1
|
Zhao LS, Li CY, Chen XL, Wang Q, Zhang YZ, Liu LN. Native architecture and acclimation of photosynthetic membranes in a fast-growing cyanobacterium. PLANT PHYSIOLOGY 2022; 190:1883-1895. [PMID: 35947692 PMCID: PMC9614513 DOI: 10.1093/plphys/kiac372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Efficient solar energy conversion is ensured by the organization, physical association, and physiological coordination of various protein complexes in photosynthetic membranes. Here, we visualize the native architecture and interactions of photosynthetic complexes within the thylakoid membranes from a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) using high-resolution atomic force microscopy. In the Syn2973 thylakoid membranes, both photosystem I (PSI)-enriched domains and crystalline photosystem II (PSII) dimer arrays were observed, providing favorable membrane environments for photosynthetic electron transport. The high light (HL)-adapted thylakoid membranes accommodated a large amount of PSI complexes, without the incorporation of iron-stress-induced protein A (IsiA) assemblies and formation of IsiA-PSI supercomplexes. In the iron deficiency (Fe-)-treated thylakoid membranes, in contrast, IsiA proteins densely associated with PSI, forming the IsiA-PSI supercomplexes with varying assembly structures. Moreover, type-I NADH dehydrogenase-like complexes (NDH-1) were upregulated under the HL and Fe- conditions and established close association with PSI complexes to facilitate cyclic electron transport. Our study provides insight into the structural heterogeneity and plasticity of the photosynthetic apparatus in the context of their native membranes in Syn2973 under environmental stress. Advanced understanding of the photosynthetic membrane organization and adaptation will provide a framework for uncovering the molecular mechanisms of efficient light harvesting and energy conversion.
Collapse
Affiliation(s)
| | - Chun-Yang Li
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, 475004 Kaifeng, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lu-Ning Liu
- Author of correspondence: (L.-N.L.), (L.-S.Z.)
| |
Collapse
|
2
|
Nassi A, Sop SDK, Leuna JBM, Makota S, Pengou M, Ngameni E. Electrochemical reactivity of thin film of plumbagin at ionic liquid | water interface. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Zhang Z, Zhao LS, Liu LN. Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202142. [PMID: 34295515 PMCID: PMC8278045 DOI: 10.1098/rsos.202142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/28/2021] [Indexed: 05/15/2023]
Abstract
The light reactions of photosynthesis occur in thylakoid membranes that are densely packed with a series of photosynthetic complexes. The lateral organization and close association of photosynthetic complexes in native thylakoid membranes are vital for efficient light harvesting and energy transduction. Recently, analysis of the interconnections between photosynthetic complexes to form supercomplexes has garnered great interest. In this work, we report a method integrating immunoprecipitation, mass spectrometry and atomic force microscopy to identify the inter-complex associations of photosynthetic complexes in thylakoid membranes from the cyanobacterium Synechococcus elongatus PCC 7942. We characterize the preferable associations between individual photosynthetic complexes and binding proteins involved in the complex-complex interfaces, permitting us to propose the structural models of photosynthetic complex associations that promote the formation of photosynthetic supercomplexes. We also identified other potential binding proteins with the photosynthetic complexes, suggesting the highly connecting networks associated with thylakoid membranes. This study provides mechanistic insight into the physical interconnections of photosynthetic complexes and potential partners, which are crucial for efficient energy transfer and physiological acclimatization of the photosynthetic apparatus. Advanced knowledge of the protein organization and interplay of the photosynthetic machinery will inform rational design and engineering of artificial photosynthetic systems to supercharge energy production.
Collapse
Affiliation(s)
- Zimeng Zhang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Long-Sheng Zhao
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, People's Republic of China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
4
|
Miller LC, Zhao L, Canniffe DP, Martin D, Liu LN. Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148204. [PMID: 32305414 PMCID: PMC7322399 DOI: 10.1016/j.bbabio.2020.148204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022]
Abstract
Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow. AFM and single-molecule force spectroscopy reveal the membrane organization and unfolding process of Blastochloris viridis RC RC-light-harvesting 1 complexes are densely organized in photosynthetic membranes, with restricted lateral diffusion Unfolding of the non-membranous cytochrome (4Hcyt) subunit represents a multi-step process; The average unfolding forces of the 4Hcyt α-helices are ~121 pN; Pulling of 4Hcyt from the RC suggests strong interactions (> 150 pN) between 4Hcyt and L subunits in the RC structure.
