1
|
Haeger G, Wirges J, Bongaerts J, Schörken U, Siegert P. Perspectives of aminoacylases in biocatalytic synthesis of N-acyl-amino acids surfactants. Appl Microbiol Biotechnol 2024; 108:495. [PMID: 39453420 PMCID: PMC11511702 DOI: 10.1007/s00253-024-13328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Many industrial processes are performed using harmful chemicals. The current technical synthesis of N-acyl-amino acids relies on acyl chlorides, which are typically obtained from phosgene chemistry. A greener alternative is the application of whole cells or enzymes to carry out synthesis in an environmentally friendly manner. Aminoacylases belong to the hydrolase family and the resolution of racemic mixtures of N-acetyl-amino acids is a well-known industrial process. Several new enzymes accepting long-chain fatty acids as substrates were discovered in recent years. This article reviews the synthetic potential of aminoacylases to produce biobased N-acyl-amino acid surfactants. The focus lays on a survey of the different types of aminoacylases available for synthesis and their reaction products. The enzymes are categorized according to their protein family classification and their biochemical characteristics including substrate spectra, reaction optima and process stability, both in hydrolysis and under process conditions suitable for synthesis. Finally, the benefits and future challenges of enzymatic N-acyl-amino acid synthesis with aminoacylases will be discussed. KEY POINTS: • Enzymatic synthesis of N-acyl-amino acids, biobased surfactants by aminoacylases.
Collapse
Affiliation(s)
- Gerrit Haeger
- Novo Nordisk, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jessika Wirges
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Ulrich Schörken
- Faculty of Applied Natural Sciences, TH Köln University of Applied Sciences - Leverkusen Campus, 51379, Leverkusen, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany.
| |
Collapse
|
2
|
Xu N, Zuo J, Li C, Gao C, Guo M. Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii. Int J Mol Sci 2024; 25:9321. [PMID: 39273268 PMCID: PMC11395192 DOI: 10.3390/ijms25179321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiaojiao Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chenghao Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Kelley EH, Osipiuk J, Korbas M, Endres M, Bland A, Ehrman V, Joachimiak A, Olsen KW, Becker DP. N α -acetyl-L-ornithine deacetylase from Escherichia coli and a ninhydrin-based assay to enable inhibitor identification. Front Chem 2024; 12:1415644. [PMID: 39055043 PMCID: PMC11270798 DOI: 10.3389/fchem.2024.1415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024] Open
Abstract
Bacteria are becoming increasingly resistant to antibiotics, therefore there is an urgent need for new classes of antibiotics to fight antibiotic resistance. Mammals do not express N ɑ -acetyl-L-ornithine deacetylase (ArgE), an enzyme that is critical for bacterial survival and growth, thus ArgE represents a promising new antibiotic drug target, as inhibitors would not suffer from mechanism-based toxicity. A new ninhydrin-based assay was designed and validated that included the synthesis of the substrate analog N 5, N 5-di-methyl N α-acetyl-L-ornithine (kcat/Km = 7.32 ± 0.94 × 104 M-1s-1). This new assay enabled the screening of potential inhibitors that absorb in the UV region, and thus is superior to the established 214 nm assay. Using this new ninhydrin-based assay, captopril was confirmed as an ArgE inhibitor (IC50 = 58.7 μM; Ki = 37.1 ± 0.85 μM), and a number of phenylboronic acid derivatives were identified as inhibitors, including 4-(diethylamino)phenylboronic acid (IC50 = 50.1 μM). Selected inhibitors were also tested in a thermal shift assay with ArgE using SYPRO Orange dye against Escherichia coli ArgE to observe the stability of the enzyme in the presence of inhibitors (captopril Ki = 35.9 ± 5.1 μM). The active site structure of di-Zn EcArgE was confirmed using X-ray absorption spectroscopy, and we reported two X-ray crystal structures of E. coli ArgE. In summary, we describe the development of a new ninhydrin-based assay for ArgE, the identification of captopril and phenylboronic acids as ArgE inhibitors, thermal shift studies with ArgE + captopril, and the first two published crystal structures of ArgE (mono-Zn and di-Zn).
