1
|
Verdan R, Patricio B, Weismuller G, Miranda K, de Souza W, Benchimol M, Gadelha AP. Characterization of a new extra-axonemal structure in the Giardia intestinalis flagella. J Struct Biol 2024; 216:108064. [PMID: 38280689 DOI: 10.1016/j.jsb.2024.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
The inner structure of the flagella of Giardia intestinalis is similar to that of other organisms, consisting of nine pairs of outer microtubules and a central pair containing radial spokes. Although the 9+2 axonemal structure is conserved, it is not clear whether subregions, including the transition zone, are present in the flagella of this parasite. Giardia axonemes originate from basal bodies and have a lengthy cytosolic portion before becoming active flagella. The region of the emergence of the flagellum is not accompanied by any membrane specialization, as seen in other protozoa. Although Giardia is an intriguing model of study, few works focused on the ultrastructural analysis of the flagella of this parasite. Here, we analyzed the externalization region of the G. intestinalis flagella using ultra-high resolution scanning microscopy (with electrons and ions), atomic force microscopy in liquid medium, freeze fracture, and electron tomography. Our data show that this region possesses a distinctive morphological feature - it extends outward and takes on a ring-like shape. When the plasma membrane is removed, a structure surrounding the axoneme becomes visible in this region. This new extra-axonemal structure is observed in all pairs of flagella of trophozoites and remains attached to the axoneme even when the interconnections between the axonemal microtubules are disrupted. High-resolution scanning electron microscopy provided insights into the arrangement of this structure, contributing to the characterization of the externalization region of the flagella of this parasite.
Collapse
Affiliation(s)
- Raphael Verdan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Patricio
- Instituto Biomédico, Universidade Federal do Estado Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weismuller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem e Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem e Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem e Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro, RJ, Brazil
| | - Ana Paula Gadelha
- Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro, RJ, Brazil; Diretoria de Metrologia Científica e Industrial, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Morita-Baylis-Hillman adducts derived from thymol: synthesis, in silico studies and biological activity against Giardia lamblia. Mol Divers 2021; 26:1969-1982. [PMID: 34482477 DOI: 10.1007/s11030-021-10308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Giardiasis is a neglected disease, and there is a need for new molecules with less side effects and better activity against resistant strains. This work describes the evaluation of the giardicidal activity of thymol derivatives produced from the Morita-Baylis-Hillman reaction. Thymol acrylate was reacted with different aromatic aldehydes, using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalyst. Eleven adducts (8 of them unpublished) with yields between 58 and 80% were obtained from this reaction, which were adequately characterized. The in silico prediction showed theoretical bioavailability after oral administration as well as antiparasitic activity against Giardia lamblia. Compound 4 showed better biological activity against G. lamblia. In addition to presenting antigiardial activity 24 times better than thymol, this MBHA was obtained in a short reaction time (3 h) with a yield (80%) superior to the other investigated molecules. The molecule was more active than the precursors (thymol and MBHA 12) and did not show cytotoxicity against HEK-293 or HT-29 cells. In conclusion, this study presents a new class of drugs with better antigiardial activity in relation to thymol, acting as a basis for the synthesis of new bioactive molecules. Molecular hybridization technique combined with the Morita-Baylis-Hillman reaction provided new thymol derivatives with giardicidal activity superior to the precursor molecules.
Collapse
|
3
|
Abstract
Giardia intestinalis, the causative agent of giardiasis, has complex cytoskeleton organization with structures involved in motility, adhesion, cell division, and cell differentiation. Microtubules are key components of the cytoskeleton and are the main elements of the ventral disc, median body, funis, in addition to four pairs of flagella. These cytoskeletal elements are basically stable microtubule arrangements. Although tubulins are the main proteins of these elements, molecular and biochemical analyses of Giardia trophozoites have revealed the presence of several new and not yet characterized proteins in these structures, which may contribute to their nanoarchitecture (mainly in the ventral disc). Despite these findings, morphological data are still required for understanding the organization and biogenesis of the cytoskeletal structures. In the study of this complex and specialized network of filaments in Giardia, two distinct and complementary approaches have been used in recent years: (a) transmission electron microscopy tomography of conventionally processed as well as cryo-fixed samples and (b) high-resolution scanning electron microscopy and helium ion microscopy in combination with new plasma membrane extraction protocols. In this review we include the most recent studies that have allowed better understanding of new Giardia components and their association with other filamentous structures of this parasite, thus providing new insights in the role of the cytoskeletal structures and their function in Giardia trophozoites.
