1
|
Feng YY, Liu JF, Xue Y, Liu D, Wu XZ. Network Pharmacology Based Elucidation of Molecular Mechanisms of Laoke Formula for Treatment of Advanced Non-Small Cell Lung Cancer. Chin J Integr Med 2024; 30:984-992. [PMID: 38941043 DOI: 10.1007/s11655-024-3717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To explore the specific pharmacological molecular mechanisms of Laoke Formula (LK) on treating advanced non-small cell lung cancer (NSCLC) based on clinical application, network pharmacology and experimental validation. METHODS Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of Chinese medicine (CM) treatment in 296 patients with NSCLC in Tianjin Medical University Cancer Institute and Hospital from January 2011 to December 2015. The compounds of LK were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the corresponding targets were performed from Swiss Target Prediction. NSCLC-related targets were obtained from Therapeutic Target Database and Comparative Toxicogenomics Database. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were used to predict the potential signaling pathways involved in the treatment of advanced NSCLC with LK. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, A549 cell proliferation and migration assay were used to evaluate the antitumor activity of LK. Western blot was used to further verify the expression of key target proteins related to the predicted pathways. RESULTS Kaplan-Meier survival analysis showed that the overall survival of the CM group was longer than that of the non-CM group (36 months vs. 26 months), and COX regression analysis showed that LK treatment was an independent favorable prognostic factor (P=0.027). Next, 97 components and 86 potential targets were included in the network pharmacology, KEGG and GO analyses, and the results indicated that LK was associated with proliferation and apoptosis. Moreover, molecular docking revealed a good binding affinity between the key ingredients and targets. In vitro, A549 cell proliferation and migration assay showed that the biological inhibition effect was more obvious with the increase of LK concentration (P<0.05). And decreased expressions of nuclear factor κB1 (NF-κB1), epidermal growth factor receptor (EGFR) and AKT serine/threonine kinase 1 (AKT1) and increased expression of p53 (P<0.05) indicated the inhibitory effect of LK on NSCLC by Western blot. CONCLUSION LK inhibits NSCLC by inhibiting EGFR/phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, NFκB signaling pathway and inducing apoptosis, which provides evidence for the therapeutic mechanism of LK to increase overall survival in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Yu Feng
- Department of Nursing, Tangshan Vocational and Technical College, Tangshan, Hebei Province, 063000, China
| | - Jin-Feng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Xue
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, 300020, China
| | - Dan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, 300060, China
| | - Xiong-Zhi Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
2
|
Thayer KM, Stetson S, Caballero F, Chiu C, Han ISM. Navigating the complexity of p53-DNA binding: implications for cancer therapy. Biophys Rev 2024; 16:479-496. [PMID: 39309126 PMCID: PMC11415564 DOI: 10.1007/s12551-024-01207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Abstract The tumor suppressor protein p53, a transcription factor playing a key role in cancer prevention, interacts with DNA as its primary means of determining cell fate in the event of DNA damage. When it becomes mutated, it opens damaged cells to the possibility of reproducing unchecked, which can lead to formation of cancerous tumors. Despite its critical role, therapies at the molecular level to restore p53 native function remain elusive, due to its complex nature. Nevertheless, considerable information has been amassed, and new means of investigating the problem have become available. Objectives We consider structural, biophysical, and bioinformatic insights and their implications for the role of direct and indirect readout and how they contribute to binding site recognition, particularly those of low consensus. We then pivot to consider advances in computational approaches to drug discovery. Materials and methods We have conducted a review of recent literature pertinent to the p53 protein. Results Considerable literature corroborates the idea that p53 is a complex allosteric protein that discriminates its binding sites not only via consensus sequence through direct H-bond contacts, but also a complex combination of factors involving the flexibility of the binding site. New computational methods have emerged capable of capturing such information, which can then be utilized as input to machine learning algorithms towards the goal of more intelligent and efficient de novo allosteric drug design. Conclusions Recent improvements in machine learning coupled with graph theory and sector analysis hold promise for advances to more intelligently design allosteric effectors that may be able to restore native p53-DNA binding activity to mutant proteins. Clinical relevance The ideas brought to light by this review constitute a significant advance that can be applied to ongoing biophysical studies of drugs for p53, paving the way for the continued development of new methodologies for allosteric drugs. Our discoveries hold promise to provide molecular therapeutics which restore p53 native activity, thereby offering new insights for cancer therapies. Graphical Abstract Structural representation of the p53 DBD (PDBID 1TUP). DNA consensus sequence is shown in gray, and the protein is shown in blue. Red beads indicate hotspot residue mutations, green beads represent DNA interacting residues, and yellow beads represent both.
Collapse
Affiliation(s)
- Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| | - Sean Stetson
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Fernando Caballero
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Christopher Chiu
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - In Sub Mark Han
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| |
Collapse
|
3
|
Liu Q, Yu Y, Wei G. Oncogenic R248W mutation induced conformational perturbation of the p53 core domain and the structural protection by proteomimetic amyloid inhibitor ADH-6. Phys Chem Chem Phys 2024; 26:20068-20086. [PMID: 39007865 DOI: 10.1039/d4cp02046d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The involvement of p53 aggregation in cancer pathogenesis emphasizes the importance of unraveling the mechanisms underlying mutation-induced p53 destabilization. And understanding how small molecule inhibitors prevent the conversion of p53 into aggregation-primed conformations is pivotal for the development of therapeutics targeting p53-aggregation-associated cancers. A recent experimental study highlights the efficacy of the proteomimetic amyloid inhibitor ADH-6 in stabilizing R248W p53 and inhibiting its aggregation in cancer cells by interacting with the p53 core domain (p53C). However, it remains mostly unclear how R248W mutation induces destabilization of p53C and how ADH-6 stabilizes this p53C mutant and inhibits its aggregation. Herein, we conducted all-atom molecular dynamics simulations of R248W p53C in the absence and presence of ADH-6, as well as that of wild-type (WT) p53C. Our simulations reveal that the R248W mutation results in a shift of helix H2 and β-hairpin S2-S2' towards the mutation site, leading to the destruction of their neighboring β-sheet structure. This further facilitates the formation of a cavity in the hydrophobic core, and reduces the stability of the β-sandwich. Importantly, two crucial aggregation-prone regions (APRs) S9 and S10 are disturbed and more exposed to solvent in R248W p53C, which is conducive to p53C aggregation. Intriguingly, ADH-6 dynamically binds to the mutation site and multiple destabilized regions in R248W p53C, partially inhibiting the shift of helix H2 and β-hairpin S2-S2', thus preventing the disruption of the β-sheets and the formation of the cavity. ADH-6 also reduces the solvent exposure of APRs S9 and S10, which disfavors the aggregation of R248W p53C. Moreover, ADH-6 can preserve the WT-like dynamical network of R248W p53C. Our study elucidates the mechanisms underlying the oncogenic R248W mutation induced p53C destabilization and the structural protection of p53C by ADH-6.
Collapse
Affiliation(s)
- Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
4
|
Balourdas DI, Markl AM, Krämer A, Settanni G, Joerger AC. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators. Cell Death Dis 2024; 15:408. [PMID: 38862470 PMCID: PMC11166945 DOI: 10.1038/s41419-024-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8-17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.
Collapse
Affiliation(s)
- Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Anja M Markl
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Giovanni Settanni
- Faculty of Physics and Astronomy, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- Physics Department, University of Mainz, Staudingerweg 7, 55099, Mainz, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Zoltsman G, Dang TL, Kuchersky M, Faust O, Silva MS, Ilani T, Wentink AS, Bukau B, Rosenzweig R. A unique chaperoning mechanism in class A JDPs recognizes and stabilizes mutant p53. Mol Cell 2024; 84:1512-1526.e9. [PMID: 38508184 DOI: 10.1016/j.molcel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified β-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the β-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP β-hairpin as a highly specific target for cancer therapeutics.