Collapse
Affiliation(s)
- Leanne C Miller
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - Longsheng Zhao
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Daniel P Canniffe
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David Martin
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Faulkner M, Zhao LS, Barrett S, Liu LN. Self-Assembly Stability and Variability of Bacterial Microcompartment Shell Proteins in Response to the Environmental Change. NANOSCALE RESEARCH LETTERS 2019; 14:54. [PMID: 30747342 PMCID: PMC6372710 DOI: 10.1186/s11671-019-2884-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/31/2019] [Indexed: 05/04/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous self-assembling organelles that are widespread among the prokaryotic kingdom. By segmenting key metabolic enzymes and pathways using a polyhedral shell, BMCs play essential roles in carbon assimilation, pathogenesis, and microbial ecology. The BMC shell is composed of multiple protein homologs that self-assemble to form the defined architecture. There is tremendous interest in engineering BMCs to develop new nanobioreactors and molecular scaffolds. Here, we report the quantitative characterization of the formation and self-assembly dynamics of BMC shell proteins under varying pH and salt conditions using high-speed atomic force microscopy (HS-AFM). We show that 400-mM salt concentration is prone to result in larger single-layered shell patches formed by shell hexamers, and a higher dynamic rate of hexamer self-assembly was observed at neutral pH. We also visualize the variability of shell proteins from hexameric assemblies to fiber-like arrays. This study advances our knowledge about the stability and variability of BMC protein self-assemblies in response to microenvironmental changes, which will inform rational design and construction of synthetic BMC structures with the capacity of remodeling their self-assembly and structural robustness. It also offers a powerful toolbox for quantitatively assessing the self-assembly and formation of BMC-based nanostructures in biotechnology applications.
Collapse
Affiliation(s)
- Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Long-Sheng Zhao
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Steve Barrett
- Department of Physics, University of Liverpool, L69 7ZE, Liverpool, UK
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| |
Collapse
|
6
|
Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN. Engineering and Modulating Functional Cyanobacterial CO 2-Fixing Organelles. FRONTIERS IN PLANT SCIENCE 2018; 9:739. [PMID: 29922315 PMCID: PMC5996877 DOI: 10.3389/fpls.2018.00739] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 05/12/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla and provide a means for compartmentalizing specific metabolic pathways. They sequester catalytic enzymes from the cytoplasm, using an icosahedral proteinaceous shell with selective permeability to metabolic molecules and substrates, to enhance metabolic efficiency. Carboxysomes were the first BMCs discovered and their unprecedented capacity of CO2 fixation allows cyanobacteria to make a significant contribution to global carbon fixation. There is an increasing interest in utilizing synthetic biology to construct synthetic carboxysomes in new hosts, i.e., higher plants, to enhance carbon fixation and productivity. Here, we report the construction of a synthetic operon of the β-carboxysome from the cyanobacterium Synechococcus elongatus PCC7942 to generate functional β-carboxysome-like structures in Escherichia coli. The protein expression, structure, assembly, and activity of synthetic β-carboxysomes were characterized in depth using confocal, electron and atomic force microscopy, proteomics, immunoblot analysis, and enzymatic assays. Furthermore, we examined the in vivo interchangeability of β-carboxysome building blocks with other BMC components. To our knowledge, this is the first production of functional β-carboxysome-like structures in heterologous organisms. It provides important information for the engineering of fully functional carboxysomes and CO2-fixing modules in higher plants. The study strengthens our synthetic biology toolbox for generating BMC-based organelles with tunable activities and new scaffolding biomaterials for metabolic improvement and molecule delivery.
Collapse
|
7
|
Rodriguez-Ramos J, Faulkner M, Liu LN. Nanoscale Visualization of Bacterial Microcompartments Using Atomic Force Microscopy. Methods Mol Biol 2018; 1814:373-383. [PMID: 29956244 DOI: 10.1007/978-1-4939-8591-3_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments (BMCs) are polyhedral protein organelles in many prokaryotes, playing significant roles in metabolic enhancement. Due to their self-assembly and modularity nature, BMCs have gained increased interest in recent years, with the intent of constructing new nanobioreactors and scaffolding to promote cellular metabolisms and molecule delivery. In this chapter, we describe the technique of atomic force microscopy (AFM) as a method to study the self-assembly dynamics and physical properties of BMCs. We focus on the sample preparation, the measurement procedure, and the data analysis for high-speed AFM imaging and nanoindentation-based spectroscopy, which were used to determine the assembly dynamics of BMC shell proteins and the nanomechanics of intact BMC structures, respectively. The described methods could be applied to the study of other types of self-assembling biological organelles.
