1
|
Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V. Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins. Front Mol Biosci 2024; 11:1503709. [PMID: 39606035 PMCID: PMC11599742 DOI: 10.3389/fmolb.2024.1503709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The primary goal of our work is to provide structural insights into the influence of the hydrophobic lipid environment on the membrane proteins (MPs) structure and function. Our work will not cover the well-studied hydrophobic mismatch between the lipid bilayer and MPs. Instead, we will focus on the less-studied direct molecular interactions of lipids with the hydrophobic surfaces of MPs. To visualize the first layer of amphiphiles surrounding MPs and analyze their interaction with the proteins, we use the available highest-quality crystallographic structures of microbial rhodopsins. The results of the structure-based analysis allowed us to formulate the hypothetical concept of the role of the nearest layer of the lipids as an integral part of the MPs that are important for their structure and function. We then discuss how the lipid-MPs interaction is influenced by exogenous hydrophobic molecules, noble gases, which can compete with lipids for the surface of MPs and can be used in the systematic approach to verify the proposed concept experimentally. Finally, we raise the problems of currently available structural data that should be overcome to obtain a more profound picture of the lipid-MP interactions.
Collapse
Affiliation(s)
- S. Bukhdruker
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - I. Melnikov
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - C. Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - T. Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - V. Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| |
Collapse
|
2
|
Carpentier P, van der Linden P, Mueller-Dieckmann C. The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF. Acta Crystallogr D Struct Biol 2024; 80:80-92. [PMID: 38265873 PMCID: PMC10836400 DOI: 10.1107/s2059798323010707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure-temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its interactions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule-gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.
Collapse
Affiliation(s)
- Philippe Carpentier
- Université Grenoble Alpes CEA CNRS, IRIG–LCBM UMR 5249, 17 Avenue des Martyrs, 38000 Grenoble, France
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Peter van der Linden
- ESRF, PSCM (Partnership for Soft Condensed Matter), 71 Avenue des Martyrs, 38000 Grenoble, France
| | | |
Collapse
|
3
|
Kouyama T, Ihara K. Existence of two substates in the O intermediate of the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183998. [PMID: 35753392 DOI: 10.1016/j.bbamem.2022.183998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The proton pumping cycle of bacteriorhodopsin (bR) is initiated when the retinal chromophore with the 13-trans configuration is photo-isomerized into the 13-cis configuration. To understand the recovery processes of the initial retinal configuration that occur in the late stage of the photocycle, we have performed a comprehensive analysis of absorption kinetics data collected at various pH levels and at different salt concentrations. The result of analysis revealed the following features of the late stages of the trans photocycle. i) Two substates occur in the O intermediate. ii) The visible absorption band of the first substate (O1) appears at a much shorter wavelength than that of the late substate (O2). iii) O1 is in rapid equilibrium with the preceding state (N), but O1 becomes less stable than N when an ionizable residue (X1) with a pKa value of 6.5 (in 2 M KCl) is deprotonated. iv) At a low pH and at a low salt concentration, the decay time constant of O2 is longer than those of the preceding states, but the relationship between these time constants is altered when the medium pH or the salt concentration is increased. On the basis of the present observations and previous studies on the structure of the chromophore in O, we suspect that the retinal chromophore in O1 takes on a distorted 13-cis configuration and the O1-to-O2 transition is accompanied by cis-to-trans isomerization about C13C14 bond.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
High-pressure crystallography shows noble gas intervention into protein-lipid interaction and suggests a model for anaesthetic action. Commun Biol 2022; 5:360. [PMID: 35422073 PMCID: PMC9010423 DOI: 10.1038/s42003-022-03233-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
In this work we examine how small hydrophobic molecules such as inert gases interact with membrane proteins (MPs) at a molecular level. High pressure atmospheres of argon and krypton were used to produce noble gas derivatives of crystals of three well studied MPs (two different proton pumps and a sodium light-driven ion pump). The structures obtained using X-ray crystallography showed that the vast majority of argon and krypton binding sites were located on the outer hydrophobic surface of the MPs – a surface usually accommodating hydrophobic chains of annular lipids (which are known structural and functional determinants for MPs). In conformity with these results, supplementary in silico molecular dynamics (MD) analysis predicted even greater numbers of argon and krypton binding positions on MP surface within the bilayer. These results indicate a potential importance of such interactions, particularly as related to the phenomenon of noble gas-induced anaesthesia. Noble gases are known to interact with proteins and can be good anaesthetics in hyperbaric conditions. This study identifies argon and krypton binding sites on membrane proteins and proposes as a hypothesis that noble gases, by altering protein/lipid contacts, may affect protein function.
