1
|
Wei W, Valerio M, Ma N, Kang H, Nguyen LXT, Marcucci G, Vaidehi N. Disordered C-Terminus Plays a Critical Role in the Activity of the Small GTPase Ran. Biochemistry 2025; 64:1393-1404. [PMID: 39999282 DOI: 10.1021/acs.biochem.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ran is a small GTPase of the Ras superfamily that governs nucleocytoplasmic transport, including that of miR-126, a microRNA that supports the homeostasis and expansion of leukemia stem cells (LSCs). Ran binds to Exportin 5 to facilitate the transport of precursor (pre)-miR-126 across the nuclear membrane for its maturation. Our goal is to inhibit Ran to prevent transport of pre-miR-126 to the cytoplasm. Like other Ras family proteins, targeting Ran with small molecules is challenging due to its relatively flat surface and lack of binding cavities. Ran's activity is regulated by a long and disordered C-terminus that provides opportunities for identifying cryptic binding pockets to target. We used a combination of molecular dynamics simulations and experiments and uncovered the critical role of the ensemble of the C-terminal conformations that enable the transition of Ran from the GTP-bound "on state" to its GDP-bound "off-state". We also showed that the Ran C-terminus allosterically modulates the conformations of residues in the nucleotide binding site and in the functionally relevant Switch 1 and 2 regions. Through computational deep mutational scans and experiments, we identified four residue hotspots L182, Y197, D200, and L201 at the core-C-terminus interface and four residue mutations V27A, E70D, N122A, and N122Y that mediate the allosteric communication between the core and switch regions. This information paves the way for our next step in the design of novel allosteric modulators for Ran.
Collapse
Affiliation(s)
- Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| | - Melissa Valerio
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
| | - Hyunjun Kang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Le Xuan Truong Nguyen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California 91010, United States
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
2
|
Huang SK, Rubinstein JL, Kay LE. Cryo-EM of the Nucleosome Core Particle Bound to Ran-RCC1 Reveals a Dynamic Complex. Biochemistry 2024; 63:880-892. [PMID: 38501608 DOI: 10.1021/acs.biochem.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ras-related nuclear protein (Ran) is a member of the Ras superfamily of small guanosine triphosphatases (GTPases) and a regulator of multiple cellular processes. In healthy cells, the GTP-bound form of Ran is concentrated at chromatin, creating a Ran•GTP gradient that provides the driving force for nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation. The Ran•GTP gradient is maintained by the regulator of chromatin condensation 1 (RCC1), a guanine nucleotide exchange factor that accelerates GDP/GTP exchange in Ran. RCC1 interacts with nucleosomes, which are the fundamental repeating units of eukaryotic chromatin. Here, we present a cryo-EM analysis of a trimeric complex composed of the nucleosome core particle (NCP), RCC1, and Ran. While the contacts between RCC1 and Ran in the complex are preserved compared with a previously determined structure of RCC1-Ran, our study reveals that RCC1 and Ran interact dynamically with the NCP and undergo rocking motions on the nucleosome surface. Furthermore, the switch 1 region of Ran, which plays an important role in mediating conformational changes associated with the substitution of GDP and GTP nucleotides in Ras family members, appears to undergo disorder-order transitions and forms transient contacts with the C-terminal helix of histone H2B. Nucleotide exchange assays performed in the presence and absence of NCPs are not consistent with an active role for nucleosomes in nucleotide exchange, at least in vitro. Instead, the nucleosome stabilizes RCC1 and serves as a hub that concentrates RCC1 and Ran to promote efficient Ran•GDP to Ran•GTP conversion.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, Toronto, ON M5G 1X8, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
3
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
4
|
Liashkovich I, Stefanello ST, Vidyadharan R, Haufe G, Erofeev A, Gorelkin PV, Kolmogorov V, Mizdal CR, Dulebo A, Bulk E, Kouzel IU, Shahin V. Pitstop-2 and its novel derivative RVD-127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases. Bioeng Transl Med 2023; 8:e10425. [PMID: 37476059 PMCID: PMC10354767 DOI: 10.1002/btm2.10425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop-2 as a potent CME inhibitor, we and others have reported on substantial clathrin-independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop-2, termed RVD-127, to clarify Pitstop-2 diverse effects. Using RVD-127, we were able to trace additional protein targets of Pitstop-2. Besides inhibiting CME, Pitstop-2 and RVD-127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)-like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop-2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop-2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop-2 and RVD-127 open up novel avenues.