Collapse
Affiliation(s)
| | - Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Casella S, Huang F, Mason D, Zhao GY, Johnson GN, Mullineaux CW, Liu LN. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery. MOLECULAR PLANT 2017; 10:1434-1448. [PMID: 29017828 PMCID: PMC5683893 DOI: 10.1016/j.molp.2017.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 05/18/2023]
Abstract
The structural dynamics and flexibility of cell membranes play fundamental roles in the functions of the cells, i.e., signaling, energy transduction, and physiological adaptation. The cyanobacterial thylakoid membrane represents a model membrane that can conduct both oxygenic photosynthesis and respiration simultaneously. In this study, we conducted direct visualization of the global organization and mobility of photosynthetic complexes in thylakoid membranes from a model cyanobacterium, Synechococcus elongatus PCC 7942, using high-resolution atomic force, confocal, and total internal reflection fluorescence microscopy. We visualized the native arrangement and dense packing of photosystem I (PSI), photosystem II (PSII), and cytochrome (Cyt) b6f within thylakoid membranes at the molecular level. Furthermore, we functionally tagged PSI, PSII, Cyt b6f, and ATP synthase individually with fluorescent proteins, and revealed the heterogeneous distribution of these four photosynthetic complexes and determined their dynamic features within the crowding membrane environment using live-cell fluorescence imaging. We characterized red light-induced clustering localization and adjustable diffusion of photosynthetic complexes in thylakoid membranes, representative of the reorganization of photosynthetic apparatus in response to environmental changes. Understanding the organization and dynamics of photosynthetic membranes is essential for rational design and construction of artificial photosynthetic systems to underpin bioenergy development. Knowledge of cyanobacterial thylakoid membranes could also be extended to other cell membranes, such as chloroplast and mitochondrial membranes.
Collapse
Affiliation(s)
- Selene Casella
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - David Mason
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Guo-Yan Zhao
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; College of Life Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Giles N Johnson
- School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
9
|
Kumar S, Cartron ML, Mullin N, Qian P, Leggett GJ, Hunter CN, Hobbs JK. Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy. ACS NANO 2017; 11:126-133. [PMID: 28114766 PMCID: PMC5269641 DOI: 10.1021/acsnano.6b05647] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip-sample interaction in both lateral and vertical directions. Here, long-range tip-sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic "organelles", chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles.
Collapse
Affiliation(s)
- Sandip Kumar
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Michaël L. Cartron
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Nic Mullin
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Pu Qian
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Graham J. Leggett
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - C. Neil Hunter
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Jamie K. Hobbs
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
- E-mail:
| |
Collapse
|
10
|
Sutter M, Faulkner M, Aussignargues C, Paasch BC, Barrett S, Kerfeld CA, Liu LN. Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy. NANO LETTERS 2016; 16:1590-5. [PMID: 26617073 PMCID: PMC4789755 DOI: 10.1021/acs.nanolett.5b04259] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/27/2015] [Indexed: 05/21/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that the self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Matthew Faulkner
- Institute of Integrative
Biology and Department of Physics, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Clément Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bradley C. Paasch
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Steve Barrett
- Institute of Integrative
Biology and Department of Physics, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Berkeley Synthetic
Biology Institute, Berkeley, California 94720, United States
- Department of Biochemistry and Molecular
Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lu-Ning Liu
- Institute of Integrative
Biology and Department of Physics, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
11
|
Liu LN. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:256-65. [PMID: 26619924 PMCID: PMC4756276 DOI: 10.1016/j.bbabio.2015.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/24/2022]
Abstract
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Cyanobacterial thylakoid membranes carry out both oxygenic photosynthesis and respiration. Electron transport components are located in the thylakoid membrane and functionally coordinate with each other. Distribution and dynamics of electron transport components are physiologically regulated in response to environmental change.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
12
|
Scheuring S, Nevo R, Liu LN, Mangenot S, Charuvi D, Boudier T, Prima V, Hubert P, Sturgis JN, Reich Z. The architecture of Rhodobacter sphaeroides chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1263-70. [PMID: 24685429 DOI: 10.1016/j.bbabio.2014.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.