Collapse
|
5
|
Wang J, Yuan K, Wang X, Zhang L, Hu J. Influence of Krypton Gas Nanobubbles on the Activity of Pepsin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14070-14075. [PMID: 33179933 DOI: 10.1021/acs.langmuir.0c02635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fact that biologically inert gases can significantly affect the biological function of proteins still lacks a full understanding because they are usually chemically stable and weakly absorbed by biological molecules. Recently, nanobubbles were proposed to play an important role in the activity of a protein (Scientific reports 2013, 3; Scientific reports 2017, 7, 10176). In this study, we developed a controllable method to produce high-concentration krypton (Kr) gas nanobubbles in pure water and measured the concentration influence of those Kr nanobubbles on pepsin protein activity. By combining high-sensitivity synchrotron radiation X-ray fluorescence techniques with a nanoparticle tracking analysis technology, we provided strong evidence that the observed "nanoparticles" were indeed Kr nanobubbles. Activity measurements showed that the activity would be inhibited by the existence of Kr nanobubbles and could be recovered by degassing. More importantly, the inhibition extent of pepsin activity was dominated by the number of nanobubbles in solution. More nanobubbles would cause more inhibition of pepsin activity. Furthermore, the structures of pepsin could be changed by nanobubbles, which might be the reason for inhabitation of activity. Our results would provide a further understanding of the mechanisms of the biological effects of inert gases.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwei Yuan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingya Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lijuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201204, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kouyama T, Ihara K, Maki K, Chan SK. Three-Step Isomerization of the Retinal Chromophore during the Anion Pumping Cycle of Halorhodopsin. Biochemistry 2018; 57:6013-6026. [PMID: 30211543 DOI: 10.1021/acs.biochem.8b00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The anion pumping cycle of halorhodopsin from Natronomonas pharaonis ( pHR) is initiated when the all- trans/15- anti isomer of retinal is photoisomerized into the 13- cis/15- anti configuration. A recent crystallographic study suggested that a reaction state with 13- cis/15- syn retinal occurred during the anion release process, i.e., after the N state with the 13- cis/15- anti retinal and before the O state with all- trans/15- anti retinal. In this study, we investigated the retinal isomeric composition in a long-living reaction state at various bromide ion concentrations. It was found that the 13- cis isomer (csHR'), in which the absorption spectrum was blue-shifted by ∼8 nm compared with that of the trans isomer (taHR), accumulated significantly when a cold suspension of pHR-rich claret membranes in 4 M NaBr was illuminated with continuous light. Analysis of flash-induced absorption changes suggested that the branching of the trans photocycle into the 13- cis isomer (csHR') occurs during the decay of an O-like state (O') with 13- cis/15- syn retinal; i.e., O' can decay to either csHR' or O with all- trans/15- anti retinal. The efficiency of the branching reaction was found to be dependent on the bromide ion concentration. At a very high bromide ion concentration, the anion pumping cycle is described by the scheme taHR -( hν) → K → L1a ↔ L1b ↔ N ↔ N' ↔ O' ↔ csHR' ↔ taHR. At a low bromide ion concentration, on the other hand, O' decays into taHR via O.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Kunio Ihara
- Center for Gene Research , Nagoya University , Nagoya 464-8602 , Japan
| | - Kosuke Maki
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Siu Kit Chan
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| |
Collapse
|
7
|
Xenon for tunnelling analysis of the efflux pump component OprN. PLoS One 2017; 12:e0184045. [PMID: 28886086 PMCID: PMC5590881 DOI: 10.1371/journal.pone.0184045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/17/2017] [Indexed: 12/02/2022] Open
Abstract
Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN.