Collapse
Affiliation(s)
- Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Thi Lieu Dang
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Miriam Kuchersky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ofrah Faust
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Micael S Silva
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel.
| |
Collapse
|
6
|
Dunsche L, Ivanisenko N, Riemann S, Schindler S, Beissert S, Angeli C, Kreis S, Tavassoli M, Lavrik I, Kulms D. A cytosolic mutp53(E285K) variant confers chemoresistance of malignant melanoma. Cell Death Dis 2023; 14:831. [PMID: 38097548 PMCID: PMC10721616 DOI: 10.1038/s41419-023-06360-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Malignant melanoma (MM) is known to be intrinsically chemoresistant, even though only ~20% of MM carry mutations of the tumor suppressor p53. Despite improvement of systemic therapy the mortality rate of patients suffering from metastatic MM is still ~70%, highlighting the need for alternative treatment options or for the re-establishment of conventional therapeutic approaches, including chemotherapy. Screening the p53 mutation status in a cohort of 19 patient-derived melanoma samples, we identified one rarely described missense mutation of p53 leading to E285K amino acid exchange (mutp53(E285K)). Employing structural and computational analysis we revealed a major role of E285 residue in maintaining stable conformation of wild-type p53 (wtp53). E285K mutation was predicted to cause interruption of a salt-bridge network affecting the conformation of the C-terminal helix of the DNA-binding domain (DBD) thereby preventing DNA interaction. In this context, a cluster of frequently mutated amino acid residues in cancer was identified to putatively lead to similar structural effects as E285K substitution (E285 cluster). Functional analysis, including knockdown of endogenous p53 and reconstitution with diverse p53 missense mutants confirmed mutp53(E285K) to have lost transcriptional activity, to be localized in the cytosol of cancer cells, by both means conferring chemoresistance. Re-sensitization to cisplatin-induced cell death was achieved using clinically approved compounds aiming to restore p53 wild-type function (PRIMA1-Met), or inhibition of AKT-driven MAPK survival pathways (afuresertib), in both cases being partially due to ferroptosis induction. Consequently, active ferroptosis induction using the GPX4 inhibitor RSL3 proved superior in tumorselectively fighting MM cells. Due to high prevalence of the E285-cluster mutations in MM as well as in a variety of other tumor types, we conclude this cluster to serve an important function in tumor development and therapy and suggest new implications for ferroptosis induction in therapeutic applications fighting MM in particular and cancer in general.
Collapse
Affiliation(s)
- Luise Dunsche
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Nikita Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Shamala Riemann
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Sebastian Schindler
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
| | - Cristian Angeli
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Stephanie Kreis
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Molecular Oncology, Guy's Hospital, Kings College London, London, SE1 1UL, UK
| | - Inna Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany.
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Degn K, Beltrame L, Tiberti M, Papaleo E. PDBminer to Find and Annotate Protein Structures for Computational Analysis. J Chem Inf Model 2023; 63:7274-7281. [PMID: 37977136 DOI: 10.1021/acs.jcim.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Computational methods relying on protein structure strongly depend on the structure selected for investigation. Typical sources of protein structures include experimental structures available at the Protein Data Bank (PDB) and high-quality in silico model structures, such as those available at the AlphaFold Protein Structure Database. Either option has significant advantages and drawbacks, and exploring the wealth of available structures to identify the most suitable ones for specific applications can be a daunting task. We provide an open-source software package, PDBminer, with the purpose of making structure identification and selection easier, faster, and less error prone. PDBminer searches the AlphaFold Database and the PDB for available structures of interest and provides an up-to-date, quality-ranked table of structures applicable for further use. PDBminer provides an overview of the available protein structures to one or more input proteins, parallelizing the runs if multiple cores are specified. The output table reports the coverage of the protein structures aligned to the UniProt sequence, overcoming numbering differences in PDB structures and providing information regarding model quality, protein complexes, ligands, and nucleic acid chain binding. The PDBminer2coverage and PDBminer2network tools assist in visualizing the results. PDBminer can be applied to overcome the tedious task of choosing a PDB structure without losing the wealth of additional information available in the PDB. Here, we showcase the main functionalities of the package on the p53 tumor suppressor protein. The package is available at http://github.com/ELELAB/PDBminer.
Collapse
Affiliation(s)
- Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ludovica Beltrame
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 336] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Tanshinone IIA promotes apoptosis by downregulating BCL2 and upregulating TP53 in triple-negative breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:365-374. [PMID: 36374307 DOI: 10.1007/s00210-022-02316-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Tanshinone IIA (Tan IIA) was mainly used for cardiovascular disease treatment. Recent studies have demonstrated the role of Tan IIA for tumor treatment, but its mechanism remains unclear. At the first, the inhibitory effect of Tan IIA on 4T1 breast cancer cells was determined by CCK8 and colony formation assay. Then, a 4T1 BALB/c model of breast cancer was established to evaluate the anti-cancer effect of Tan IIA in vivo. Flow cytometry analysis and the TUNEL test were used to detect cell apoptosis in vitro and in vivo, respectively. The related targets and mechanisms of Tan IIA were predicted through network-based systems biology. At last, molecular docking and the molecular biological techniques were used to evaluate the predicted targets. Tan IIA displayed encouraging inhibitory influences on 4T1 cells after incubation for 24 h and showed a half-maximal inhibitory concentration (IC50) of 49.78 μM after 48-h incubation. After 23 days of treatment, the relative tumor volumes in the Tan IIA group were 65.53% inhibited compared with the control group. Furthermore, Tan IIA induced 4T1 cell apoptosis both in vivo and in vitro. The possible targets of Tan IIA for TNBC treatment were predicted with network-based systems biology, and results showed that TP53, NF-κB, AKT, MYC, and BCL-2 were the hub targets. The mechanism against breast cancer may be based on the P53 signaling pathway, the PI3K/Akt pathway, the MAPK signaling pathway, and the mTOR signaling pathways. Molecular docking analysis reveals that Tan IIA has a high affinity for p53, Bcl-2, and NF-κB1; the binding energies were - 6.92, - 6.07, and - 6.28 kcal/mol, respectively. The predicted proteins were further validated using Western blotting. Increased expression of phosphorylated p53 and p53 and decreased expression of Bcl-2 were found in Tan IIA-treated 4T1 cells. Tan IIA is potentially effective for the treatment of 4T1 breast cancer, and the molecular mechanism may be through enhancing the activity of p53 and decreasing Bcl-2 to suppress proliferation and promote apoptosis.
