed Zairi
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Asita C Stiege
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, and
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, and; IMAGIF CTPF and qPCR Platform, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France,.
| |
Collapse
|
23
|
Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 2014; 5:4520. [DOI: 10.1038/ncomms5520] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/26/2014] [Indexed: 12/17/2022] Open
|
24
|
Sae-Ueng U, Liu T, Catalano CE, Huffman JB, Homa FL, Evilevitch A. Major capsid reinforcement by a minor protein in herpesviruses and phage. Nucleic Acids Res 2014; 42:9096-107. [PMID: 25053840 PMCID: PMC4132744 DOI: 10.1093/nar/gku634] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex type 1 virus (HSV-1) and bacteriophage λ capsids undergo considerable structural changes during self-assembly and DNA packaging. The initial steps of viral capsid self-assembly require weak, non-covalent interactions between the capsid subunits to ensure free energy minimization and error-free assembly. In the final stages of DNA packaging, however, the internal genome pressure dramatically increases, requiring significant capsid strength to withstand high internal genome pressures of tens of atmospheres. Our data reveal that the loosely formed capsid structure is reinforced post-assembly by the minor capsid protein UL25 in HSV-1 and gpD in bacteriophage λ. Using atomic force microscopy nano-indentation analysis, we show that the capsid becomes stiffer upon binding of UL25 and gpD due to increased structural stability. At the same time the force required to break the capsid increases by ∼70% for both herpes and phage. This demonstrates a universal and evolutionarily conserved function of the minor capsid protein: facilitating the retention of the pressurized viral genome in the capsid. Since all eight human herpesviruses have UL25 orthologs, this discovery offers new opportunities to interfere with herpes replication by disrupting the precise force balance between the encapsidated DNA and the capsid proteins crucial for viral replication.
Collapse
Affiliation(s)
- Udom Sae-Ueng
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ting Liu
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carlos Enrique Catalano
- Department of Medicinal Chemistry, University of Washington School of Pharmacy, H172 Health Sciences Building, Box 357610, Seattle, WA 98195, USA
| | - Jamie B Huffman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Fred L Homa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Alex Evilevitch
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA Department of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden
| |
Collapse
|
25
|
Abstract
The marine cyanophage Syn5 can be propagated to a high titer in the laboratory on marine photosynthetic Synechococcus sp. strain WH8109. The purified particles carry a novel slender horn structure projecting from the vertex opposite the tail vertex. The genome of Syn5 includes a number of genes coding for novel proteins. Using immune-electron microscopy with gold-labeled antibodies, we show that two of these novel proteins, products of genes 53 and 54, are part of the horn structure. A third novel protein, the product of gene 58, is assembled onto the icosahedral capsid lattice. Characterization of radioactively labeled precursor procapsids by sucrose gradient centrifugation shows that there appear to be three classes of particles-procapsids, scaffold-deficient procapsids, and expanded capsids. These lack fully assembled horn appendages. The horn presumably assembles onto the virion just before or after DNA packaging. Antibodies raised to the recombinant novel Syn5 proteins did not interfere with phage infectivity, suggesting that the functions of these proteins are not directly involved in phage attachment or infection of the host WH8109. The horn structure may represent some adaption to the marine environment, whose function will require additional investigation.
Collapse
|
26
|
A Pseudo-Atomic Model for the Capsid Shell of Bacteriophage Lambda Using Chemical Cross-Linking/Mass Spectrometry and Molecular Modeling. J Mol Biol 2013; 425:3378-88. [DOI: 10.1016/j.jmb.2013.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/24/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
|
27
|
Strong subunit coordination drives a powerful viral DNA packaging motor. Proc Natl Acad Sci U S A 2013; 110:5909-14. [PMID: 23530228 DOI: 10.1073/pnas.1222820110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Terminase enzymes are viral motors that package DNA into a preformed capsid and are of interest both therapeutically and as potential nano-machines. The enzymes excise a single genome from a concatemeric precursor (genome maturation) and then package the duplex to near-crystalline density (genome packaging). The functional motors are oligomers of protomeric subunits and are the most powerful motors currently known. Here, we present mechanistic studies on the terminase motor from bacteriophage λ. We identify a mutant (K76R) that is specifically deficient in packaging activity. Biochemical analysis of this enzyme provides insight into the linkage between ATP hydrolysis and motor translocation. We further use this mutant to assemble chimeric motors with WT enzyme and characterize the catalytic activity of the complexes. The data demonstrate that strong coordination between the motor protomers is required for DNA packaging and that incorporation of even a single mutant protomer poisons motor activity. Significant coordination is similarly observed in the genome maturation reaction; however, although the motor is composed of a symmetric tetramer of protomers, the maturation complex is better described as a "dimer-of-dimers" with half-site reactivity. We describe a model for how the motor alternates between a stable genome maturation complex and a dynamic genome packaging complex. The fundamental features of coordinated ATP hydrolysis, DNA movement, and tight association between the motor and the duplex during translocation are recapitulated in all of the viral motors. This work is thus of relevance to all terminase enzymes, both prokaryotic and eukaryotic.