Collapse
|
8
|
Zhang L, Zhang Y, Cheng J, Wang L, Wang X, Zhang M, Gao Y, Hu J, Zhang X, Lü J, Li G, Tai R, Fang H. Inert Gas Deactivates Protein Activity by Aggregation. Sci Rep 2017; 7:10176. [PMID: 28860621 PMCID: PMC5579012 DOI: 10.1038/s41598-017-10678-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
Biologically inert gases play important roles in the biological functionality of proteins. However, researchers lack a full understanding of the effects of these gases since they are very chemically stable only weakly absorbed by biological tissues. By combining X-ray fluorescence, particle sizing and molecular dynamics (MD) simulations, this work shows that the aggregation of these inert gases near the hydrophobic active cavity of pepsin should lead to protein deactivation. Micro X-ray fluorescence spectra show that a pepsin solution can contain a high concentration of Xe or Kr after gassing, and that the gas concentrations decrease quickly with degassing time. Biological activity experiments indicate a reversible deactivation of the protein during this gassing and degassing. Meanwhile, the nanoparticle size measurements reveal a higher number of “nanoparticles” in gas-containing pepsin solution, also supporting the possible interaction between inert gases and the protein. Further, MD simulations indicate that gas molecules can aggregate into a tiny bubble shape near the hydrophobic active cavity of pepsin, suggesting a mechanism for reducing their biological function.
Collapse
Affiliation(s)
- Lijuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jie Cheng
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China.,Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xingya Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China.,Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yi Gao
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China.,Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China.,Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xuehua Zhang
- Soft Matter & Interfaces Group, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Junhong Lü
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China. .,Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Renzhong Tai
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Haiping Fang
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai, 201800, China. .,Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
9
|
Sauguet L, Fourati Z, Prangé T, Delarue M, Colloc'h N. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel. PLoS One 2016; 11:e0149795. [PMID: 26910105 PMCID: PMC4765991 DOI: 10.1371/journal.pone.0149795] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022] Open
Abstract
GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
| | - Zeineb Fourati
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
| | - Thierry Prangé
- Laboratoire de cristallographie et RMN biologiques (UMR 8015 CNRS), Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
- * E-mail:
| | - Nathalie Colloc'h
- CNRS, UMR 6301, ISTCT CERVOxy group, GIP Cyceron, Caen, France
- UNICAEN, Normandie Univ., UMR 6301 ISTCT, Caen, France
- CEA, DSV/I2BM, UMR 6301 ISTCT, Caen, France
| |
Collapse
|
10
|
Krypton Derivatization of an O
2
‐Tolerant Membrane‐Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport. Angew Chem Int Ed Engl 2016; 55:5586-90. [DOI: 10.1002/anie.201508976] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/17/2015] [Indexed: 01/29/2023]
|
11
|
Kalms J, Schmidt A, Frielingsdorf S, van der Linden P, von Stetten D, Lenz O, Carpentier P, Scheerer P. Ein Netzwerk aus hydrophoben Tunneln zum Transport gasförmiger Reaktanten in einer O
2
‐toleranten, membrangebundenen [NiFe]‐ Hydrogenase, aufgedeckt durch Derivatisierung mit Krypton. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jacqueline Kalms
- Institut für Medizinische Physik und Biophysik (CC2) Group Protein X-ray Crystallography and Signal Transduction Charité – Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Deutschland
| | - Andrea Schmidt
- Institut für Medizinische Physik und Biophysik (CC2) Group Protein X-ray Crystallography and Signal Transduction Charité – Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Deutschland
| | - Stefan Frielingsdorf
- Institut für Chemie, Sekr. PC14 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Peter van der Linden
- ESRF – European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 Frankreich
| | - David von Stetten
- ESRF – European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 Frankreich
| | - Oliver Lenz
- Institut für Chemie, Sekr. PC14 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Philippe Carpentier
- ESRF – European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 Frankreich
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik (CC2) Group Protein X-ray Crystallography and Signal Transduction Charité – Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Deutschland
| |
Collapse
|
12
|
Kouyama T, Kawaguchi H, Nakanishi T, Kubo H, Murakami M. Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin. Biophys J 2016; 108:2680-90. [PMID: 26039169 PMCID: PMC4457492 DOI: 10.1016/j.bpj.2015.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/15/2023] Open
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) functions as a light-driven halide ion pump. In the presence of halide ions, the photochemical reaction of pHR is described by the scheme: K→ L1 → L2 → N → O → pHR′ → pHR. Here, we report light-induced structural changes of the pHR-bromide complex observed in the C2 crystal. In the L1-to-L2 transition, the bromide ion that initially exists in the extracellular vicinity of retinal moves across the retinal Schiff base. Upon the formation of the N state with a bromide ion bound to the cytoplasmic vicinity of the retinal Schiff base, the cytoplasmic half of helix F moves outward to create a water channel in the cytoplasmic interhelical space, whereas the extracellular half of helix C moves inward. During the transition from N to an N-like reaction state with retinal assuming the 13-cis/15-syn configuration, the translocated bromide ion is released into the cytoplasmic medium. Subsequently, helix F relaxes into its original conformation, generating the O state. Anion uptake from the extracellular side occurs when helix C relaxes into its original conformation. These structural data provide insight into the structural basis of unidirectional anion transport.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan; RIKEN Harima Branch, 1-1-1, Kouto, Sayo, Hyogo, Japan.