Collapse
|
4
|
Emery-Corbin SJ, Grüttner J, Svärd S. Transcriptomic and proteomic analyses of Giardia intestinalis: Intestinal epithelial cell interactions. ADVANCES IN PARASITOLOGY 2019; 107:139-171. [PMID: 32122528 DOI: 10.1016/bs.apar.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia intestinalis is a unicellular protozoan parasite that infects the small intestines of humans and animals. Giardiasis, the disease caused by the parasite, occurs globally across socioeconomic boundaries but is mainly endemic in developing countries and particularly within young children, where pronounced effects manifests in a failure to thrive condition. The molecular pathogenesis of Giardia has been studied using in vitro models of human and rat intestinal epithelial cells (IECs) and parasites from the two major human genotypes or assemblages (A and B). High-quality, genome sequencing of representative isolates from assemblages A (WB) and B (GS) has enabled exploration of these host-parasite models using 'omics' technologies, allowing deep and quantitative analyses of global gene expression changes in IECs and parasites during their interactions, cross-talk and competition. These include a major up-regulation of immune-related genes in the IECs early after the start of interactions, as well as competition between host cells and parasites for nutrients like sugars, amino acids and lipids, which is also reflected in their secretome interactions. Unique parasite proteins dominate these interactions, with many major up-regulated genes being either hypothetical proteins or members of Giardia-specific gene families like the high-cysteine-rich membrane proteins (HCMPs), variable surface proteins (VSPs), alpha-giardins and cysteine proteases. Furthermore, these proteins also dominate in the secretomes, suggesting that they are important virulence factors in Giardia and crucial molecular effectors at the host-parasite interface.
Collapse
Affiliation(s)
- Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Emery SJ, Baker L, Ansell BRE, Mirzaei M, Haynes PA, McConville MJ, Svärd SG, Jex AR. Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis. Gigascience 2018; 7:4931738. [PMID: 29688452 PMCID: PMC5913674 DOI: 10.1093/gigascience/giy024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/06/2018] [Indexed: 01/20/2023] Open
Abstract
Background Metronidazole (Mtz) is the frontline drug treatment for multiple anaerobic pathogens, including the gastrointestinal protist, Giardia duodenalis. However, treatment failure is common and linked to in vivo drug resistance. In Giardia, in vitro drug-resistant lines allow controlled experimental interrogation of resistance mechanisms in isogenic cultures. However, resistance-associated changes are inconsistent between lines, phenotypic data are incomplete, and resistance is rarely genetically fixed, highlighted by reversion to sensitivity after drug selection ceases or via passage through the life cycle. Comprehensive quantitative approaches are required to resolve isolate variability, fully define Mtz resistance phenotypes, and explore the role of post-translational modifications therein. Findings We performed quantitative proteomics to describe differentially expressed proteins in 3 seminal Mtz-resistant lines compared to their isogenic, Mtz-susceptible, parental line. We also probed changes in post-translational modifications including protein acetylation, methylation, ubiquitination, and phosphorylation via immunoblotting. We quantified more than 1,000 proteins in each genotype, recording substantial genotypic variation in differentially expressed proteins between isotypes. Our data confirm substantial changes in the antioxidant network, glycolysis, and electron transport and indicate links between protein acetylation and Mtz resistance, including cross-resistance to deacetylase inhibitor trichostatin A in Mtz-resistant lines. Finally, we performed the first controlled, longitudinal study of Mtz resistance stability, monitoring lines after cessation of drug selection, revealing isolate-dependent phenotypic plasticity. Conclusions Our data demonstrate understanding that Mtz resistance must be broadened to post-transcriptional and post-translational responses and that Mtz resistance is polygenic, driven by isolate-dependent variation, and is correlated with changes in protein acetylation networks.