Collapse
|
10
|
Sobeh MM, Kitao A. Dissociation Pathways of the p53 DNA Binding Domain from DNA and Critical Roles of Key Residues Elucidated by dPaCS-MD/MSM. J Chem Inf Model 2022; 62:1294-1307. [PMID: 35234033 DOI: 10.1021/acs.jcim.1c01508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
p53 is a transcriptional factor that regulates cell response to a variety of stresses. About a half of all human tumors contain p53 mutations, and the accumulation of mutations in the DNA binding domain of p53 (p53-DBD) can cause destabilization of p53 and its complex with DNA. To identify the key residues of the p53-DBD/DNA binding and to understand the dissociation mechanisms of the p53-DBD/DNA complex, the dissociation process of p53-DBD from a DNA duplex that contains the consensus sequence (the specific target of p53-DBD) was investigated by a combination of dissociation parallel cascade selection molecular dynamics (dPaCS-MD) and the Markov state model (MSM). This combination (dPaCS-MD/MSM) enabled us to simulate dissociation of the two large molecules based on an all-atom model with a short simulation time (11.2 ± 2.2 ns per trial) and to analyze dissociation pathways, free energy landscape (FEL), and binding free energy. Among 75 trials of dPaCS-MD, p53-DBD dissociated first from the major groove and then detached from the minor groove in 93% of the cases, while 7% of the cases unbinding from the minor groove occurred first. Minor groove binding is mainly stabilized by R248, identified as the most important residue that tightly binds deep inside the minor groove. The standard binding free energy calculated from the FEL was -10.9 ± 0.4 kcal/mol, which agrees with an experimental value of -11.1 kcal/mol. These results indicate that the dPaCS-MD/MSM combination can be a powerful tool to investigate dissociation mechanisms of two large molecules. Analysis of the p53 key residues for DNA binding indicates high correlations with cancer-related mutations, confirming that impairment of the interactions between p53-DBD and DNA can be frequently related to cancer.
Collapse
Affiliation(s)
- Mohamed Marzouk Sobeh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Physics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
11
|
Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat Commun 2021; 12:7057. [PMID: 34862374 PMCID: PMC8642532 DOI: 10.1038/s41467-021-27142-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
In response to genotoxic stress, the tumor suppressor p53 acts as a transcription factor by regulating the expression of genes critical for cancer prevention. Mutations in the gene encoding p53 are associated with cancer development. PRIMA-1 and eprenetapopt (APR-246/PRIMA-1MET) are small molecules that are converted into the biologically active compound, methylene quinuclidinone (MQ), shown to reactivate mutant p53 by binding covalently to cysteine residues. Here, we investigate the structural basis of mutant p53 reactivation by MQ based on a series of high-resolution crystal structures of cancer-related and wild-type p53 core domains bound to MQ in their free state and in complexes with their DNA response elements. Our data demonstrate that MQ binds to several cysteine residues located at the surface of the core domain. The structures reveal a large diversity in MQ interaction modes that stabilize p53 and its complexes with DNA, leading to a common global effect that is pertinent to the restoration of non-functional p53 proteins. The tumor suppressor p53 is mutated in more than half of human cancers and the compound methylene quinuclidinone (MQ) was shown to reactivate p53 mutants by binding covalently to cysteine residues. Here, the authors present crystal structures of wild-type and cancer related p53 mutant core domains bound to MQ alone and in complex with their DNA response elements and observe that MQ is bound to several cysteine residues located at the surface of the core domain.
Collapse
|
12
|
Zhang G, Tang C, Pan L, Lü J. Low-frequency collective motion of DNA-binding domain defines p53 function. Proteins 2021; 90:881-888. [PMID: 34792219 DOI: 10.1002/prot.26283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023]
Abstract
Most mutations in the DNA-binding domain (DBD) of p53 inactivate or rescue the protein function interacting with the minor groove of DNA. However, how the conformation changes propagating from the mutation sites result in distinct molecular recognition is still not well understood. As the protein mobility is an intrinsic property encrypted in its primary structure, we examined if different structures of wild-type and mutant p53 core domains display any unique patterns of intrinsic mobility. Normal mode calculation was employed to characterize the collective dynamics of DBD in p53 monomer and tetramer as well as their mutants. Intriguingly, the low-frequency collective motions of DBD show similar patterns between the wild-type protein and the rescued mutants. The analysis on atomic backbone fluctuations and low-frequency vibration mode statistics does further support the correlation between the intrinsic collective motion of DBD and the p53 protein function. The mutations in the DBD influence the low-frequency vibration of the p53 tetramer via the change of the collective motions among its four monomers. These findings thus provide new insights for understanding the physical mechanism of p53 protein structure-function relationship and help find the small molecule drug to modulate protein dynamic for disease therapy.
Collapse
Affiliation(s)
- Guangxu Zhang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Tang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lexin Pan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Junhong Lü
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
14
|
Stein Y, Aloni-Grinstein R, Rotter V. Mutant p53 oncogenicity: dominant-negative or gain-of-function? Carcinogenesis 2021; 41:1635-1647. [PMID: 33159515 DOI: 10.1093/carcin/bgaa117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 protein is mutated in about 50% of human cancers. Aside from losing its tumor-suppressive activities, mutant p53 may acquire pro-oncogenic activity, which is facilitated by two underlying mechanisms. The first mechanism is the inhibition of co-expressed wild-type p53 (WTp53) activity, dubbed the dominant-negative effect (DNE). The second mechanism is a neomorphic pro-oncogenic activity that does not involve the inhibition of WTp53, termed gain-of-function (GOF). Throughout the years, both mechanisms were demonstrated in a plethora of in vitro and in vivo models. However, whether both account for protumorigenic activities of mutant p53 and in which contexts is still a matter of ongoing debate. Here, we discuss evidence for both DNE and GOF in a variety of models. These models suggest that both GOF and DNE can be relevant, but are highly dependent on the specific mutation type, genetic and cellular context and even the phenotype that is being assessed. In addition, we discuss how mutant and WTp53 might not exist as two separate entities, but rather as a continuum that may involve a balance between the two forms in the same cells, which could be tilted by various factors and drugs. Further elucidation of the factors that dictate the balance between the WT and mutant p53 states, as well as the factors that govern the impact of DNE and GOF in different cancer types, may lead to the development of more effective treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Yan Stein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Chen S, Wu JL, Liang Y, Tang YG, Song HX, Wu LL, Xing YF, Yan N, Li YT, Wang ZY, Xiao SJ, Lu X, Chen SJ, Lu M. Arsenic Trioxide Rescues Structural p53 Mutations through a Cryptic Allosteric Site. Cancer Cell 2021; 39:225-239.e8. [PMID: 33357454 DOI: 10.1016/j.ccell.2020.11.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/30/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
TP53 is the most frequently mutated gene in cancer, yet these mutations remain therapeutically non-actionable. Major challenges in drugging p53 mutations include heterogeneous mechanisms of inactivation and the absence of broadly applicable allosteric sites. Here we report the identification of small molecules, including arsenic trioxide (ATO), an established agent in treating acute promyelocytic leukemia, as cysteine-reactive compounds that rescue structural p53 mutations. Crystal structures of arsenic-bound p53 mutants reveal a cryptic allosteric site involving three arsenic-coordinating cysteines within the DNA-binding domain, distal to the zinc-binding site. Arsenic binding stabilizes the DNA-binding loop-sheet-helix motif alongside the overall β-sandwich fold, endowing p53 mutants with thermostability and transcriptional activity. In cellular and mouse xenograft models, ATO reactivates mutant p53 for tumor suppression. Investigation of the 25 most frequent p53 mutations informs patient stratification for clinical exploration. Our results provide a mechanistic basis for repurposing ATO to target p53 mutations for widely applicable yet personalized cancer therapies.
Collapse
Affiliation(s)
- Shuo Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jia-Le Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Gang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Xin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Li Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang-Fei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun-Tong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng-Yuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu-Jun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Functional plasticity and evolutionary adaptation of allosteric regulation. Proc Natl Acad Sci U S A 2020; 117:25445-25454. [PMID: 32999067 DOI: 10.1073/pnas.2002613117] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Allostery is a fundamental regulatory mechanism of protein function. Despite notable advances, understanding the molecular determinants of allostery remains an elusive goal. Our current knowledge of allostery is principally shaped by a structure-centric view, which makes it difficult to understand the decentralized character of allostery. We present a function-centric approach using deep mutational scanning to elucidate the molecular basis and underlying functional landscape of allostery. We show that allosteric signaling exhibits a high degree of functional plasticity and redundancy through myriad mutational pathways. Residues critical for allosteric signaling are surprisingly poorly conserved while those required for structural integrity are highly conserved, suggesting evolutionary pressure to preserve fold over function. Our results suggest multiple solutions to the thermodynamic conditions of cooperativity, in contrast to the common view of a finely tuned allosteric residue network maintained under selection.