| | - Haruki Kawaguchi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taichi Nakanishi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiroki Kubo
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Crystallographic Studies with Xenon and Nitrous Oxide Provide Evidence for Protein-dependent Processes in the Mechanisms of General Anesthesia. Anesthesiology 2014; 121:1018-27. [DOI: 10.1097/aln.0000000000000435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein–gas interactions.
Methods:
To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins.
Results:
Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other’s effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites.
Conclusions:
These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer–Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.
Collapse
|
14
|
Kouyama T, Fujii R, Kanada S, Nakanishi T, Chan SK, Murakami M. Structure of archaerhodopsin-2 at 1.8 Å resolution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2692-701. [PMID: 25286853 PMCID: PMC4188009 DOI: 10.1107/s1399004714017313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022]
Abstract
Archaerhodopsin-2 (aR2), the sole protein found in the claret membrane of Halorubrum sp. Aus-2, functions as a light-driven proton pump. In this study, structural analysis of aR2 was performed using a novel three-dimensional crystal prepared by the successive fusion of claret membranes. The crystal is made up of stacked membranes, in each of which aR2 trimers are arranged on a hexagonal lattice. This lattice structure resembles that found in the purple membrane of H. salinarum, except that lipid molecules trapped within the trimeric structure are not distributed with perfect threefold symmetry. Nonetheless, diffraction data at 1.8 Å resolution provide accurate structural information about functionally important residues. It is shown that two glutamates in the proton-release channel form a paired structure that is maintained by a low-barrier hydrogen bond. Although the structure of the proton-release pathway is highly conserved among proton-pumping archaeal rhodopsins, aR2 possesses the following peculiar structural features: (i) the motional freedom of the tryptophan residue that makes contact with the C13 methyl group of retinal is restricted, affecting the formation/decay kinetics of the L state, and (ii) the N-terminal polypeptide folds into an Ω-loop, which may play a role in organizing the higher-order structure.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, Japan
| | - Ryudo Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Soun Kanada
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taichi Nakanishi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Siu Kit Chan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Chan SK, Kitajima-Ihara T, Fujii R, Gotoh T, Murakami M, Ihara K, Kouyama T. Crystal structure of Cruxrhodopsin-3 from Haloarcula vallismortis. PLoS One 2014; 9:e108362. [PMID: 25268964 PMCID: PMC4182453 DOI: 10.1371/journal.pone.0108362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023] Open
Abstract
Cruxrhodopsin-3 (cR3), a retinylidene protein found in the claret membrane of Haloarcula vallismortis, functions as a light-driven proton pump. In this study, the membrane fusion method was applied to crystallize cR3 into a crystal belonging to space group P321. Diffraction data at 2.1 Å resolution show that cR3 forms a trimeric assembly with bacterioruberin bound to the crevice between neighboring subunits. Although the structure of the proton-release pathway is conserved among proton-pumping archaeal rhodopsins, cR3 possesses the following peculiar structural features: 1) The DE loop is long enough to interact with a neighboring subunit, strengthening the trimeric assembly; 2) Three positive charges are distributed at the cytoplasmic end of helix F, affecting the higher order structure of cR3; 3) The cytoplasmic vicinity of retinal is more rigid in cR3 than in bacteriorhodopsin, affecting the early reaction step in the proton-pumping cycle; 4) the cytoplasmic part of helix E is greatly bent, influencing the proton uptake process. Meanwhile, it was observed that the photobleaching of retinal, which scarcely occurred in the membrane state, became significant when the trimeric assembly of cR3 was dissociated into monomers in the presence of an excess amount of detergent. On the basis of these observations, we discuss structural factors affecting the photostabilities of ion-pumping rhodopsins.