Collapse
Affiliation(s)
| | | | | | - Günter Haufe
- Organic Chemistry Institute, University of MünsterMünsterGermany
| | - Alexander Erofeev
- National University of Science and Technology «MISiS»MoscowRussia
- Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
| | | | | | | | | | - Etmar Bulk
- Institute of Physiology II, University of MünsterMünsterGermany
| | | | - Victor Shahin
- Institute of Physiology II, University of MünsterMünsterGermany
| |
Collapse
|
5
|
Liu Y, Trnka MJ, He L, Burlingame AL, Correia MA. In-Cell Chemical Crosslinking Identifies Hotspots for SQSTM-1/p62-IκBα Interaction That Underscore a Critical Role of p62 in Limiting NF-κB Activation Through IκBα Stabilization. Mol Cell Proteomics 2023; 22:100495. [PMID: 36634736 PMCID: PMC9947424 DOI: 10.1016/j.mcpro.2023.100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Liang He
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
6
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
7
|
Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Architecture of the cytoplasmic face of the nuclear pore. Science 2022; 376:eabm9129. [PMID: 35679405 DOI: 10.1126/science.abm9129] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein-nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for nucleocytoplasmic transport. The ~110-MDa human NPC is an ~1000-protein assembly that comprises multiple copies of ~34 different proteins, collectively termed nucleoporins. The symmetric core of the NPC is composed of an inner ring encircling the central transport channel and outer rings formed by Y‑shaped coat nucleoporin complexes (CNCs) anchored atop both sides of the nuclear envelope. The outer rings are decorated with compartment‑specific asymmetric nuclear basket and cytoplasmic filament nucleoporins, which establish transport directionality and provide docking sites for transport factors and the small guanosine triphosphatase Ran. The cytoplasmic filament nucleoporins also play an essential role in the irreversible remodeling of messenger ribonucleoprotein particles (mRNPs) as they exit the central transport channel. Unsurprisingly, the NPC's cytoplasmic face represents a hotspot for disease‑associated mutations and is commonly targeted by viral virulence factors. RATIONALE Previous studies established a near-atomic composite structure of the human NPC's symmetric core by combining (i) biochemical reconstitution to elucidate the interaction network between symmetric nucleoporins, (ii) crystal and single-particle cryo-electron microscopy structure determination of nucleoporins and nucleoporin complexes to reveal their three-dimensional shape and the molecular details of their interactions, (iii) quantitative docking in cryo-electron tomography (cryo-ET) maps of the intact human NPC to uncover nucleoporin stoichiometry and positioning, and (iv) cell‑based assays to validate the physiological relevance of the biochemical and structural findings. In this work, we extended our approach to the cytoplasmic filament nucleoporins to reveal the near-atomic architecture of the cytoplasmic face of the human NPC. RESULTS Using biochemical reconstitution, we elucidated the protein-protein and protein-RNA interaction networks of the human and Chaetomium thermophilum cytoplasmic filament nucleoporins, establishing an evolutionarily conserved heterohexameric cytoplasmic filament nucleoporin complex (CFNC) held together by a central heterotrimeric coiled‑coil hub that tethers two separate mRNP‑remodeling complexes. Further biochemical analysis and determination of a series of crystal structures revealed that the metazoan‑specific cytoplasmic filament nucleoporin NUP358 is composed of 16 distinct domains, including an N‑terminal S‑shaped α‑helical solenoid followed by a coiled‑coil oligomerization element, numerous Ran‑interacting domains, an E3 ligase domain, and a C‑terminal prolyl‑isomerase domain. Physiologically validated quantitative docking into cryo-ET maps of the intact human NPC revealed that pentameric NUP358 bundles, conjoined by the oligomerization element, are anchored through their N‑terminal domains to the central stalk regions of the CNC, projecting flexibly attached domains as far as ~600 Å into the cytoplasm. Using cell‑based assays, we demonstrated that NUP358 is dispensable for the architectural integrity of the assembled interphase NPC and RNA export but is required for efficient translation. After NUP358 assignment, the remaining 4-shaped cryo‑ET density matched the dimensions of the CFNC coiled‑coil hub, in close proximity to an outer-ring NUP93. Whereas the N-terminal NUP93 assembly sensor motif anchors the properly assembled related coiled‑coil channel nucleoporin heterotrimer to the inner ring, biochemical reconstitution confirmed that the NUP93 assembly sensor is reused in anchoring the CFNC to the cytoplasmic face of the human NPC. By contrast, two C. thermophilum CFNCs are anchored by a divergent mechanism that involves assembly sensors located in unstructured portions of two CNC nucleoporins. Whereas unassigned cryo‑ET density occupies the NUP358 and CFNC binding sites on the nuclear face, docking of the nuclear basket component ELYS established that the equivalent position on the cytoplasmic face is unoccupied, suggesting that mechanisms other than steric competition promote asymmetric distribution of nucleoporins. CONCLUSION We have substantially advanced the biochemical and structural characterization of the asymmetric nucleoporins' architecture and attachment at the cytoplasmic and nuclear faces of the NPC. Our near‑atomic composite structure of the human NPC's cytoplasmic face provides a biochemical and structural framework for elucidating the molecular basis of mRNP remodeling, viral virulence factor interference with NPC function, and the underlying mechanisms of nucleoporin diseases at the cytoplasmic face of the NPC. [Figure: see text].