Collapse
|
17
|
Bromley D, Daggett V. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Protein Sci 2020; 29:1983-1999. [PMID: 32715544 DOI: 10.1002/pro.3921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation-associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA-binding domain. Here, we report molecular dynamics simulations of wild-type (WT) p53 and 20 different mutants, including a stabilized pseudo-WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather than a multitude of effects specific to each mutant. In addition, α-sheet secondary structure formed in almost all of the proteins. α-Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-consideration of cancer as an amyloid disease.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
| | - Valerie Daggett
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, Petyuk VA, Savage SR, Satpathy S, Liu W, Wu Y, Tsai CF, Wen B, Li Z, Cao S, Moon J, Shi Z, Cornwell M, Wyczalkowski MA, Chu RK, Vasaikar S, Zhou H, Gao Q, Moore RJ, Li K, Sethuraman S, Monroe ME, Zhao R, Heiman D, Krug K, Clauser K, Kothadia R, Maruvka Y, Pico AR, Oliphant AE, Hoskins EL, Pugh SL, Beecroft SJI, Adams DW, Jarman JC, Kong A, Chang HY, Reva B, Liao Y, Rykunov D, Colaprico A, Chen XS, Czekański A, Jędryka M, Matkowski R, Wiznerowicz M, Hiltke T, Boja E, Kinsinger CR, Mesri M, Robles AI, Rodriguez H, Mutch D, Fuh K, Ellis MJ, DeLair D, Thiagarajan M, Mani DR, Getz G, Noble M, Nesvizhskii AI, Wang P, Anderson ML, Levine DA, Smith RD, Payne SH, Ruggles KV, Rodland KD, Ding L, Zhang B, Liu T, Fenyö D. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020; 180:729-748.e26. [PMID: 32059776 PMCID: PMC7233456 DOI: 10.1016/j.cell.2020.01.026] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/β-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily A Kawaler
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Daniel Cui Zhou
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lili Blumenberg
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Yige Wu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhi Li
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Zhou
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Qingsong Gao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sunantha Sethuraman
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David Heiman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl Clauser
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramani Kothadia
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yosef Maruvka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amanda E Oliphant
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily L Hoskins
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Samuel L Pugh
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Sean J I Beecroft
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David W Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathan C Jarman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Steven Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrzej Czekański
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Marcin Jędryka
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; University Hospital of Lord's Transfiguration, 60-569 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deborah DeLair
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Noble
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew L Anderson
- College of Medicine Obstetrics & Gynecology, University of South Florida Health, Tampa, FL 33620, USA
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kelly V Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
19
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
20
|
Valdebenito-Maturana B, Reyes-Suarez JA, Henriquez J, Holmes DS, Quatrini R, Pohl E, Arenas-Salinas M. Mutantelec: An In Silico mutation simulation platform for comparative electrostatic potential profiling of proteins. J Comput Chem 2018; 38:467-474. [PMID: 28114729 DOI: 10.1002/jcc.24712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/07/2022]
Abstract
The electrostatic potential plays a key role in many biological processes like determining the affinity of a ligand to a given protein target, and they are responsible for the catalytic activity of many enzymes. Understanding the effect that amino acid mutations will have on the electrostatic potential of a protein, will allow a thorough understanding of which residues are the most important in a protein. MutantElec, is a friendly web application for in silico generation of site-directed mutagenesis of proteins and the comparison of electrostatic potential between the wild type protein and the mutant(s), based on the three-dimensional structure of the protein. The effect of the mutation is evaluated using different approach to the traditional surface map. MutantElec provides a graphical display of the results that allows the visualization of changes occurring at close distance from the mutation and thus uncovers the local and global impact of a specific change. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Braulio Valdebenito-Maturana
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| | - Jose Antonio Reyes-Suarez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| | - Jaime Henriquez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| | - David S Holmes
- Fundación Ciencia & Vida, Santiago, 778 0272, Chile.,Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | - Ehmke Pohl
- Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom.,Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham, DH1 3LE, United Kingdom
| | - Mauricio Arenas-Salinas
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| |
Collapse
|
21
|
Verkhivker GM. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication. Biochim Biophys Acta Gen Subj 2018; 1863:210-225. [PMID: 30339916 DOI: 10.1016/j.bbagen.2018.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/06/2018] [Accepted: 10/13/2018] [Indexed: 12/19/2022]
Abstract
In the current study, we have combined molecular simulations and energetic analysis with dynamics-based network modeling and perturbation response scanning to determine molecular signatures of mutational hotspot residues in the p53, PTEN, and SMAD4 tumor suppressor proteins. By examining structure, energetics and dynamics of these proteins, we have shown that inactivating mutations preferentially target a group of structurally stable residues that play a fundamental role in global propagation of dynamic fluctuations and mediating allosteric interaction networks. Through integration of long-range perturbation dynamics and network-based approaches, we have quantified allosteric potential of residues in the studied proteins. The results have revealed that mutational hotspot sites often correspond to high centrality mediating centers of the residue interaction networks that are responsible for coordination of global dynamic changes and allosteric signaling. Our findings have also suggested that structurally stable mutational hotpots can act as major effectors of allosteric interactions and mutations in these positions are typically associated with severe phenotype. Modeling of shortest inter-residue pathways has shown that mutational hotspot sites can also serve as key mediating bridges of allosteric communication in the p53 and PTEN protein structures. Multiple regression models have indicated that functional significance of mutational hotspots can be strongly associated with the network signatures serving as robust predictors of critical regulatory positions responsible for loss-of-function phenotype. The results of this computational investigation are compared with the experimental studies and reveal molecular signatures of mutational hotspots, providing a plausible rationale for explaining and localizing disease-causing mutations in tumor suppressor genes.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Gomes AS, Trovão F, Andrade Pinheiro B, Freire F, Gomes S, Oliveira C, Domingues L, Romão MJ, Saraiva L, Carvalho AL. The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. Int J Mol Sci 2018; 19:ijms19041184. [PMID: 29652801 PMCID: PMC5979565 DOI: 10.3390/ijms19041184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Filipa Trovão
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Benedita Andrade Pinheiro
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Filipe Freire
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Sara Gomes
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carla Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Maria João Romão
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Lucília Saraiva
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Ana Luísa Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
23
|
Thayer KM, Han ISM. Chemical principles additive model aligns low consensus DNA targets of p53 tumor suppressor protein. Comput Biol Chem 2017; 68:186-193. [PMID: 28363149 DOI: 10.1016/j.compbiolchem.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Computational prediction of the interaction between protein transcription factors and their cognate DNA binding sites in genomic promoters constitutes a formidable challenge in two situations: when the number of discriminatory interactions is small compared to the length of the binding site, and when DNA binding sites possess a poorly conserved consensus binding motif. The transcription factor p53 tumor suppressor protein and its target DNA exhibit both of these issues. From crystal structure analysis, only three discriminatory amino acid side chains contact the DNA for a binding site spanning ten base pairs. Furthermore, our analysis of a dataset of genome wide fragments binding to p53 revealed many sequences lacking the expected consensus. The low information content leads to an overestimation of binding sites, and the lack of conservation equates to a computational alignment problem. Within a fragment of DNA known to bind to p53, computationally locating the position of the site equates to aligning the DNA with the binding interface. From a molecular perspective, that alignment implies a specification of which DNA bases are interacting with which amino acid side chains, and aligning many sequences to the same protein interface concomitantly produces a multiple sequence alignment. From this vantage, we propose to cast prediction of p53 binding sites as an alignment to the protein binding surface with the novel approach of optimizing the alignment of DNA fragments to the p53 binding interface based on chemical principles. A scoring scheme based on this premise was successfully implemented to score a dataset of biological DNA fragments known to contain p53 binding sites. The results illuminate the mechanism of recognition for the protein-DNA system at the forefront of cancer research. These findings implicate that p53 may recognize its target binding sites via several different mechanisms which may include indirect readout.