Collapse
|
28
|
Andrews BT, Catalano CE. The enzymology of a viral genome packaging motor is influenced by the assembly state of the motor subunits. Biochemistry 2012; 51:9342-53. [PMID: 23134123 DOI: 10.1021/bi300890y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Terminase enzymes are responsible for the excision of a single genome from a concatemeric precursor (genome maturation) and concomitant packaging of DNA into the capsid shell. Here, we demonstrate that lambda terminase can be purified as a homogeneous "protomer" species, and we present a kinetic analysis of the genome maturation and packaging activities of the protomeric enzyme. The protomer assembles into a distinct maturation complex at the cos sequence of a concatemer. This complex rapidly nicks the duplex to form the mature left end of the viral genome, which is followed by procapsid binding, activation of the packaging ATPase, and translocation of the duplex into the capsid interior by the terminase motor complex. Genome packaging by the protomer shows high fidelity with only the mature left end of the duplex inserted into the capsid shell. In sum, the data show that the terminase protomer exhibits catalytic activity commensurate with that expected of a bone fide genome maturation and packaging complex in vivo and that both catalytically competent complexes are composed of four terminase protomers assembled into a ringlike structure that encircles duplex DNA. This work provides mechanistic insight into the coordinated catalytic activities of terminase enzymes in virus assembly that can be generalized to all of the double-stranded DNA viruses.
Collapse
Affiliation(s)
- Benjamin T Andrews
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195-7610, United States
| | | |
Collapse
|
29
|
Shen X, Li M, Zeng Y, Hu X, Tan Y, Rao X, Jin X, Li S, Zhu J, Zhang K, Hu F. Functional identification of the DNA packaging terminase from Pseudomonas aeruginosa phage PaP3. Arch Virol 2012; 157:2133-41. [PMID: 23011306 PMCID: PMC3488191 DOI: 10.1007/s00705-012-1409-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022]
Abstract
Terminase proteins are responsible for DNA recognition and initiation of DNA packaging in phages. We previously reported the genomic sequence of a temperate Pseudomonas aeruginosa phage, PaP3, and determined its precise integration site in the host bacterial chromosome. In this study, we present a detailed functional identification of the DNA packaging terminase for phage PaP3. The purified large subunit p03 was demonstrated to possess ATPase and nuclease activities, as well as the ability to bind to specific DNA when it is unassembled. In addition, a small terminase subunit (p01) of a new type was found and shown to bind specifically to cos-containing DNA and stimulate the cos-cleavage and ATPase activities of p03. The results presented here suggest that PaP3 utilizes a typical cos site mechanism for DNA packaging and provide a first step towards understanding the molecular mechanism of the PaP3 DNA packaging reaction.
Collapse
Affiliation(s)
- Xiaodong Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Parent KN, Gilcrease EB, Casjens SR, Baker TS. Structural evolution of the P22-like phages: comparison of Sf6 and P22 procapsid and virion architectures. Virology 2012; 427:177-88. [PMID: 22386055 DOI: 10.1016/j.virol.2012.01.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/10/2012] [Accepted: 01/30/2012] [Indexed: 01/07/2023]
Abstract
Coat proteins of tailed, dsDNA phages and in herpesviruses include a conserved core similar to the bacteriophage HK97 subunit. This core is often embellished with other domains such as the telokin Ig-like domain of phage P22. Eighty-six P22-like phages and prophages with sequenced genomes share a similar set of virion assembly genes and, based on comparisons of twelve viral assembly proteins (structural and assembly/packaging chaperones), these phages are classified into three groups (P22-like, Sf6-like, and CUS-3-like). We used cryo-electron microscopy and 3D image reconstruction to determine the structures of Sf6 procapsids and virions (~7Å resolution), and the structure of the entire, asymmetric Sf6 virion (16-Å resolution). The Sf6 coat protein is similar to that of P22 yet it has differences in the telokin domain and in its overall quaternary organization. Thermal stability and agarose gel experiments show that Sf6 virions are slightly less stable than those of P22. Finally, bacterial host outer membrane proteins A and C were identified in lipid vesicles that co-purify with Sf6 particles, but are not components of the capsid.