Collapse
Affiliation(s)
- Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anna T Gres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sho Harvey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Aaron W Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Emily J Rundlet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ana R Correia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saroj G Regmi
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor A Stevens
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Claudia A Jette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Sagar A, Herranz-Trillo F, Langkilde AE, Vestergaard B, Bernadó P. Structure and thermodynamics of transient protein-protein complexes by chemometric decomposition of SAXS datasets. Structure 2021; 29:1074-1090.e4. [PMID: 33862013 DOI: 10.1016/j.str.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Transient biomolecular interactions play crucial roles in many cellular signaling and regulation processes. However, deciphering the structure of these assemblies is challenging owing to the difficulties in isolating complexes from the individual partners. The additive nature of small-angle X-ray scattering (SAXS) data allows for probing the species present in these mixtures, but decomposition into structural and thermodynamic information is difficult. We present a chemometric approach enabling the decomposition of titration SAXS data into species-specific information. Using extensive synthetic SAXS data, we demonstrate that robust decomposition can be achieved for titrations with a maximum fraction of complex of 0.5 that can be extended to 0.3 when two orthogonal titrations are simultaneously analyzed. The effect of the structural features, titration points, relative concentrations, and noise are thoroughly analyzed. The validation of the strategy with experimental data highlights the power of the approach to provide unique insights into this family of biomolecular assemblies.
Collapse
Affiliation(s)
- Amin Sagar
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| | - Fátima Herranz-Trillo
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
9
|
Panagiotopoulos AA, Polioudaki C, Ntallis SG, Dellis D, Notas G, Panagiotidis CA, Theodoropoulos PA, Castanas E, Kampa M. The sequence [EKRKI(E/R)(K/L/R/S/T)] is a nuclear localization signal for importin 7 binding (NLS7). Biochim Biophys Acta Gen Subj 2021; 1865:129851. [PMID: 33482249 DOI: 10.1016/j.bbagen.2021.129851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nuclear translocation of large proteins is mediated through specific protein carriers, collectively named karyopherins (importins, exportins and adaptor proteins). Cargo proteins are recognized by importins through specific motifs, known as nuclear localization signals (NLS). However, only the NLS recognized by importin α and transportin (M9 NLS) have been identified so far METHODS: An unsupervised in silico approach was used, followed by experimental validation. RESULTS We identified the sequence EKRKI(E/R)(K/L/R/S/T) as an NLS signal for importin 7 recognition. This sequence was validated in the breast cancer cell line T47D, which expresses importin 7. Finally, we verified that importin 7-mediated nuclear protein transport is affected by cargo protein phosphorylation. CONCLUSIONS The NLS sequence for importin 7 was identified and we propose this approach as an identification method of novel specific NLS sequences for β-karyopherin family members. GENERAL SIGNIFICANCE Elucidating the complex relationships of the nuclear transporters and their cargo proteins may help in laying the foundation for the development of novel therapeutics, targeting specific importins, with an immediate translational impact.
Collapse
Affiliation(s)
| | - Chara Polioudaki
- Laboratory of Biochemistry, School of Medicine, University of Crete, 71013, Greece
| | - Sotirios G Ntallis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece
| | - Christos A Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece.
| |
Collapse
|
10
|
Zhang W, Watanabe R, Konishi HA, Fujiwara T, Yoshimura SH, Kumeta M. Redox-Sensitive Cysteines Confer Proximal Control of the Molecular Crowding Barrier in the Nuclear Pore. Cell Rep 2020; 33:108484. [PMID: 33326779 DOI: 10.1016/j.celrep.2020.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022] Open
Abstract
The nuclear pore complex forms a highly crowded selective barrier with intrinsically disordered regions at the nuclear membrane to coordinate nucleocytoplasmic molecular communications. Although oxidative stress is known to alter the barrier function, the molecular mechanism underlying this adaptive control of the nuclear pore complex remains unknown. Here we uncover a systematic control of the crowding barrier within the nuclear pore in response to various redox environments. Direct measurements of the crowding states using a crowding-sensitive FRET (Förster resonance energy transfer) probe reveal specific roles of the nuclear pore subunits that adjust the degree of crowding in response to different redox conditions, by adaptively forming or disrupting redox-sensitive disulfide bonds. Relationships between crowding control and the barrier function of the nuclear pore are investigated by single-molecular fluorescence measurements of nuclear transport. Based on these findings, we propose a proximal control model of molecular crowding in vivo that is dynamically regulated at the molecular level.