Collapse
Affiliation(s)
- Kelly M Thayer
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America; Department of Chemistry, Wesleyan University, Hall-Atwater Laboratories, Middletown, CT 06459, United States of America.
| | - In Sub M Han
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America
| |
Collapse
|
24
|
Thayer KM, Quinn TR. p53 R175H hydrophobic patch and H-bond reorganization observed by MD simulation. Biopolymers 2016; 105:176-85. [PMID: 26566695 DOI: 10.1002/bip.22766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 01/28/2023]
Abstract
Molecular dynamics simulations probe the origins of aberrant functionality of R175H p53, which normally prevent tumorigenesis. This hotspot mutation exhibits loss of its essential zinc cofactor, aggregation, and activation of gain of function promoters, characteristics contributing to the loss of normal p53 activity. This study provided molecular level insight into the reorganization of the hydrogen bonding network and the formation of a hydrophobic patch on the surface of the protein. The hydrogen bonding network globally redistributes at the expense of the stability of the β-sandwich structure, and surface residues reorganize to expose a 250 Å(2) hydrophobic patch of residues covering approximately 2% of the solvent accessible surface. These changes could both stabilize the protein in the conformation exposing the patch to solvent to mediate the reported aggregation, and cause a destabilization in the area associated with DNA binding residues to affect the specificity. The development of the patch prior to loss of zinc indicates that stabilizing the patch quickly may prevent zinc loss. Considerations for rational design of small molecule therapeutics in light of the structural insight has been discussed and it suggest the positive ring around the hydrophobic patch and conserved residues may constitute a druggable site.
Collapse
Affiliation(s)
- Kelly M Thayer
- Department of Chemistry, Vassar College, 124 Raymond Ave, Poughkeepsie, NY, 12604.,Department of Chemistry, Hall-Atwater Laboratories, Wesleyan University, Middletown, CT, 06459
| | - Taylor R Quinn
- Department of Chemistry, Vassar College, 124 Raymond Ave, Poughkeepsie, NY, 12604.,Department of Chemistry, University of Notre Dame, Notre Dame, IN, 46556
| |
Collapse
|
25
|
Structural Basis for p53 Lys120-Acetylation-Dependent DNA-Binding Mode. J Mol Biol 2016; 428:3013-25. [DOI: 10.1016/j.jmb.2016.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023]
|
26
|
Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem 2016; 85:375-404. [DOI: 10.1146/annurev-biochem-060815-014710] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany;
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
27
|
Koulgi S, Achalere A, Sonavane U, Joshi R. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations. PLoS One 2015; 10:e0143065. [PMID: 26579714 PMCID: PMC4651507 DOI: 10.1371/journal.pone.0143065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
The tp53 gene is found to be mutated in 50% of all the cancers. The p53 protein, a product of tp53 gene, is a multi-domain protein. It consists of a core DNA binding domain (DBD) which is responsible for its binding and transcription of downstream target genes. The mutations in p53 protein are responsible for creating cancerous conditions and are found to be occurring at a high frequency in the DBD region of p53. Some of these mutations are also known to be temperature sensitive (ts) in nature. They are known to exhibit partial or strong binding with DNA in the temperature range (298–306 K). Whereas, at 310 K and above they show complete loss in binding. We have analyzed the changes in binding and conformational behavior at 300 K and 310 K for three of the ts-mutants viz., V143A, R249S and R175H. QM-MM simulations have been performed on the wild type and the above mentioned ts-mutants for 30 ns each. The optimal estimate of free energy of binding for a particular number of interface hydrogen bonds was calculated using the maximum likelihood method as described by Chodera et. al (2007). This parameter has been observed to be able to mimic the binding affinity of the p53 ts-mutants at 300 K and 310 K. Thus the correlation between MM-GBSA free energy of binding and hydrogen bonds formed by the interface residues between p53 and DNA has revealed the temperature dependent nature of these mutants. The role of main chain dihedrals was obtained by performing dihedral principal component analysis (PCA). This analysis, suggests that the conformational variations in the main chain dihedrals (ϕ and ψ) of the p53 ts-mutants may have caused reduction in the overall stability of the protein. The solvent exposure of the side chains of the interface residues were found to hamper the binding of the p53 to the DNA. Solvent Accessible Surface Area (SASA) also proved to be a crucial property in distinguishing the conformers obtained at 300 K and 310 K for the three ts-mutants from the wild type at 300 K.
Collapse
Affiliation(s)
- Shruti Koulgi
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Archana Achalere
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Rajendra Joshi
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
- * E-mail:
| |
Collapse
|
28
|
Abstract
UNLABELLED The tumor suppressor p53 is lost or mutated in about half of all human cancers, and in those tumors in which it is wild-type, mechanisms exist to prevent its activation. p53 loss not only prevents incipient tumor cells from undergoing oncogene-induced senescence and apoptosis, but also perturbs cell-cycle checkpoints. This enables p53-deficient tumor cells with DNA damage to continue cycling, creating a permissive environment for the acquisition of additional mutations. Theoretically, this could contribute to the evolution of a cancer genome that is conducive to metastasis. Importantly, p53 loss also results in the disruption of pathways that inhibit metastasis, and transcriptionally defective TP53 mutants are known to gain additional functions that promote metastasis. Here, we review the evidence supporting a role for p53 loss or mutation in tumor metastasis, with an emphasis on breast cancer. SIGNIFICANCE The metastatic potential of tumor cells can be positively infl uenced by loss of p53 or expression of p53 gain-of-function mutants. Understanding the mechanisms by which p53 loss and mutation promote tumor metastasis is crucial to understanding the biology of tumor progression and how to appropriately apply targeted therapies.
Collapse
Affiliation(s)
- Emily Powell
- Departments of 1Cancer Biology and 2Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
29
|
Abstract
The design of a broad-spectrum cancer drug would provide enormous clinical benefits to treat cancer patients. Most of cancerous cells have a mutation in the p53 gene that results in an inactive mutant p53 protein. For this reason, p53 is a prime target for the development of a broad-spectrum cancer drug. To provide the atomic information to rationally design a drug to recover p53 activity is the main goal of the structural studies on mutant p53. We review three mechanisms that influence p53 activity and provide information about how reactivation of mutant p53 can be achieved: stabilization of the active conformation of the DNA-binding domain of the protein, suppression of missense mutations in the DNA-binding domain by a second-site mutation, and increased transactivation.