Collapse
Affiliation(s)
- Samantha J Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Brendan R E Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Paul A Haynes
- Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, North Ryde, NSW, Australia
| | - Malcom J McConville
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Aaron R Jex
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Comparative Cell Biology and Evolution of Annexins in Diplomonads. mSphere 2016; 1:mSphere00032-15. [PMID: 27303715 PMCID: PMC4863580 DOI: 10.1128/msphere.00032-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
Annexins are proteins that associate with phospholipids in a Ca2+-dependent fashion. These proteins have been intensely studied in animals and plants because of their importance in diverse cellular processes, yet very little is known about annexins in single-celled eukaryotes, which represent the largest diversity of organisms. The human intestinal parasite Giardia intestinalis is known to have more annexins than humans, and they contribute to its pathogenic potential. In this study, we investigated the annexin complement in the salmon pathogen Spironucleus salmonicida, a relative of G. intestinalis. We found that S. salmonicida has a large repertoire of annexins and that the gene family has expanded separately across diplomonads, with members showing sequence diversity similar to that seen across kingdom-level groups such as plants and animals. S. salmonicida annexins are prominent components of the cytoskeleton and membrane. Two annexins are associated with a previously unrecognized structure in the anterior of the cell. Annexins are multifunctional, calcium-binding proteins found in organisms across all kingdoms. Most studies of annexins from single-celled eukaryotes have focused on the alpha-giardins, proteins assigned to the group E annexins, expressed by the diplomonad Giardia intestinalis. We have characterized the annexin gene family in another diplomonad parasite, Spironucleus salmonicida, by phylogenetic and experimental approaches. We constructed a comprehensive phylogeny of the diplomonad group E annexins and found that they are abundant across the group with frequent gene duplications and losses. The annexins of S. salmonicida were found to be related to alpha-giardins but with better-preserved type II Ca2+ coordination sites. Two annexins were confirmed to bind phospholipids in a Ca2+-dependent fashion but with different specificities. Superresolution and confocal microscopy of epitope-tagged S. salmonicida annexins revealed localization to distinct parts of the cytoskeleton and membrane. The ultrastructural details of the localization of several annexins were determined by proximity labeling and transmission electron microscopy. Two annexins localize to a novel cytoskeletal structure in the anterior of the cell. Our results show that the annexin gene family is expanded in diplomonads and that these group E annexins are associated mostly with cytoskeletal and membrane structures. IMPORTANCE Annexins are proteins that associate with phospholipids in a Ca2+-dependent fashion. These proteins have been intensely studied in animals and plants because of their importance in diverse cellular processes, yet very little is known about annexins in single-celled eukaryotes, which represent the largest diversity of organisms. The human intestinal parasite Giardia intestinalis is known to have more annexins than humans, and they contribute to its pathogenic potential. In this study, we investigated the annexin complement in the salmon pathogen Spironucleus salmonicida, a relative of G. intestinalis. We found that S. salmonicida has a large repertoire of annexins and that the gene family has expanded separately across diplomonads, with members showing sequence diversity similar to that seen across kingdom-level groups such as plants and animals. S. salmonicida annexins are prominent components of the cytoskeleton and membrane. Two annexins are associated with a previously unrecognized structure in the anterior of the cell.