Collapse
Affiliation(s)
- Wanzhen Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryuji Watanabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hide A Konishi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
12
|
Cruz VE, Esra Demircioglu F, Schwartz TU. Structural Analysis of Different LINC Complexes Reveals Distinct Binding Modes. J Mol Biol 2020; 432:6028-6041. [PMID: 33058875 PMCID: PMC11552096 DOI: 10.1016/j.jmb.2020.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/17/2023]
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes are molecular tethers that span the nuclear envelope (NE) and physically connect the nucleus to the cytoskeleton. They transmit mechanical force across the NE in processes such as nuclear anchorage, nuclear migration, and homologous chromosome pairing during meiosis. LINC complexes are composed of KASH proteins traversing the outer nuclear membrane, and SUN proteins crossing the inner nuclear membrane. Humans have several SUN- and KASH-containing proteins, yet what governs their proper engagement is poorly understood. To investigate this question, we solved high resolution crystal structures of human SUN2 in complex with the KASH-peptides of Nesprin3, Nesprin4, and KASH5. In comparison to the published structures of SUN2-KASH1/2 we observe alternative binding modes for these KASH peptides. While the core interactions between SUN and the C-terminal residues of the KASH peptide are similar in all five complexes, the extended KASH-peptide adopts at least two different conformations. The much-improved resolution allows for a more detailed analysis of other elements critical for KASH interaction, including the KASH-lid and the cation loop, and a possible self-locked state for unbound SUN. In summary, we observe distinct differences between the examined SUN-KASH complexes. These differences may have an important role in regulating the SUN-KASH network.
Collapse
Affiliation(s)
- Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Barbato S, Kapinos LE, Rencurel C, Lim RYH. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability. J Cell Sci 2020; 133:jcs238121. [PMID: 31932502 DOI: 10.1242/jcs.238121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Ran is a small GTPase whose nucleotide-bound forms cycle through nuclear pore complexes (NPCs) to direct nucleocytoplasmic transport (NCT). Generally, Ran guanosine triphosphate (RanGTP) binds cargo-carrying karyopherin receptors (Kaps) in the nucleus and releases them into the cytoplasm following hydrolysis to Ran guanosine diphosphate (RanGDP). This generates a remarkably steep Ran gradient across the nuclear envelope that sustains compartment-specific cargo delivery and accumulation. However, because NPCs are permeable to small molecules of comparable size, it is unclear how an uncontrolled mixing of RanGTP and RanGDP is prevented. Here, we find that an NPC-enriched pool of karyopherin subunit beta 1 (KPNB1, hereafter referred to as Kapβ1) selectively mediates Ran diffusion across the pore but not passive molecules of similar size (e.g. GFP). This is due to RanGTP having a stronger binding interaction with Kapβ1 than RanGDP. For this reason, the RanGDP importer, nuclear transport factor 2, facilitates the return of RanGDP into the nucleus following GTP hydrolysis. Accordingly, the enrichment of Kapβ1 at NPCs may function as a retention mechanism that preserves the sharp transition of RanGTP and RanGDP in the nucleus and cytoplasm, respectively.
Collapse
Affiliation(s)
- Suncica Barbato
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Wang X, Pernicone N, Pertz L, Hua D, Zhang T, Listovsky T, Xie W. REV7 has a dynamic adaptor region to accommodate small GTPase RAN/ Shigella IpaB ligands, and its activity is regulated by the RanGTP/GDP switch. J Biol Chem 2019; 294:15733-15742. [PMID: 31484720 DOI: 10.1074/jbc.ra119.010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2019] [Indexed: 11/06/2022] Open
Abstract
REV7, also termed mitotic arrest-deficient 2-like 2 (MAD2L2 or MAD2B), acts as an interaction module in a broad array of cellular pathways, including translesion DNA synthesis, cell cycle control, and nonhomologous end joining. Numerous REV7 binding partners have been identified, including the human small GTPase Ras-associated nuclear protein (RAN), which acts as a potential upstream regulator of REV7. Notably, the Shigella invasin IpaB hijacks REV7 to disrupt cell cycle control to prevent intestinal epithelial cell renewal and facilitate bacterial colonization. However, the structural details of the REV7-RAN and REV7-IpaB interactions are mostly unknown. Here, using fusion protein and rigid maltose-binding protein tagging strategies, we determined the crystal structures of these two complexes at 2.00-2.35 Å resolutions. The structures revealed that both RAN and IpaB fragments bind the "safety belt" region of REV7, inducing rearrangement of the C-terminal β-sheet region of REV7, conserved among REV7-related complexes. Of note, the REV7-binding motifs of RAN and IpaB each displayed some unique interactions with REV7 despite sharing consensus residues. Structural alignments revealed that REV7 has an adaptor region within the safety belt region that can rearrange secondary structures to fit a variety of different ligands. Our structural and biochemical results further indicated that REV7 preferentially binds GTP-bound RAN, implying that a GTP/GDP-bound transition of RAN may serve as the molecular switch that controls REV7's activity. These results provide insights into the regulatory mechanism of REV7 in cell cycle control, which may help with the development of small-molecule inhibitors that target REV7 activity.