Collapse
Affiliation(s)
- Siu Kit Chan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Ryudoh Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiaki Gotoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Midori Murakami
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- RIKEN Harima Institute/SPring-8, Mikazuki, Sayo, Hyogo, Japan
- * E-mail:
| |
Collapse
|
16
|
Wickstrand C, Dods R, Royant A, Neutze R. Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim Biophys Acta Gen Subj 2014; 1850:536-53. [PMID: 24918316 DOI: 10.1016/j.bbagen.2014.05.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Antoine Royant
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France; European Synchrotron Radiation Facility, F-38043 Grenoble, France.
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
17
|
Mizuno N, Makino M, Kumasaka T. A convenient tool for gas derivatization using fine-needle capillary mounting for protein crystals. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:999-1002. [PMID: 24121356 PMCID: PMC3795572 DOI: 10.1107/s0909049513021584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Gas derivatization of protein crystals is useful not only to analyse gas-binding proteins but also to solve the phase problem of X-ray crystallography by using noble gases. However, the gas pressurization tools for these experiments are often elaborate and need to release the gas before flash-cooling. To simplify this step, a procedure using a fine-needle capillary to mount and flash-cool protein crystals under the pressurization of gases has been developed. After the crystals are picked up with the capillary, the capillary is sealed with an adhesive and then connected directly to a gas regulator. The quality of the diffraction data using this method is comparable with that of data from conventional pressurization procedures. The preparation of xenon-derivatives of hen egg-white lysozyme using this method was a success. In the derivatives, two new xenon binding sites were found and one of their sites vanished by releasing the gas. This observation shows the availability of flash-cooling under gas pressurization. This procedure is simple and useful for preparing gas-derivative crystals.
Collapse
Affiliation(s)
- Nobuhiro Mizuno
- Structural Biology Group, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 6795198, Japan
| | - Masatomo Makino
- Structural Biology Group, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 6795198, Japan
| | - Takashi Kumasaka
- Structural Biology Group, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 6795198, Japan
| |
Collapse
|
18
|
Nakanishi T, Kanada S, Murakami M, Ihara K, Kouyama T. Large deformation of helix F during the photoreaction cycle of Pharaonis halorhodopsin in complex with azide. Biophys J 2013; 104:377-85. [PMID: 23442859 DOI: 10.1016/j.bpj.2012.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/08/2012] [Accepted: 12/11/2012] [Indexed: 02/01/2023] Open
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR), a retinylidene protein that functions as a light-driven chloride ion pump, is converted into a proton pump in the presence of azide ion. To clarify this conversion, we investigated light-induced structural changes in pHR using a C2 crystal that was prepared in the presence of Cl(-) and subsequently soaked in a solution containing azide ion. When the pHR-azide complex was illuminated at pH 9, a profound outward movement (∼4 Å) of the cytoplasmic half of helix F was observed in a subunit with the EF loop facing an open space. This movement created a long water channel between the retinal Schiff base and the cytoplasmic surface, along which a proton could be transported. Meanwhile, the middle moiety of helix C moved inward, leading to shrinkage of the primary anion-binding site (site I), and the azide molecule in site I was expelled out to the extracellular medium. The results suggest that the cytoplasmic half of helix F and the middle moiety of helix C act as different types of valves for active proton transport.