Collapse
|
7
|
Leow CY, Willis C, Osman A, Mason L, Simon A, Smith BJ, Gasser RB, Jones MK, Hofmann A. Crystal structure and immunological properties of the first annexin from Schistosoma mansoni: insights into the structural integrity of the schistosomal tegument. FEBS J 2014; 281:1209-25. [PMID: 24428567 DOI: 10.1111/febs.12700] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
Abstract
Schistosomiasis is a major parasitic disease of humans, second only to malaria in its global impact. The disease is caused by digenean trematodes that infest the vasculature of their human hosts. These flukes are limited externally by a body wall composed of a syncytial epithelium, the apical surface membrane of which is a parasitism-adapted dual membrane complex. Annexins are thought to be of integral importance for the stability of this apical membrane system. Here, we present the first structural and immunobiochemical characterization of an annexin from Schistosoma mansoni. The crystal structure of annexin B22 confirms the presence of the previously predicted α-helical segment in the II/III linker and reveals a covalently linked head-to-head dimer. From the calcium-bound crystal structure of this protein, canonical type II, type III and B site positions are occupied, and a novel binding site has been identified. The dimer arrangement observed in the crystal structure suggests the presence of two prominent features, a potential non-canonical membrane binding site and a potential binding groove opposite to the former. Results from transcriptional profiling during development show that annexin B22 expression is correlated with life stages of the parasite that possess the syncytial tegument layer, and ultrastructural localization by immuno-electron microscopy confirms the occurrence of annexins in the tegument of S. mansoni. Data from membrane binding and aggregation assays indicate the presence of differential molecular mechanisms and support the hypothesis of annexin B22 providing structural integrity in the tegument.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- School of Veterinary Science, University of Queensland, Gatton, Australia; Queensland Institute of Medical Research, Herston, Australia; Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim J, Lee HY, Lee MA, Yong TS, Lee KH, Park SJ. Identification of α-11 giardin as a flagellar and surface component of Giardia lamblia. Exp Parasitol 2013; 135:227-33. [PMID: 23891940 DOI: 10.1016/j.exppara.2013.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
Giardia lamblia is a protozoan pathogen with distinct cytoskeletal structures, including median bodies and eight flagella. In this study, we examined components comprising G. lamblia flagella. Crude flagellar extracts were prepared from G. lamblia trophozoites, and analyzed by two-dimensional (2-D) gel electrophoresis. The 19 protein spots were analyzed by MALDI-TOF mass spectrometry, identifying ten metabolic enzymes, six distinct giardins, Giardia trophozoite antigen 1, translational initiation factor eIF-4A, and an extracellular signal-regulated kinase 2. Among the identified proteins, we studied α-11 giardin which belongs to a group of cytoskeletal proteins specific to Giardia. Western blot analysis and real-time PCR indicated that expression of α-11 giardin is not significantly increased during encystation of G. lamblia. Immunofluorescence assays using anti-α-11 giardin antibodies revealed that α-11 giardin protein mainly localized to the plasma membranes and basal bodies of the anterior flagella of G. lamblia trophozoites, suggesting that α-11 giardin is a genuine component of the G. lamblia cytoskeleton.
Collapse
Affiliation(s)
- Juri Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, The Post Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Weeratunga SK, Osman A, Hu NJ, Wang CK, Mason L, Svärd S, Hope G, Jones MK, Hofmann A. Alpha-1 giardin is an annexin with highly unusual calcium-regulated mechanisms. J Mol Biol 2012; 423:169-81. [PMID: 22796298 DOI: 10.1016/j.jmb.2012.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Alpha-giardins constitute the annexin proteome (group E annexins) in the intestinal protozoan parasite Giardia and, as such, represent the evolutionary oldest eukaryotic annexins. The dominance of alpha-giardins in the cytoskeleton of Giardia with its greatly reduced actin content emphasises the importance of the alpha-giardins for the structural integrity of the parasite, which is particularly critical in the transformation stage between cyst and trophozoite. In this study, we report the crystal structures of the apo- and calcium-bound forms of α1-giardin, a protein localised to the plasma membrane of Giardia trophozoites that has recently been identified as a vaccine target. The calcium-bound crystal structure of α1-giardin revealed the presence of a type III site in the first repeat as known from other annexin structures, as well as a novel calcium binding site situated between repeats I and IV. By means of comparison, the crystal structures of three different alpha-giardins known to date indicate that these proteins engage different calcium coordination schemes, among each other, as well as compared to annexins of groups A-D. Evaluation of the calcium-dependent binding to acidic phosphoplipid membranes revealed that this process is not only mediated but also regulated by the environmental calcium concentration. Uniquely within the large family of annexins, α1-giardin disengages from the phospholipid membrane at high calcium concentrations possibly due to formation of a dimeric species. The observed behaviour is in line with changing calcium levels experienced by the parasite during excystation and may thus provide first insights into the molecular mechanisms underpinning the transformation and survival of the parasite in the host.