Collapse
Affiliation(s)
- Xin Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Nomi Pernicone
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Limor Pertz
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Tianqing Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Tamar Listovsky
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Wei Xie
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
16
|
Gupta A, Kailasam S, Bansal M. Insights into the Structural Dynamics of Nucleocytoplasmic Transport of tRNA by Exportin-t. Biophys J 2016; 110:1264-79. [PMID: 27028637 DOI: 10.1016/j.bpj.2016.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 12/29/2022] Open
Abstract
Exportin-t (Xpot) transports mature 5'- and 3'-end processed tRNA from the nucleus to the cytoplasm by associating with a small G-protein Ran (RAs-related nuclear protein), in the nucleus. The release of tRNA in cytoplasm involves RanGTP hydrolysis. Despite the availability of crystal structures of nuclear and cytosolic forms of Xpot, the molecular details regarding the sequential events leading to tRNA release and subsequent conformational changes occurring in Xpot remain unknown. We have performed a combination of classical all-atom and accelerated molecular dynamics simulations on a set of complexes involving Xpot to study a range of features including conformational flexibility of free and cargo-bound Xpot and functionally critical contacts between Xpot and its cargo. The systems investigated include free Xpot and its different complexes, bound either to Ran (GTP/GDP) or tRNA or both. This approach provided a statistically reliable estimate of structural dynamics of Xpot after cargo release. The mechanistic basis for Xpot opening after cargo release has been explained in terms of dynamic structural hinges, about which neighboring region could be displaced to facilitate the nuclear to cytosolic state transition. Post-RanGTP hydrolysis, a cascade of events including local conformational change in RanGTP and loss of critical contacts at Xpot/tRNA interface suggest factors responsible for eventual release of tRNA. The level of flexibility in different Xpot complexes varied depending on the arrangement of individual HEAT repeats. Current study provides one of the most comprehensive and robust analysis carried out on this protein using molecular dynamics schemes.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
17
|
A disappearing act performed by magnesium: the nucleotide exchange mechanism of Ran GTPase by quantum mechanics/molecular mechanics studies. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1953-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Aksu M, Trakhanov S, Görlich D. Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nat Commun 2016; 7:11952. [PMID: 27306458 PMCID: PMC4912631 DOI: 10.1038/ncomms11952] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022] Open
Abstract
Xpo4 is a bidirectional nuclear transport receptor that mediates nuclear export of eIF5A and Smad3 as well as import of Sox2 and SRY. How Xpo4 recognizes such a variety of cargoes is as yet unknown. Here we present the crystal structure of the RanGTP·Xpo4·eIF5A export complex at 3.2 Å resolution. Xpo4 has a similar structure as CRM1, but the NES-binding site is occluded, and a new interaction site evolved that recognizes both globular domains of eIF5A. eIF5A contains hypusine, a unique amino acid with two positive charges, which is essential for cell viability and eIF5A function in translation. The hypusine docks into a deep, acidic pocket of Xpo4 and is thus a critical element of eIF5A's complex export signature. This further suggests that Xpo4 recognizes other cargoes differently, and illustrates how Xpo4 suppresses - in a chaperone-like manner - undesired interactions of eIF5A inside nuclei.
Collapse
Affiliation(s)
- Metin Aksu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Schwartz TU. The Structure Inventory of the Nuclear Pore Complex. J Mol Biol 2016; 428:1986-2000. [PMID: 27016207 DOI: 10.1016/j.jmb.2016.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 11/18/2022]
Abstract
The nuclear pore complex (NPC) is the principal gateway for molecular exchange between nucleus and cytoplasm across the nuclear envelope. Due to its sheer size of estimated 50-112MDa and its complex buildup from about 500-1000 individual proteins, it is a difficult object to study for structural biologists. Here, I review the extensive ensemble of high-resolution structures of the building blocks of the NPC. Concurrent with the increase in size and complexity, these latest, large structures and assemblies can now be used as the basis for hybrid approaches, primarily in combination with cryo-electron microscopic analysis, generating the first structure-based assembly models of the NPC. Going forward, the structures will be critically important for a detailed analysis of the NPC, including function, evolution, and assembly.
Collapse
Affiliation(s)
- Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| |
Collapse
|
20
|
Lu S, Banerjee A, Jang H, Zhang J, Gaponenko V, Nussinov R. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site. J Biol Chem 2015; 290:28887-900. [PMID: 26453300 PMCID: PMC4661403 DOI: 10.1074/jbc.m115.664755] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.