Collapse
|
19
|
Zhang J, Yamazaki Y, Hikake M, Murakami M, Ihara K, Kouyama T. Crystal structure of the O intermediate of the Leu93→Ala mutant of bacteriorhodopsin. Proteins 2012; 80:2384-96. [DOI: 10.1002/prot.24124] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/05/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022]
|
20
|
Luna VM, Fee JA, Deniz AA, Stout CD. Mobility of Xe atoms within the oxygen diffusion channel of cytochrome ba(3) oxidase. Biochemistry 2012; 51:4669-76. [PMID: 22607023 DOI: 10.1021/bi3003988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use a form of "freeze-trap, kinetic crystallography" to explore the migration of Xe atoms away from the dinuclear heme a(3)/Cu(B) center in Thermus thermophilus cytochrome ba(3) oxidase. This enzyme is a member of the heme-copper oxidase superfamily and is thus crucial for dioxygen-dependent life. The mechanisms involved in the migration of oxygen, water, electrons, and protons into and/or out of the specialized channels of the heme-copper oxidases are generally not well understood. Pressurization of crystals with Xe gas previously revealed a O(2) diffusion channel in cytochrome ba(3) oxidase that is continuous, Y-shaped, 18-20 Å in length and comprised of hydrophobic residues, connecting the protein surface within the bilayer to the a(3)-Cu(B) center in the active site. To understand movement of gas molecules within the O(2) channel, we performed crystallographic analysis of 19 Xe laden crystals freeze-trapped in liquid nitrogen at selected times between 0 and 480 s while undergoing outgassing at room temperature. Variation in Xe crystallographic occupancy at five discrete sites as a function of time leads to a kinetic model revealing relative degrees of mobility of Xe atoms within the channel. Xe egress occurs primarily through the channel formed by the Xe1 → Xe5 → Xe3 → Xe4 sites, suggesting that ingress of O(2) is likely to occur by the reverse of this process. The channel itself appears not to undergo significant structural changes during Xe migration, thereby indicating a passive role in this important physiological function.
Collapse
Affiliation(s)
- V Mitch Luna
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
21
|
Kanada S, Takeguchi Y, Murakami M, Ihara K, Kouyama T. Crystal structures of an O-like blue form and an anion-free yellow form of pharaonis halorhodopsin. J Mol Biol 2011; 413:162-76. [PMID: 21871461 DOI: 10.1016/j.jmb.2011.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Halorhodopsin from Natronomonas pharaonis (pHR) was previously crystallized into a monoclinic space group C2, and the structure of the chloride-bound purple form was determined. Here, we report the crystal structures of two chloride-free forms of pHR, that is, an O-like blue form and an M-like yellow form. When the C2 crystal was soaked in a chloride-free alkaline solution, the protein packing was largely altered and the yellow form containing all-trans retinal was generated. Upon neutralization, this yellow form was converted into the blue form. From structural comparison of the different forms of pHR, it was shown that the removal of a chloride ion from the primary binding site (site I), which is located between the retinal Schiff base and Thr126, is accompanied by such a deformation of helix C that the side chain of Thr126 moves toward helix G, leading to a significant shrinkage of site I. A large structural change is also induced in the chloride uptake pathway, where a flip motion of the side chain of Glu234 is accompanied by large movements of the surrounding aromatic residues. Irrespective of different charge distributions at the active site, there was no large difference in the structures of the yellow form and the blue form. It is shown that the yellow-to-purple transition is initiated by the entrance of one water and one HCl to the active site, where the proton and the chloride ion in HCl are transferred to the Schiff base and site I, respectively.
Collapse
Affiliation(s)
- Soun Kanada
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
22
|
Marassio G, Prangé T, David HN, Santos JSDO, Gabison L, Delcroix N, Abraini JH, Colloc'h N. Pressure-response analysis of anesthetic gases xenon and nitrous oxide on urate oxidase: a crystallographic study. FASEB J 2011; 25:2266-75. [PMID: 21421845 DOI: 10.1096/fj.11-183046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The remarkably safe anesthetics xenon (Xe) and, to lesser extent, nitrous oxide (N(2)O) possess neuroprotective properties in preclinical studies. To investigate the mechanisms of pharmacological action of these gases, which are still poorly known, we performed both crystallography under a large range of gas pressure and biochemical studies on urate oxidase, a prototype of globular gas-binding proteins whose activity is modulated by inert gases. We show that Xe and N(2)O bind to, compete for, and expand the volume of a hydrophobic cavity located just behind the active site of urate oxidase and further inhibit urate oxidase enzymatic activity. By demonstrating a significant relationship between the binding and biochemical effects of Xe and N(2)O, given alone or in combination, these data from structure to function highlight the mechanisms by which chemically and metabolically inert gases can alter protein function and produce their pharmacological effects. Interestingly, the effects of a Xe:N(2)O equimolar mixture were found to be equivalent to those of Xe alone, thereby suggesting that gas mixtures containing Xe and N(2)O could be an alternative and efficient neuroprotective strategy to Xe alone, whose widespread clinical use is limited due to the cost of production and availability of this gas.