Collapse
Affiliation(s)
- Kristin N Parent
- University of California, San Diego, Department of Chemistry & Biochemistry, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
31
|
Medina E, Nakatani E, Kruse S, Catalano CE. Thermodynamic characterization of viral procapsid expansion into a functional capsid shell. J Mol Biol 2012; 418:167-80. [PMID: 22365932 DOI: 10.1016/j.jmb.2012.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The assembly of "complex" DNA viruses such as the herpesviruses and many tailed bacteriophages includes a DNA packaging step where the viral genome is inserted into a preformed procapsid shell. Packaging triggers a remarkable capsid expansion transition that results in thinning of the shell and an increase in capsid volume to accept the full-length genome. This transition is considered irreversible; however, here we demonstrate that the phage λ procapsid can be expanded with urea in vitro and that the transition is fully reversible. This provides an unprecedented opportunity to evaluate the thermodynamic features of this fascinating and essential step in virus assembly. We show that urea-triggered expansion is highly cooperative and strongly temperature dependent. Thermodynamic analysis indicates that the free energy of expansion is influenced by magnesium concentration (3-13 kcal/mol in the presence of 0.2-10 mM Mg(2+)) and that significant hydrophobic surface area is exposed in the expanded shell. Conversely, Mg(2+) drives the expanded shell back to the procapsid conformation in a highly cooperative transition that is also temperature dependent and strongly influenced by urea. We demonstrate that the gpD decoration protein adds to the urea-expanded capsid, presumably at hydrophobic patches exposed at the 3-fold axes of the expanded capsid lattice. The decorated capsid is biologically active and sponsors packaging of the viral genome in vitro. The roles of divalent metal and hydrophobic interactions in controlling packaging-triggered expansion of the procapsid shell are discussed in relation to a general mechanism for DNA-triggered procapsid expansion in the complex double-stranded DNA viruses.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Medicinal Chemistry, University of Washington School of Pharmacy, H172 Health Science Building,Campus Box 357610, Seattle, WA, 98195-7610, USA
| | | | | | | |
Collapse
|
32
|
Chemla YR, Smith DE. Single-molecule studies of viral DNA packaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:549-84. [PMID: 22297530 DOI: 10.1007/978-1-4614-0980-9_24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Many double-stranded DNA bacteriophages and viruses use specialized ATP-driven molecular machines to package their genomes into tightly confined procapsid shells. Over the last decade, single-molecule approaches - and in particular, optical tweezers - have made key contributions to our understanding of this remarkable process. In this chapter, we review these advances and the insights they have provided on the packaging mechanisms of three bacteriophages: φ 29, λ, and T4.
Collapse
Affiliation(s)
- Yann R Chemla
- Department of Physics, University of Illinois, Urbana-Champaign, IL 61801, USA.
| | | |
Collapse
|
33
|
Feiss M, Rao VB. The Bacteriophage DNA Packaging Machine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:489-509. [DOI: 10.1007/978-1-4614-0980-9_22] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
35
|
Smith DE. Single-molecule studies of viral DNA packaging. Curr Opin Virol 2011; 1:134-41. [PMID: 22440623 DOI: 10.1016/j.coviro.2011.05.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022]
Abstract
Assembly of many dsDNA viruses involves packaging of DNA molecules into pre-assembled procapsids by portal molecular motor complexes. Techniques have recently been developed using optical tweezers to directly measure the packaging of single DNA molecules into single procapsids in real time and the forces generated by the molecular motor. Three different viruses, phages phi29, lambda, and T4, have been studied, revealing interesting similarities and differences in packaging dynamics. Single-molecule fluorescence methods have also been used to measure packaging kinetics and motor conformations. Here we review recent discoveries made using these new techniques.
Collapse
Affiliation(s)
- Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, United States.