Collapse
Affiliation(s)
- Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique de Luminy, Marseille F-13009, France.
| | - Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lu-Ning Liu
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique de Luminy, Marseille F-13009, France
| | | | - Dana Charuvi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Boudier
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, F-75005 Paris, France
| | - Valerie Prima
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Pierre Hubert
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - James N Sturgis
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Duneau JP, Sturgis JN. Lateral organization of biological membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:843-50. [DOI: 10.1007/s00249-013-0933-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/13/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022]
|
14
|
Liu LN, Scheuring S. Investigation of photosynthetic membrane structure using atomic force microscopy. TRENDS IN PLANT SCIENCE 2013; 18:277-86. [PMID: 23562040 DOI: 10.1016/j.tplants.2013.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 05/26/2023]
Abstract
Photosynthetic processes, including light capture, electron transfer, and energy conversion, are not only ensured by the activities of individual photosynthetic complexes but also substantially determined and regulated by the composition and assembly of the overall photosynthetic apparatus at the supramolecular level. In recent years, atomic force microscopy (AFM) has matured as a unique and powerful tool for directly assessing the supramolecular assembly of integral membrane protein complexes in their native membrane environment at submolecular resolution. This review highlights the major contributions and advances of AFM studies to our understanding of the structure of the bacterial photosynthetic machinery and its regulatory arrangement during chromatic adaptation. AFM topographs of other biological membrane systems and potential future applications of AFM are also discussed.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | |
Collapse
|
15
|
Shotgun genome sequence of the large purple photosynthetic bacterium Rhodospirillum photometricum DSM122. J Bacteriol 2012; 194:2380. [PMID: 22493194 DOI: 10.1128/jb.00168-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.
Collapse
|
16
|
Duquesne K, Blanchard C, Sturgis JN. Molecular origins and consequences of High-800 LH2 in Roseobacter denitrificans. Biochemistry 2011; 50:6723-9. [PMID: 21739946 DOI: 10.1021/bi200538j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Roseobacter denitrificans is a marine bacterium capable of using a wide variety of different metabolic schemes and in particular is an anoxygenic aerobic photosynthetic bacterium. In the work reported here we use a deletion mutant that we have constructed to investigate the structural origin of the unusual High-800 light-harvesting complex absorption in this bacterium. We suggest that the structure is essentially unaltered when compared to the usual nonameric complexes but that a change in the environment of the C(13:1) carbonyl group is responsible for the change in spectrum. We tentatively relate this change to the presence of a serine residue in the α-polypeptide. Surprisingly, the low spectral overlap between the peripheral and core light-harvesting systems appears not to compromise energy collection efficiency too severely. We suggest that this may be at the expense of maintaining a low antenna size.
Collapse
Affiliation(s)
- Katia Duquesne
- LISM, CNRS - Aix-Marseille University, Marseilles, France
| | | | | |
Collapse
|
17
|
Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, Schulten K. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chemphyschem 2011; 12:518-31. [PMID: 21344591 DOI: 10.1002/cphc.201000944] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster’s energy transfer formula, as used widely today in many fields of science, is also derived.
Collapse
Affiliation(s)
- Melih Şener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Forces guiding assembly of light-harvesting complex 2 in native membranes. Proc Natl Acad Sci U S A 2011; 108:9455-9. [PMID: 21606335 DOI: 10.1073/pnas.1004205108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interaction forces of membrane protein subunits are of importance in their structure, assembly, membrane insertion, and function. In biological membranes, and in the photosynthetic apparatus as a paradigm, membrane proteins fulfill their function by ensemble actions integrating a tight assembly of several proteins. In the bacterial photosynthetic apparatus light-harvesting complexes 2 (LH2) transfer light energy to neighboring tightly associated core complexes, constituted of light-harvesting complexes 1 (LH1) and reaction centers (RC). While the architecture of the photosynthetic unit has been described, the forces and energies assuring the structural and functional integrity of LH2, the assembly of LH2 complexes, and how LH2 interact with the other proteins in the supramolecular architecture are still unknown. Here we investigate the molecular forces of the bacterial LH2 within the native photosynthetic membrane using atomic force microscopy single-molecule imaging and force measurement in combination. The binding between LH2 subunits is fairly weak, of the order of k(B)T, indicating the importance of LH2 ring architecture. In contrast LH2 subunits are solid with a free energy difference of 90 k(B)T between folded and unfolded states. Subunit α-helices unfold either in one-step, α- and β-polypeptides unfold together, or sequentially. The unfolding force of transmembrane helices is approximately 150 pN. In the two-step unfolding process, the β-polypeptide is stabilized by the molecular environment in the membrane. Hence, intermolecular forces influence the structural and functional integrity of LH2.