Collapse
Affiliation(s)
- Guillaume Marassio
- Equipe de Recherche Technologique Interne (ERTi) 1083, Centre National de la Recherche Scientifique (CNRS), Centre Cyceron, Caen, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sasaki T, Demura M, Kato N, Mukai Y. Sensitive Detection of Protein−Lipid Interaction Change on Bacteriorhodopsin Using Dodecyl β-d-Maltoside. Biochemistry 2011; 50:2283-90. [DOI: 10.1021/bi101993s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Sasaki
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Makoto Demura
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Noritaka Kato
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Yuri Mukai
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
24
|
Kouyama T, Murakami M. Structural divergence and functional versatility of the rhodopsin superfamily. Photochem Photobiol Sci 2010; 9:1458-65. [PMID: 20931138 DOI: 10.1039/c0pp00236d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven-transmembrane-helix retinylidene proteins, which constitute the rhodopsin superfamily, have been discovered in diverse species, including Archaea, Eubacteria, fungi, algae and animals. Some members of this super-family were specialized to function as light-driven proton pumps, light-driven chloride pumps, photoisomerases, or light-gated ion channels, where the photochemical reactions are self-completed without interactions with other proteins. Other members evolved to acquire the ability to modulate soluble cytoplasmic or membrane-embedded signal transducers. During the last decade, high-resolution crystal structures were reported for ten members of the rhodopsin superfamily; viz., four proton pumps, two chloride pumps, two microbial photosensors and two visual pigments. Comparison of these structures provides us with a hint to elucidate the common structural motif that is utilized to stabilize their tertiary structures as well as unique architectures that are relevant to specific functions.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| | | |
Collapse
|
25
|
Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K. Crystal Structure of the Light-Driven Chloride Pump Halorhodopsin from Natronomonas pharaonis. J Mol Biol 2010; 396:564-79. [DOI: 10.1016/j.jmb.2009.11.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
26
|
Yamamoto M, Hayakawa N, Murakami M, Kouyama T. Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels. J Mol Biol 2009; 393:559-73. [PMID: 19712684 DOI: 10.1016/j.jmb.2009.08.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 11/16/2022]
Abstract
The hexagonal P622 crystal of bacteriorhodopsin, which is made up of stacked membranes, is stable provided that the precipitant concentration in the soaking solution is higher than a critical value (i.e., 1.5 M ammonium sulfate). Diffraction data showed that the crystal lattice shrank linearly with increasing precipitant concentration, due primarily to narrowing of intermembrane spaces. Although the crystal shrinkage did not affect the rate of formation of the photoreaction M intermediate, its lifetime increased exponentially with the precipitant concentration. It was suggested that the energetic barrier of the M-to-N transition becomes higher when the motional freedom of the EF loop is reduced by crystal lattice force. As a result of this property, the M state accumulated predominantly when the crystal that was soaked at a high precipitant concentration was illuminated at room temperature. Structural data obtained at various pH levels showed that the overall structure of M is not strongly dependent on pH, except that Glu194 and Glu204 in the proton release complex are more separated at pH 7 than at pH 4.4. This result suggests that light-induced disruption of the paired structure of Glu194 and Glu204 is incomplete when external pH is lower than the pK(a) value of the proton release group in the M state.
Collapse
Affiliation(s)
- Masataka Yamamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
27
|
Teilum K, Olsen JG, Kragelund BB. Functional aspects of protein flexibility. Cell Mol Life Sci 2009; 66:2231-47. [PMID: 19308324 PMCID: PMC11115794 DOI: 10.1007/s00018-009-0014-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 12/29/2022]
Abstract
Proteins are dynamic entities, and they possess an inherent flexibility that allows them to function through molecular interactions within the cell, among cells and even between organisms. Appreciation of the non-static nature of proteins is emerging, but to describe and incorporate this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions. The thermodynamics involved are reviewed, and examples of structure-function studies involving experimentally determined flexibility descriptions are presented. While much remains to be understood about protein flexibility, it is clear that it is encoded within their amino acid sequence and should be viewed as an integral part of their structure.
Collapse
Affiliation(s)
- Kaare Teilum
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Johan G. Olsen
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|