Collapse
Affiliation(s)
- Hector Viadiu
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, D.F., Mexico,
| | | | | |
Collapse
|
30
|
Huang Q, Yu L, Levine AJ, Nussinov R, Ma B. Dipeptide analysis of p53 mutations and evolution of p53 family proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:198-206. [PMID: 23583620 PMCID: PMC6429922 DOI: 10.1016/j.bbapap.2013.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/27/2013] [Accepted: 04/02/2013] [Indexed: 01/20/2023]
Abstract
p53 gain-of-function mutations are similar to driver mutations in cancer genes, with both promoting tumorigenesis. Most previous studies focused on residues lost by mutations, providing information related to a dominantly-negative effect. However, to understand gain-of-function mutations, it is also important to investigate what are the distributions of residues gained by mutations. We compile available p53/p63/p73 protein sequences and construct a non-redundant dataset. We analyze the amino acid and dipeptide composition of p53/p63/p73 proteins across evolution and compare them with the gain/loss of amino acids and dipeptides in human p53 following cancer-related somatic mutations. We find that the ratios of amino acids gained via somatic mutations during evolution to those lost through p53 cancer mutations correlate with the ratios found in single nucleotide polymorphisms in the human proteome. The dipeptide mutational gain/loss ratios are inversely correlated with those observed over p53 evolution but tend to follow the increasing p63/p73-like dipeptide propensities. We successfully simulated the p53 cancer mutation spectrum using the dipeptide composition across the p53 family accounting for the likelihood of mutations in p53 codons. The results revealed that the p53 mutation spectrum is dominated not only by p53 evolution but also by reversal of evolution to a certain degree. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Arnold J. Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Detection of TP53 R249 Mutation in Iranian Patients with Pancreatic Cancer. JOURNAL OF ONCOLOGY 2013; 2013:738915. [PMID: 24489544 PMCID: PMC3892507 DOI: 10.1155/2013/738915] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/13/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
The TP53 gene encodes tumor protein p53 which play a major role in the etiology of pancreatic cancer. The important role of codon 249 of TP53 for binding of p53 to its sequence-specific consensus site in DNA has been revealed by crystallography's studies, and mutation at this codon was detected in the plasma of some human cancers. The TP53 Mut assessor software within the International Agency for Research on Cancer (IARC) TP53 Database was performed to evaluate every possible mutation at codon 249. DNA was extracted from the plasma of 133 pancreatic cancer patients and 85 noncancer-bearing individuals. Exon 7 in TP53 was amplified, and mutation at R249 was identified by the endonuclease cleavage of HaeIII. The group of patients showed a frequency of 11% (22 of 133 samples) R249 mutation compared to 3.5% (3 of 85 samples) in the group of control which was significant (P = 0.03). This mutation demonstrated statistically significant association with pancreatic cancer risk in unadjusted odds ratio (OR: 3.74, 95% CI: 1.1–13.2; P = 0.041); however when adjusted for confounding factors, it was marginally significant because of lower control samples. These findings demonstrate that mutation at R249 of TP53 can be considered for increasing risk of pancreatic cancer that needs more research.
Collapse
|
32
|
Koulgi S, Achalere A, Sharma N, Sonavane U, Joshi R. QM-MM simulations on p53-DNA complex: a study of hot spot and rescue mutants. J Mol Model 2013; 19:5545-59. [DOI: 10.1007/s00894-013-2042-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/21/2013] [Indexed: 01/27/2023]
|
33
|
Eldar A, Rozenberg H, Diskin-Posner Y, Rohs R, Shakked Z. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Nucleic Acids Res 2013; 41:8748-59. [PMID: 23863845 PMCID: PMC3794590 DOI: 10.1093/nar/gkt630] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson-Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53.
Collapse
Affiliation(s)
- Amir Eldar
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel and Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel and Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Yael Diskin-Posner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel and Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel and Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel and Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA,*To whom correspondence should be addressed. Tel: +972 8 934 2672; Fax: +972 8 934 6278;
| |
Collapse
|
34
|
Wallentine BD, Wang Y, Tretyachenko-Ladokhina V, Tan M, Senear DF, Luecke H. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2146-56. [PMID: 24100332 PMCID: PMC3792646 DOI: 10.1107/s0907444913020830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/25/2013] [Indexed: 11/10/2022]
Abstract
To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol(-1) (15.1 kJ mol(-1)). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation.
Collapse
Affiliation(s)
- Brad D. Wallentine
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ying Wang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Martha Tan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Donald F. Senear
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697, USA
- Unidad de Biofisica (CSIC, UPV/EHU) and Departamento de Bioquimica, Universidad del Pais Vasco, 48940 Leioa, Spain
| |
Collapse
|
35
|
Cha HJ, Jang DS, Kim YG, Hong BH, Woo JS, Kim KT, Choi KY. Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase. Mol Cells 2013; 36:39-46. [PMID: 23740430 PMCID: PMC3887930 DOI: 10.1007/s10059-013-0013-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023] Open
Abstract
Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4°C, 5.1°C and 10.0°C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.
Collapse
Affiliation(s)
- Hyung Jin Cha
- Department of Life Science, Division of Molecular and Life Sciences, Division of Integrative Biosciences and Biotechnology, WCU Program, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Do Soo Jang
- Research Institute, Genexine Co., Seongnam 463-400,
Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Bee Hak Hong
- Research Institute, Genexine Co., Seongnam 463-400,
Korea
| | - Jae-Sung Woo
- Institute for Basic Science, Seoul National University, Seoul 151-742,
Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Sciences, Division of Integrative Biosciences and Biotechnology, WCU Program, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Kwan Yong Choi
- Department of Life Science, Division of Molecular and Life Sciences, Division of Integrative Biosciences and Biotechnology, WCU Program, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
36
|
Leenders GB, Tuszynski JA. Stochastic and Deterministic Models of Cellular p53 Regulation. Front Oncol 2013; 3:64. [PMID: 23565502 PMCID: PMC3613726 DOI: 10.3389/fonc.2013.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/08/2013] [Indexed: 01/15/2023] Open
Abstract
The protein p53 is a key regulator of cellular response to a wide variety of stressors. In cancer cells inhibitory regulators of p53 such as MDM2 and MDMX proteins are often overexpressed. We apply in silico techniques to better understand the role and interactions of these proteins in a cell cycle process. Furthermore we investigate the role of stochasticity in determining system behavior. We have found that stochasticity is able to affect system behavior profoundly. We also derive a general result for the way in which initially synchronized oscillating stochastic systems will fall out of synchronization with each other.
Collapse
|
37
|
Herzog G, Joerger AC, Shmueli MD, Fersht AR, Gazit E, Segal D. Evaluating Drosophila p53 as a model system for studying cancer mutations. J Biol Chem 2012; 287:44330-7. [PMID: 23135266 DOI: 10.1074/jbc.m112.417980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor p53 is a key tumor suppressor protein. In about half of human cancers, p53 is inactivated directly through mutation in its sequence-specific DNA-binding domain. Drosophila p53 (Dmp53) has similar apoptotic functions as its human homolog and is therefore an attractive model system for studying cancer pathways. To probe the structure and function of Dmp53, we studied the effect of point mutations, corresponding to cancer hot spot mutations in human p53 (Hp53), on the stability and DNA binding affinity of the full-length protein. Despite low sequence conservation, the Hp53 and Dmp53 proteins had a similar melting temperature and generally showed a similar energetic and functional response to cancer-associated mutations. We also found a correlation between the thermodynamic stability of the mutant proteins and their rate of aggregation. The effects of the mutations were rationalized based on homology modeling of the Dmp53 DNA-binding domain, suggesting that the drastically different effects of a cancer mutation in the loop-sheet-helix motif (R282W in Hp53 and R268W in Dmp53) on stability and DNA binding affinity of the two proteins are related to conformational differences in the L1 loop adjacent to the mutation site. On the basis of these data, we discuss the advantages and limitations of using Dmp53 as a model system for studying p53 function and testing p53 rescue drugs.