Collapse
Affiliation(s)
- Shaoyong Lu
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China, Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | | | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jian Zhang
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China,
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, and
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Duheron V, Chatel G, Sauder U, Oliveri V, Fahrenkrog B. Structural characterization of altered nucleoporin Nup153 expression in human cells by thin-section electron microscopy. Nucleus 2015; 5:601-12. [PMID: 25485891 DOI: 10.4161/19491034.2014.990853] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear pore complexes (NPCs) span the 2 membranes of the nuclear envelope (NE) and facilitate nucleocytoplasmic exchange of macromolecules. NPCs have a roughly tripartite structural organization with the so-called nuclear basket emanating from the NPC scaffold into the nucleoplasm. The nuclear basket is composed of the 3 nucleoporins Nup153, Nup50, and Tpr, but their specific role for the structural organization of this NPC substructure is, however, not well established. In this study, we have used thin-section transmission electron microscopy to determine the structural consequences of altering the expression of Nup153 in human cells. We show that the assembly and integrity of the nuclear basket is not affected by Nup153 depletion, whereas its integrity is perturbed in cells expressing high concentrations of the zinc-finger domain of Nup153. Moreover, even mild over-expression of Nup153 is coinciding with massive changes in nuclear organization and it is the excess of the zinc-finger domain of Nup153 that is sufficient to induce these rearrangements. Our data indicate a central function of Nup153 in the organization of the nucleus, not only at the periphery, but throughout the entire nuclear interior.
Collapse
Key Words
- BIR, baculovirus IAP repeat
- DAPI, 4',6-diamidino-2-phenylindole
- DMEM, Dulbecco's modified Eagle's medium
- EM, electron microscopy
- FBS, foetal bovine serum
- FG, phenylalanine-glycine
- GFP, green fluorescent protein
- IAP, inhibitor of apoptosis
- MDa, megadalton
- MEM, minimal essential medium
- Min, minute
- NE, nuclear envelope
- NPC,nuclear pore complex
- Nup, nuclear pore protein, nucleoporin
- Nup153
- Nup50
- PBS, phosphate buffered saline
- PVDF, Polyvinylidene difluoride
- RT, room temperature
- TBS, (Tris(hydroxymethyl)-aminomethan) buffered saline
- TEM,transmission electron microscopy
- Tpr
- Tpr, translocated promoter region
- XIAP, X-linked inhibitor of apoptosis
- electron microscopy
- kDa, kilodalton
- nuclear basket
- nuclear pore complex
- nucleoporin
- siRNA, small interfering ribonucleic acid
Collapse
Affiliation(s)
- Vincent Duheron
- a Institute for Molecular Biology and Medicine ; Université Libre de Bruxelles ; Charleroi , Belgium
| | | | | | | | | |
Collapse
|
22
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
23
|
Sakin V, Richter SM, Hsiao HH, Urlaub H, Melchior F. Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex. J Biol Chem 2015; 290:23589-602. [PMID: 26251516 DOI: 10.1074/jbc.m115.660118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
The SUMO E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9 localizes at cytoplasmic nuclear pore complex (NPC) filaments and is a docking site in nucleocytoplasmic transport. RanBP2 has four Ran binding domains (RBDs), two of which flank RanBP2's E3 ligase region. We thus wondered whether the small GTPase Ran is a target for RanBP2-dependent sumoylation. Indeed, Ran is sumoylated both by a reconstituted and the endogenous RanBP2 complex in semi-permeabilized cells. Generic inhibition of SUMO isopeptidases or depletion of the SUMO isopeptidase SENP1 enhances sumoylation of Ran in semi-permeabilized cells. As Ran is typically associated with transport receptors, we tested the influence of Crm1, Imp β, Transportin, and NTF2 on Ran sumoylation. Surprisingly, all inhibited Ran sumoylation. Mapping Ran sumoylation sites revealed that transport receptors may simply block access of the E2-conjugating enzyme Ubc9, however the acceptor lysines are perfectly accessible in Ran/NTF2 complexes. Isothermal titration calorimetry revealed that NTF2 prevents sumoylation by reducing RanGDP's affinity to RanBP2's RBDs to undetectable levels. Taken together, our findings indicate that RanGDP and not RanGTP is the physiological target for the RanBP2 SUMO E3 ligase complex. Recognition requires interaction of Ran with RanBP2's RBDs, which is prevented by the transport factor NTF2.