Collapse
Affiliation(s)
- Saroja K Weeratunga
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hofmann A, Osman A, Leow CY, Driguez P, McManus DP, Jones MK. Parasite annexins--new molecules with potential for drug and vaccine development. Bioessays 2011; 32:967-76. [PMID: 21105292 DOI: 10.1002/bies.200900195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few years, annexins have been discovered in several nematodes and other parasites, and distinct differences between the parasite annexins and those of the hosts make them potentially attractive targets for anti-parasite therapeutics. Annexins are ubiquitous proteins found in almost all organisms across all kingdoms.Here, we present an overview of novel annexins from parasitic organisms, and summarize their phylogenetic and biochemical properties, with a view to using them as drug or vaccine targets. Building on structural and biological information that has been accumulated for mammalian and plant annexins, we describe a predicted additional secondary structure element found in many parasite annexins that may confer unique functional properties, and present a specific antigenic epitope for use as a vaccine.
Collapse
Affiliation(s)
- Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Wei CJ, Tian XF, Adam RD, Lu SQ. Giardia lamblia: Intracellular localization of alpha8-giardin. Exp Parasitol 2010; 126:489-96. [DOI: 10.1016/j.exppara.2010.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
|
12
|
|
13
|
Munteanu CR, Vázquez JM, Dorado J, Sierra AP, Sánchez-González Á, Prado-Prado FJ, González-Díaz H. Complex Network Spectral Moments for ATCUN Motif DNA Cleavage: First Predictive Study on Proteins of Human Pathogen Parasites. J Proteome Res 2009; 8:5219-28. [DOI: 10.1021/pr900556g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristian R. Munteanu
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - José M. Vázquez
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Julián Dorado
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Alejandro Pazos Sierra
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Ángeles Sánchez-González
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Francisco J. Prado-Prado
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Humberto González-Díaz
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| |
Collapse
|
14
|
Dual acylation accounts for the localization of {alpha}19-giardin in the ventral flagellum pair of Giardia lamblia. EUKARYOTIC CELL 2009; 8:1567-74. [PMID: 19684283 DOI: 10.1128/ec.00136-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Giardia-specific protein family denominated as alpha-giardins, represents the major protein component, besides tubulin, of the cytoskeleton of the human pathogenic parasite Giardia lamblia. One of its members, alpha19-giardin, carries an N-terminal sequence extension of MGCXXS, which in many proteins serves as a target for dual lipid conjugation: myristoylation at the glycine residue after removal of the methionine and palmitoylation at the cysteine residue. As the first experimental evidence of a lipid modification, we found alpha19-giardin to be associated with the membrane fraction of disrupted trophozoites. After heterologous coexpression of alpha19-giardin with giardial N-myristoyltransferase (NMT) in Escherichia coli, we found the protein in a myristoylated form. Additionally, after heterologous expression together with the palmitoyl transferase Pfa3 in Saccharomyces cerevisiae, alpha19-giardin associates with the membrane of the main vacuole. Immunocytochemical colocalization studies on wild-type Giardia trophozoites with tubulin provide evidence that alpha19-giardin exclusively localizes to the ventral pair of the giardial flagella. A mutant in which the putatively myristoylated N-terminal glycine residue was replaced by alanine lost this specific localization. Our findings suggest that the dual lipidation of alpha19-giardin is responsible for its specific flagellar localization.
Collapse
|