Collapse
|
19
|
Woronowicz K, Sha D, Frese RN, Niederman RA. The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers. Biochemistry 2011; 50:4819-29. [PMID: 21366273 DOI: 10.1021/bi101667e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A functional proteomic analysis of the intracytoplasmic membrane (ICM) development process was performed in Rhodobacter sphaeroides during adaptation from high-intensity illumination to indirect diffuse light. This initiated an accelerated synthesis of the peripheral light-harvesting 2 (LH2) complex relative to that of LH1-reaction center (RC) core particles. After 11 days, ICM vesicles (chromatophores) and membrane invagination sites were isolated by rate-zone sedimentation and subjected to clear native gel electrophoresis. Proteomic analysis of gel bands containing the RC-LH1 and -LH2 complexes from digitonin-solubilized chromatophores revealed high levels of comigrating electron transfer enzymes, transport proteins, and membrane assembly factors relative to their equivalent gel bands from cells undergoing adaptation to direct low-level illumination. The GroEL chaperonin accounted for >65% of the spectral counts in the RC-LH1 band from membrane invagination sites, which together with the appearance of a universal stress protein suggested that the viability of these cells was challenged by light limitation. Functional aspects of the photosynthetic unit assembly process were monitored by near-IR fast repetition rate analysis of variable fluorescence arising from LH-bacteriochlorophyll a components. The quantum yield of the primary charge separation during the early stages of adaptation showed a gradual increase (variable/maximal fluorescence = 0.78-0.83 between 0 and 4 h), while the initial value of ~70 for the functional absorption cross section (σ) gradually increased to 130 over 4 days. These dramatic σ increases showed a direct relation to gradual slowing of the RC electron transport turnover rate (τ(QA)) from ~1.6 to 6.4 ms and an ~3-fold slowing of the rate of reoxidation of the ubiquinone pool. These slowed rates are not due to changes in UQ pool size, suggesting that the relation between increasing σ and τ(QA) reflects the imposition of constraints upon free diffusion of ubiquinone redox species between the RC and cytochrome bc(1) complex as the membrane bilayer becomes densely packed with LH2 rings.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, Piscataway, New Jersey 08854-8082, USA
| | | | | | | |
Collapse
|
20
|
Liu LN, Sturgis JN, Scheuring S. Native architecture of the photosynthetic membrane from Rhodobacter veldkampii. J Struct Biol 2010; 173:138-45. [PMID: 20797440 DOI: 10.1016/j.jsb.2010.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 11/27/2022]
Abstract
The photosynthetic membrane in purple bacteria contains several pigment-protein complexes that assure light capture and establishment of the chemiosmotic gradient. The bioenergetic tasks of the photosynthetic membrane require the strong interaction between these various complexes. In the present work, we acquired the first images of the native outer membrane architecture and the supramolecular organization of the photosynthetic apparatus in vesicular chromatophores of Rhodobacter (Rb.) veldkampii. Mixed with LH2 (light-harvesting complex 2) rings, the PufX-containing LH1-RC (light-harvesting complex 1--reaction center) core complexes appear as C-shaped monomers, with random orientations in the photosynthetic membrane. Within the LH1 fence surrounding the RC, a remarkable gap that is probably occupied (or partially occupied) by PufX is visualized. Sequence alignment revealed that one specific region in PufX may be essential for PufX-induced core dimerization. In this region of ten amino acids in length all Rhodobacter species had five conserved amino acids, with the exception of Rb. veldkampii. Our findings provide direct evidence that the presence of PufX in Rb. veldkampii does not directly govern the dimerization of LH1-RC core complexes in the native membrane. It is indicated, furthermore, that the high membrane curvature of Rb. veldkampii chromatophores (Rb. veldkampii features equally small vesicular chromatophores alike Rb. sphaeroides) is not due to membrane bending induced by dimeric RC-LH1-PufX cores, as it has been proposed in Rb. sphaeroides.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institut Curie, U1006 INSERM, UMR168 CNRS, 26 Rue d'Ulm, 75248 Paris, France
| | | | | |
Collapse
|
21
|
Şener M, Strümpfer J, Timney JA, Freiberg A, Hunter CN, Schulten K. Photosynthetic vesicle architecture and constraints on efficient energy harvesting. Biophys J 2010; 99:67-75. [PMID: 20655834 PMCID: PMC2895385 DOI: 10.1016/j.bpj.2010.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/16/2010] [Accepted: 04/05/2010] [Indexed: 11/24/2022] Open
Abstract
Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Collapse
Affiliation(s)
- Melih Şener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Johan Strümpfer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - John A. Timney
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
22
|
Scheuring S, Dufrêne YF. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol 2010; 75:1327-36. [DOI: 10.1111/j.1365-2958.2010.07064.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|