Collapse
Affiliation(s)
- Volkan Sakin
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany
| | - Sebastian M Richter
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany
| | - He-Hsuan Hsiao
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and Department of Clinical Chemistry, University Medical Center, 37075 Göttingen, Germany
| | - Frauke Melchior
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany,
| |
Collapse
|
24
|
Soltan Ghoraie L, Burkowski F, Zhu M. Using kernelized partial canonical correlation analysis to study directly coupled side chains and allostery in small G proteins. Bioinformatics 2015; 31:i124-32. [PMID: 26072474 PMCID: PMC4765857 DOI: 10.1093/bioinformatics/btv241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motivation: Inferring structural dependencies among a protein’s side chains helps us understand their coupled motions. It is known that coupled fluctuations can reveal pathways of communication used for information propagation in a molecule. Side-chain conformations are commonly represented by multivariate angular variables, but existing partial correlation methods that can be applied to this inference task are not capable of handling multivariate angular data. We propose a novel method to infer direct couplings from this type of data, and show that this method is useful for identifying functional regions and their interactions in allosteric proteins. Results: We developed a novel extension of canonical correlation analysis (CCA), which we call ‘kernelized partial CCA’ (or simply KPCCA), and used it to infer direct couplings between side chains, while disentangling these couplings from indirect ones. Using the conformational information and fluctuations of the inactive structure alone for allosteric proteins in the Ras and other Ras-like families, our method identified allosterically important residues not only as strongly coupled ones but also in densely connected regions of the interaction graph formed by the inferred couplings. Our results were in good agreement with other empirical findings. By studying distinct members of the Ras, Rho and Rab sub-families, we show further that KPCCA was capable of inferring common allosteric characteristics in the small G protein super-family. Availability and implementation:https://github.com/lsgh/ismb15 Contact:lsoltang@uwaterloo.ca
Collapse
Affiliation(s)
- Laleh Soltan Ghoraie
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Forbes Burkowski
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Mu Zhu
- Department of Computer Science and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
25
|
Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase. Virology 2013; 443:177-85. [PMID: 23711384 DOI: 10.1016/j.virol.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/28/2013] [Accepted: 05/02/2013] [Indexed: 11/21/2022]
Abstract
Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35-40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition.
Collapse
|
26
|
Chow KH, Elgort S, Dasso M, Ullman KS. Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2. Nucleus 2012; 3:349-58. [PMID: 22688647 PMCID: PMC3679279 DOI: 10.4161/nucl.20822] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Numerous enzymes of the mammalian SUMO modification pathway, including two members of the SUMO protease family, SENP2 and SENP1, localize to the nuclear periphery. The SUMO proteases play roles both in processing SUMO during the biogenesis of this peptide moiety and also in reversing SUMO modification on specific targets to control the activities conferred by this post-translational modification. Although interaction with the C-terminal domain of the nucleoporin Nup153 is thought to contribute to SENP2 localization at the nuclear pore complex, little is known about the binding partners of SENP1 at the nuclear periphery. We have found that Nup153 binds to both SENP1 and SENP2 and does so by interacting with the unique N-terminal domain of Nup153 as well as a specific region within the C-terminal FG-rich region. We have further found that Nup153 is a substrate for sumoylation, with this modification kept in check by these two SUMO proteases. Specifically, either RNAi depletion of SENP1/SENP2 or expression of dominantly interfering mutants of these proteins results in increased sumoylation of endogenous Nup153. While SENP1 and SENP2 share many characteristics, we show here that SENP1 levels are influenced by the presence of Nup153, whereas SENP2 is not sensitive to changes in Nup153 abundance.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
27
|
Milano SK, Kwon W, Pereira R, Antonyak MA, Cerione RA. Characterization of a novel activated Ran GTPase mutant and its ability to induce cellular transformation. J Biol Chem 2012; 287:24955-66. [PMID: 22679017 DOI: 10.1074/jbc.m111.306514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ran (Ras-related nuclear) protein, a member of the Ras superfamily of GTPases, is best known for its roles in nucleocytoplasmic transport, mitotic spindle fiber assembly, and nuclear envelope formation. Recently, we have shown that the overexpression of Ran in fibroblasts induces cellular transformation and tumor formation in mice (Ly, T. K., Wang, J., Pereira, R., Rojas, K. S., Peng, X., Feng, Q., Cerione, R. A., and Wilson, K. F. (2010) J. Biol. Chem. 285, 5815-5826). Here, we describe a novel activated Ran mutant, Ran(K152A), which is capable of an increased rate of GDP-GTP exchange and an accelerated GTP binding/GTP hydrolytic cycle compared with wild-type Ran. We show that its expression in NIH-3T3 fibroblasts induces anchorage-independent growth and stimulates cell invasion, as well as activates signaling pathways that lead to extracellular regulated kinase (ERK) activity. Furthermore, Ran(K152A) expression in the human mammary SKBR3 adenocarcinoma cell line gives rise to an enhanced transformed phenotype and causes a robust stimulation of both ERK and the N-terminal c-Jun kinase (JNK). Microarray analysis reveals that the expression of the gene encoding SMOC-2 (secreted modular calcium-binding protein-2), which has been shown to synergize with different growth factors, is increased by at least 50-fold in cells stably expressing Ran(K152A) compared with cells expressing control vector. Knocking down SMOC-2 expression greatly reduces the ability of Ran(K152A) to stimulate anchorage-independent growth in NIH-3T3 cells and in SKBR3 cells and also inhibits cell invasion in fibroblasts. Collectively, our findings highlight a novel connection between the hyper-activation of the small GTPase Ran and the matricellular protein SMOC-2 that has important consequences for oncogenic transformation.