| |
Collapse
|
36
|
Serwer P. A hypothesis for bacteriophage DNA packaging motors. Viruses 2010; 2:1821-1843. [PMID: 21994710 PMCID: PMC3185743 DOI: 10.3390/v2091821] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 12/29/2022] Open
Abstract
The hypothesis is presented that bacteriophage DNA packaging motors have a cycle comprised of bind/release thermal ratcheting with release-associated DNA pushing via ATP-dependent protein folding. The proposed protein folding occurs in crystallographically observed peptide segments that project into an axial channel of a protein 12-mer (connector) that serves, together with a coaxial ATPase multimer, as the entry portal. The proposed cycle begins when reverse thermal motion causes the connector’s peptide segments to signal the ATPase multimer to bind both ATP and the DNA molecule, thereby producing a dwell phase recently demonstrated by single-molecule procedures. The connector-associated peptide segments activate by transfer of energy from ATP during the dwell. The proposed function of connector/ATPase symmetry mismatches is to reduce thermal noise-induced signaling errors. After a dwell, ATP is cleaved and the DNA molecule released. The activated peptide segments push the released DNA molecule, thereby producing a burst phase recently shown to consist of four mini-bursts. The constraint of four mini-bursts is met by proposing that each mini-burst occurs via pushing by three of the 12 subunits of the connector. If all four mini-bursts occur, the cycle repeats. If the mini-bursts are not completed, a second cycle is superimposed on the first cycle. The existence of the second cycle is based on data recently obtained with bacteriophage T3. When both cycles stall, energy is diverted to expose the DNA molecule to maturation cleavage.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| |
Collapse
|
37
|
Assembly and maturation of the bacteriophage lambda procapsid: gpC is the viral protease. J Mol Biol 2010; 401:813-30. [PMID: 20620152 DOI: 10.1016/j.jmb.2010.06.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 11/24/2022]
Abstract
Viral capsids are robust structures designed to protect the genome from environmental insults and deliver it to the host cell. The developmental pathway for complex double-stranded DNA viruses is generally conserved in the prokaryotic and eukaryotic groups and includes a genome packaging step where viral DNA is inserted into a pre-formed procapsid shell. The procapsids self-assemble from monomeric precursors to afford a mature icosahedron that contains a single "portal" structure at a unique vertex; the portal serves as the hole through which DNA enters the procapsid during particle assembly and exits during infection. Bacteriophage lambda has served as an ideal model system to study the development of the large double-stranded DNA viruses. Within this context, the lambda procapsid assembly pathway has been reported to be uniquely complex involving protein cross-linking and proteolytic maturation events. In this work, we identify and characterize the protease responsible for lambda procapsid maturation and present a structural model for a procapsid-bound protease dimer. The procapsid protease possesses autoproteolytic activity, it is required for degradation of the internal "scaffold" protein required for procapsid self-assembly, and it is responsible for proteolysis of the portal complex. Our data demonstrate that these proteolytic maturation events are not required for procapsid assembly or for DNA packaging into the structure, but that proteolysis is essential to late steps in particle assembly and/or in subsequent infection of a host cell. The data suggest that the lambda-like proteases and the herpesvirus-like proteases define two distinct viral protease folds that exhibit little sequence or structural homology but that provide identical functions in virus development. The data further indicate that procapsid assembly and maturation are strongly conserved in the prokaryotic and eukaryotic virus groups.
Collapse
|
38
|
Chemla YR. Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps. Phys Chem Chem Phys 2010; 12:3080-95. [PMID: 20237694 DOI: 10.1039/b920234j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nearly all aspects of nucleic acid metabolism involve motor proteins. This diverse group of enzymes, which includes DNA and RNA polymerases, the ribosome, helicases, and other translocases, converts chemical energy in the form of bond hydrolysis into concerted motion along nucleic acid filaments. The direct observation of this motion at its fundamental distance scale of one base pair has required the development of new ultrasensitive techniques. Recent advances in optical traps have now made these length scales, once the exclusive realm of crystallographic techniques, accessible. Several new studies using optical traps have revealed for the first time how motor proteins translocate along their substrates in a stepwise fashion. Though these techniques have only begun to be applied to biological problems, the unprecedented access into nucleic acid motor protein movement has already provided important insights into their mechanism. In this perspective, we review these advances and offer our view on the future of this exciting development.
Collapse
Affiliation(s)
- Yann R Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Abstract
The herpes simplex virus protein UL25 attaches to the external vertices of herpes simplex virus type 1 capsids and is required for the stable packaging of viral DNA. To define regions of the protein important for viral replication and capsid attachment, the 580-amino-acid UL25 open reading frame was disrupted by transposon mutagenesis. The UL25 mutants were assayed for complementation of a UL25 deletion virus, and in vitro-synthesized protein was tested for binding to UL25-deficient capsids. Of the 11 mutants analyzed, 4 did not complement growth of the UL25 deletion mutant, and analysis of these and additional mutants in the capsid-binding assay demonstrated that UL25 amino acids 1 to 50 were sufficient for capsid binding. Several UL25 mutations were transferred into recombinant viruses to analyze the effect of the mutations on UL25 capsid binding and on DNA cleavage and packaging. Studies of these mutants demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids and that the C terminus is essential for DNA packaging and the production of infectious virus through its interactions with other viral packaging or tegument proteins. Analysis of viral DNA cleavage demonstrated that in the absence of a functional UL25 protein, aberrant cleavage takes place at the unique short end of the viral genome, resulting in truncated viral genomes that are not retained in capsids. Based on these observations, we propose a model where UL25 is required for the formation of DNA-containing capsids by acting to stabilize capsids that contain full-length viral genomes.
Collapse
|