Collapse
Affiliation(s)
- Gal Herzog
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function.
Collapse
|
39
|
Barakat K, Issack BB, Stepanova M, Tuszynski J. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant. PLoS One 2011; 6:e27651. [PMID: 22110706 PMCID: PMC3218007 DOI: 10.1371/journal.pone.0027651] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022] Open
Abstract
Background The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to several p53 response elements at sub-physiological temperatures (298–306 K). Methodology/Principal Findings This important experimental finding motivated us to examine the effects of temperature on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules. Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective dynamics of their side-chain and backbone atoms separately. Conclusions The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced. Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a rescue strategy for the mutant structure.
Collapse
Affiliation(s)
- Khaled Barakat
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Engineering Mathematics and Physics, Fayoum University, Fayoum, Egypt
| | - Bilkiss B. Issack
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
40
|
Bornstein C, Brosh R, Molchadsky A, Madar S, Kogan-Sakin I, Goldstein I, Chakravarti D, Flores ER, Goldfinger N, Sarig R, Rotter V. SPATA18, a spermatogenesis-associated gene, is a novel transcriptional target of p53 and p63. Mol Cell Biol 2011; 31:1679-89. [PMID: 21300779 PMCID: PMC3126342 DOI: 10.1128/mcb.01072-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/29/2011] [Indexed: 12/18/2022] Open
Abstract
The transcription factor p53 functions not only to suppress tumorigenesis but also to maintain normal development and homeostasis. Although p53 was implicated in different aspects of fertility, including spermatogenesis and implantation, the mechanism underlying p53 involvement in spermatogenesis is poorly resolved. In this study we describe the identification of a spermatogenesis-associated gene, SPATA18, as a novel p53 transcriptional target and show that SPATA18 transcription is induced by p53 in a variety of cell types of both human and mouse origin. p53 binds a consensus DNA motif that resides within the first intron of SPATA18. We describe the spatiotemporal expression patterns of SPATA18 in mouse seminiferous tubules and suggest that SPATA18 transcription is regulated in vivo by p53. We also demonstrate the induction of SPATA18 by p63 and suggest that p63 can compensate for the loss of p53 activity in vivo. Our data not only enrich the known collection of p53 targets but may also provide insights on spermatogenesis defects that are associated with p53 deficiency.
Collapse
Affiliation(s)
- Chamutal Bornstein
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ran Brosh
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shalom Madar
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ira Kogan-Sakin
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Goldstein
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deepavali Chakravarti
- Department of Molecular and Cellular Oncology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Elsa R. Flores
- Department of Molecular and Cellular Oncology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
41
|
Abstract
One of the basic principles that nature uses in evolution is to recycle successful concepts and create new functions by modifying existing units. This conservatism in evolution has resulted in an astonishingly high sequence identity of genes, even between evolutionarily distant species such as the nematode Caenorhabditis elegans and Homo sapiens. The recycling of successful concepts in conjunction with gene duplication events has also led to the existence of highly homologous proteins within the genome of many species. Often, these homologous proteins show similar, yet distinct functions that, in combination with their individual tissue distribution, define their specific physiological role. One prominent example is the p53 protein family, which consists of p53, p63, and p73. Recent advances in understanding the specific biological functions of these members have shed some light onto the evolution of this crucial protein family, from a germ line-specific quality-control factor to a somatic tumor suppressor. Furthermore, structures of the oligomerization domains of the mammalian paralogs, p53 and p73, and invertebrate orthologs, CEP-1 and DMP53, have delineated evolutionary changes and revealed that the oligomerization domain of p53 lacks additional stabilizing structural elements present in all other p53 family members. This suggests that p53 is the most recent evolutionary member of this protein family and predicts a mechanism for p53 activation.
Collapse
|
42
|
Pan Y, Nussinov R. Lysine120 interactions with p53 response elements can allosterically direct p53 organization. PLoS Comput Biol 2010; 6:e1000878. [PMID: 20700496 PMCID: PMC2916859 DOI: 10.1371/journal.pcbi.1000878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 07/08/2010] [Indexed: 01/02/2023] Open
Abstract
p53 can serve as a paradigm in studies aiming to figure out how allosteric perturbations in transcription factors (TFs) triggered by small changes in DNA response element (RE) sequences, can spell selectivity in co-factor recruitment. p53-REs are 20-base pair (bp) DNA segments specifying diverse functions. They may be located near the transcription start sites or thousands of bps away in the genome. Their number has been estimated to be in the thousands, and they all share a common motif. A key question is then how does the p53 protein recognize a particular p53-RE sequence among all the similar ones? Here, representative p53-REs regulating diverse functions including cell cycle arrest, DNA repair, and apoptosis were simulated in explicit solvent. Among the major interactions between p53 and its REs involving Lys120, Arg280 and Arg248, the bps interacting with Lys120 vary while the interacting partners of other residues are less so. We observe that each p53-RE quarter site sequence has a unique pattern of interactions with p53 Lys120. The allosteric, DNA sequence-induced conformational and dynamic changes of the altered Lys120 interactions are amplified by the perturbation of other p53-DNA interactions. The combined subtle RE sequence-specific allosteric effects propagate in the p53 and in the DNA. The resulting amplified allosteric effects far away are reflected in changes in the overall p53 organization and in the p53 surface topology and residue fluctuations which play key roles in selective co-factor recruitment. As such, these observations suggest how similar p53-RE sequences can spell the preferred co-factor binding, which is the key to the selective gene transactivation and consequently different functional effects.
Collapse
Affiliation(s)
- Yongping Pan
- Basic Science Program, Science Applications International Corporation-Frederick, Inc., Center for Cancer Research Nanobiology Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Science Applications International Corporation-Frederick, Inc., Center for Cancer Research Nanobiology Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Kitayner M, Rozenberg H, Rohs R, Suad O, Rabinovich D, Honig B, Shakked Z. Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat Struct Mol Biol 2010; 17:423-9. [PMID: 20364130 DOI: 10.1038/nsmb.1800] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 03/05/2010] [Indexed: 02/06/2023]
Abstract
p53 binds as a tetramer to DNA targets consisting of two decameric half-sites separated by a variable spacer. Here we present high-resolution crystal structures of complexes between p53 core-domain tetramers and DNA targets consisting of contiguous half-sites. In contrast to previously reported p53-DNA complexes that show standard Watson-Crick base pairs, the newly reported structures show noncanonical Hoogsteen base-pairing geometry at the central A-T doublet of each half-site. Structural and computational analyses show that the Hoogsteen geometry distinctly modulates the B-DNA helix in terms of local shape and electrostatic potential, which, together with the contiguous DNA configuration, results in enhanced protein-DNA and protein-protein interactions compared to noncontiguous half-sites. Our results suggest a mechanism relating spacer length to protein-DNA binding affinity. Our findings also expand the current understanding of protein-DNA recognition and establish the structural and chemical properties of Hoogsteen base pairs as the basis for a novel mode of sequence readout.