Collapse
Affiliation(s)
- Shawn K Milano
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
In eukaryotic cells, the spatial segregation of replication and transcription in the nucleus and translation in the cytoplasm imposes the requirement of transporting thousands of macromolecules between these two compartments. Nuclear pore complexes (NPCs) are the sole gateways that facilitate this macromolecular exchange across the nuclear envelope with the help of soluble transport receptors. Whereas the mobile transport machinery is reasonably well understood at the atomic level, a commensurate structural characterization of the NPC has only begun in the past few years. Here, we describe the recent progress toward the elucidation of the atomic structure of the NPC, highlight emerging concepts of its underlying architecture, and discuss key outstanding questions and challenges. The applied structure determination as well as the described design principles of the NPC may serve as paradigms for other macromolecular assemblies.
Collapse
Affiliation(s)
- André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
29
|
Ran-dependent nuclear export mediators: a structural perspective. EMBO J 2011; 30:3457-74. [PMID: 21878989 DOI: 10.1038/emboj.2011.287] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/25/2022] Open
Abstract
Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.
Collapse
|
30
|
Tamura K, Fukao Y, Iwamoto M, Haraguchi T, Hara-Nishimura I. Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. THE PLANT CELL 2010; 22:4084-97. [PMID: 21189294 PMCID: PMC3027183 DOI: 10.1105/tpc.110.079947] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/19/2010] [Accepted: 12/02/2010] [Indexed: 05/17/2023]
Abstract
The nuclear pore complex (NPC) facilitates nucleocytoplasmic transport, a crucial process for various cellular activities. The NPC comprises ~30 nucleoporins and is well characterized in vertebrates and yeast. However, only eight plant nucleoporins have been identified, and little information is available about the complete molecular structure of plant NPCs. In this study, an interactive proteomic approach was used to identify Arabidopsis thaliana nucleoporins. A series of five cycles of interactive proteomic analysis was performed using green fluorescent protein (GFP)-tagged nucleoporins. The identified nucleoporins were then cloned and subcellular localization analyses were performed. We found that the plant NPC contains at least 30 nucleoporins, 22 of which had not been previously annotated. Surprisingly, plant nucleoporins shared a similar domain organization to their vertebrate (human) and yeast (Saccharomyces cerevisiae) counterparts. Moreover, the plant nucleoporins exhibited higher sequence homology to vertebrate nucleoporins than to yeast nucleoporins. Plant NPCs lacked seven components (NUCLEOPORIN358 [Nup358], Nup188, Nup153, Nup45, Nup37, NUCLEAR DIVISION CYCLE1, and PORE MEMBRANE PROTEIN OF 121 kD) that were present in vertebrate NPCs. However, plants possessed a nucleoporin, Nup136/Nup1, that contained Phe-Gly repeats, and sequence analysis failed to identify a vertebrate homolog for this protein. Interestingly, Nup136-GFP showed greater mobility on the nuclear envelope than did other nucleoporins, and a Nup136/Nup1 deficiency caused various defects in plant development. These findings provide valuable new information about plant NPC structure and function.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Masaaki Iwamoto
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
31
|
Makde RD, England JR, Yennawar HP, Tan S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 2010; 467:562-6. [PMID: 20739938 PMCID: PMC3168546 DOI: 10.1038/nature09321] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/25/2010] [Indexed: 12/23/2022]
Abstract
The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin bound RCC1 (regulator of chromosome condensation) protein which recruits Ran to nucleosomes and activates Ran’s nucleotide exchange activity. While RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. We have determined the crystal structure of the RCC1-nucleosome core particle complex at 2.9 Å resolution, providing the first atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in our nucleosomes forms a 145 bp and not the expected canonical 147 bp nucleosome core particle.
Collapse
Affiliation(s)
- Ravindra D Makde
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
32
|
Brohawn SG, Partridge JR, Whittle JRR, Schwartz TU. The nuclear pore complex has entered the atomic age. Structure 2009; 17:1156-68. [PMID: 19748337 DOI: 10.1016/j.str.2009.07.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 06/27/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
Nuclear pore complexes (NPCs) perforate the nuclear envelope and represent the exclusive passageway into and out of the nucleus of the eukaryotic cell. Apart from their essential transport function, components of the NPC have important, direct roles in nuclear organization and in gene regulation. Because of its central role in cell biology, it is of considerable interest to determine the NPC structure at atomic resolution. The complexity of these large, 40-60 MDa protein assemblies has for decades limited such structural studies. More recently, exploiting the intrinsic modularity of the NPC, structural biologists are making progress toward understanding this nanomachine in molecular detail. Structures of building blocks of the stable, architectural scaffold of the NPC have been solved, and distinct models for their assembly proposed. Here we review the status of the field and lay out the challenges and the next steps toward a full understanding of the NPC at atomic resolution.
Collapse
Affiliation(s)
- Stephen G Brohawn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|