Collapse
Affiliation(s)
- Malka Kitayner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Biochem J 2010; 427:225-36. [DOI: 10.1042/bj20091888] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To assess the potential of mutations from the L1 loop of the tumour suppressor p53 as second-site suppressors, the effect of H115N and S116M on the p53 ‘hot spot’ mutations has been investigated using the double-mutant approach. The effects of these two mutants on the p53 hot spots in terms of thermal stability and DNA binding were evaluated. The results show that: (i) the p53 mutants H115N and S116M are thermally more stable than wild-type p53; (ii) H115N but not S116M is capable of rescuing the DNA binding of one of the most frequent p53 mutants in cancer, R248Q, as shown by binding of R248Q/H115N to gadd45 (the promoter of a gene involved in cell-cycle arrest); (iii) the double mutant R248Q/H115N is more stable than wild-type p53; (iv) the effect of H115N as a second-site suppressor to restore DNA-binding activity is specific to R248Q, but not to R248W; (v) molecular-dynamics simulations indicate that R248Q/H115N has a conformation similar to wild-type p53, which is distinct from that of R248Q. These findings could be exploited in designing strategies for cancer therapy to identify molecules that could mimic the effect of H115N in restoring function to oncogenic p53 mutants.
Collapse
|
45
|
Luo SH, Zheng CS, Feng GS, Liang HM, Zhou GF, Xia XW. Expression of recombinant human adenovirus-p53 gene delivered into rabbit VX2 tumors by interventional methods. Shijie Huaren Xiaohua Zazhi 2010; 18:437-442. [DOI: 10.11569/wcjd.v18.i5.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of recombinant human adenovirus-p53 gene (rAd-p53, 1×1012 VP) delivered into rabbit VX2 tumors by interventional methods.
METHODS: Thirty New Zealand rabbits were used to establish an animal model of hepatocarcinoma by implantation of the VX2 tumors into the liver. Eleven days after implantation, magnetic resonance imaging (MRI) and computed tomography (CT) scans were performed. Successful implantation was achieved in 27 rabbits. These rabbits were randomly divided into three groups: A, B and C. Groups A and B were infused through the hepatic artery with rAd-p53 (5 × 106 VP) alone and rAd-p53 (5 × 106 VP) plus lipiodol ultra fluid (0.5 mL), respectively, while group C was injected with rAd-p53 (5 × 106 VP) into tumors by surgery. All model rabbits underwent digital subtraction angiography (DSA) during operation. The expression of P53, Bax and Bcl-2 proteins in tumor and peritumoral tissue was detected by immunohistochemistry at 24 and 72 hours and on 6 days after the operation.
RESULTS: MRI and CT scans showed that successful implantation was achieved in 27 rabbits, and the success rate was 95%. Immunohistochemical analysis indicated that P53, Bax and Bcl-2 proteins were expressed in all the three groups. The expression levels of P53 and Bax reached the peak at 72 hours. The expression levels of P53 and Bax in group C at 72 hours were significantly higher than those in groups A and B (P53: 70.3% ± 3.4% vs 62.4% ± 3.2% and 65.4% ± 2.1%; Bax: 43.7% ± 2.1% vs 35.7% ± 1.3% and 37.6% ± 2.4%, respectively; all P < 0.05). In contrast, the expression level of Bcl-2 in group C at 72 hours was significantly lower than those in groups A and B (12.0% ± 2.6% vs 18.0% ± 4.3% and 16.2% ± 3.1%, respectively; both P < 0.05).
CONCLUSION: P53 protein is expressed in rabbit VX2 tumors in a time-dependent manner. The expression level of P53 protein depends on the delivery methods used. The highest expression of P53 protein is achieved by intratumoral injection, followed by infusion of rAd-p53 plus lipiodol ultra fluid and rAd-p53 alone through the hepatic artery.
Collapse
|
46
|
Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2010; 2:a000919. [PMID: 20516128 DOI: 10.1101/cshperspect.a000919] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Even 30 years after its discovery, the tumor suppressor protein p53 is still somewhat of an enigma. p53's intimate and multifaceted role in the cell cycle is mirrored in its equally complex structural biology that is being unraveled only slowly. Here, we discuss key structural aspects of p53 function and its inactivation by oncogenic mutations. Concerted action of folded and intrinsically disordered domains of the highly dynamic p53 protein provides binding promiscuity and specificity, allowing p53 to process a myriad of cellular signals to maintain the integrity of the human genome. Importantly, progress in elucidating the structural biology of p53 and its partner proteins has opened various avenues for structure-guided rescue of p53 function in tumors. These emerging anticancer strategies include targeting mutant-specific lesions on the surface of destabilized cancer mutants with small molecules and selective inhibition of p53's degradative pathways.
Collapse
Affiliation(s)
- Andreas C Joerger
- MRC Centre for Protein Engineering, Hills Road, Cambridge, United Kingdom.
| | | |
Collapse
|
47
|
Abstract
Ample data indicate that mutant p53 proteins not only lose their tumour suppressive functions, but also gain new abilities that promote tumorigenesis. Moreover, recent studies have modified our view of mutant p53 proteins, portraying them not as inert mutants, but rather as regulated proteins that influence the cancer cell transcriptome and phenotype. This influence is clinically manifested as association of TP53 mutations with poor prognosis and drug resistance in a growing array of malignancies. Here, we review recent studies on mutant p53 regulation, gain-of-function mechanisms, transcriptional effects and prognostic association, with a focus on the clinical implications of these findings.
Collapse
Affiliation(s)
- Ran Brosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
48
|
Abstract
Among the 278,092 publications indexed into PubMed in 1979, a handful of articles stand out as the foundation of one of the most profound forays into the molecular basis of carcinogenesis: the discovery of the p53 tumour-suppressor protein. In the 30 years since then, understanding of p53 has progressed from obscure oncogene to key tumour-suppressor gene with clinical potential. Yet, p53 research has not followed a straight course. In this Historical Review, we describe how the 1979 discovery has shaped our view of the molecular basis of cancer, and identify some crucial steps ahead to transfer the wealth of knowledge accumulated on p53 into applications to cancer prevention and treatment.
Collapse
|
49
|
Buganim Y, Rotter V. p53: Balancing tumour suppression and implications for the clinic. Eur J Cancer 2009; 45 Suppl 1:217-34. [DOI: 10.1016/s0959-8049(09)70037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Pan Y, Nussinov R. Cooperativity dominates the genomic organization of p53-response elements: a mechanistic view. PLoS Comput Biol 2009; 5:e1000448. [PMID: 19629163 PMCID: PMC2705680 DOI: 10.1371/journal.pcbi.1000448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/24/2009] [Indexed: 11/18/2022] Open
Abstract
p53-response elements (p53-REs) are organized as two repeats of a palindromic DNA segment spaced by 0 to 20 base pairs (bp). Several experiments indicate that in the vast majority of the human p53-REs there are no spacers between the two repeats; those with spacers, particularly with sizes beyond two nucleotides, are rare. This raises the question of what it indicates about the factors determining the p53-RE genomic organization. Clearly, given the double helical DNA conformation, the orientation of two p53 core domain dimers with respect to each other will vary depending on the spacer size: a small spacer of 0 to 2 bps will lead to the closest p53 dimer-dimer orientation; a 10-bp spacer will locate the p53 dimers on the same DNA face but necessitate DNA looping; while a 5-bp spacer will position the p53 dimers on opposite DNA faces. Here, via conformational analysis we show that when there are 0-2 bp spacers, p53-DNA binding is cooperative; however, cooperativity is greatly diminished when there are spacers with sizes beyond 2 bp. Cooperative binding is broadly recognized to be crucial for biological processes, including transcriptional regulation. Our results clearly indicate that cooperativity of the p53-DNA association dominates the genomic organization of the p53-REs, raising questions of the structural organization and functional roles of p53-REs with larger spacers. We further propose that a dynamic landscape scenario of p53 and p53-REs can better explain the selectivity of the degenerate p53-REs. Our conclusions bear on the evolutionary preference of the p53-RE organization and as such, are expected to have broad implications to other multimeric transcription factor response element organization.
Collapse
Affiliation(s)
- Yongping Pan
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|