Collapse
Affiliation(s)
- Emma H. Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Jerzy Osipiuk
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- eBERlight, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | | | - Michael Endres
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | - Alayna Bland
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Victoria Ehrman
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Andrzej Joachimiak
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Terrazas-López M, González-Segura L, Díaz-Vilchis A, Aguirre-Mendez KA, Lobo-Galo N, Martínez-Martínez A, Díaz-Sánchez ÁG. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity. Int J Biol Macromol 2024; 270:132281. [PMID: 38740150 DOI: 10.1016/j.ijbiomac.2024.132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
DapE is a Zn2+-metallohydrolase recognized as a drug target for bacterial control. It is a homodimer that requires the exchange of interface strands by an induced fit essential for catalysis. Identifying novel anti-DapE agents requires greater structural details. Most of the characterized DapEs are from the Gram-negative group. Here, two high-resolution DapE crystal structures from Enterococcus faecium are presented for the first time with novel aspects. A loosened enzyme intermediate between the open and closed conformations is observed. Substrates may bind to loose state, subsequently it closes, where hydrolysis occurs, and finally, the change to the open state leads to the release of the products. Mutation of His352 suggests a role, along with His194, in the oxyanion stabilization in the mono-metalated Zn2+ isoform, while in the di-metalated isoform, the metal center 2 complements it function. An aromatic-π box potentially involved in the interaction of DapE with other proteins, and a peptide flip could determine the specificity in the Gram-positive ArgE/DapE group. Finally, details of two extra-catalytic cavities whose geometry changes depending on the conformational state of the enzyme are presented. These cavities could be a target for developing non-competitive agents that trap the enzyme in an inactive state.
Collapse
Affiliation(s)
- Manuel Terrazas-López
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Lilian González-Segura
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Adelaida Díaz-Vilchis
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Kelly Annecy Aguirre-Mendez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Naún Lobo-Galo
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Alejandro Martínez-Martínez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Ángel G Díaz-Sánchez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico.
| |
Collapse
|
5
|
Kelley EH, Minasov G, Konczak K, Shuvalova L, Brunzelle JS, Shukla S, Beulke M, Thabthimthong T, Olsen KW, Inniss NL, Satchell KJF, Becker DP. Biochemical and Structural Analysis of the Bacterial Enzyme Succinyl-Diaminopimelate Desuccinylase (DapE) from Acinetobacter baumannii. ACS OMEGA 2024; 9:3905-3915. [PMID: 38284080 PMCID: PMC10809365 DOI: 10.1021/acsomega.3c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
There is an urgent need for new antibiotics given the rise of antibiotic resistance, and succinyl-diaminopimelate desuccinylase (DapE, E.C. 3.5.1.18) has emerged as a promising bacterial enzyme target. DapE from Haemophilus influenzae (HiDapE) has been studied and inhibitors identified, but it is essential to explore DapE from different species to assess selective versus broad-spectrum therapeutics. We have determined the structure of DapE from the ESKAPE pathogen Acinetobacter baumannii (AbDapE) and studied inhibition by known inhibitors of HiDapE. AbDapE is inhibited by captopril and sulfate comparable to HiDapE, but AbDapE was not significantly inhibited by a known indoline sulfonamide HiDapE inhibitor. Captopril and sulfate both stabilize HiDapE by increasing the thermal melting temperature (Tm) in thermal shift assays. By contrast, sulfate decreases the stability of the AbDapE enzyme, whereas captopril increases the stability. Further, we report two crystal structures of selenomethionine-substituted AbDapE in the closed conformation, one with AbDapE in complex with succinate derived from enzymatic hydrolysis of N6-methyl-l,l-SDAP substrate and acetate (PDB code 7T1Q, 2.25 Å resolution), and a crystal structure of AbDapE with bound succinate along with l-(S)-lactate, a product of degradation of citric acid from the crystallization buffer during X-ray irradiation (PDB code 8F8O, 2.10 Å resolution).
Collapse
Affiliation(s)
- Emma H. Kelley
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - George Minasov
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Katherine Konczak
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Ludmilla Shuvalova
- Department
of Pharmacology, Northwestern University,
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Joseph S. Brunzelle
- Northwestern
Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Shantanu Shukla
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Megan Beulke
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Teerana Thabthimthong
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Kenneth W. Olsen
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Nicole L. Inniss
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Karla J. F. Satchell
- Department
of Microbiology-Immunology, Northwestern
University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center
for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Daniel P. Becker
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
6
|
Sun S, Tang N, Han K, Wang Q, Xu Q. Effects of 2-Phenylethanol on Controlling the Development of Fusarium graminearum in Wheat. Microorganisms 2023; 11:2954. [PMID: 38138097 PMCID: PMC10745961 DOI: 10.3390/microorganisms11122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Applying plant-derived fungicides is a safe and sustainable way to control wheat scab. In this study, volatile organic compounds (VOCs) of wheat cultivars with and without the resistance gene Fhb1 were analyzed by GC-MS, and 2-phenylethanol was screened out. The biocontrol function of 2-phenylethanol on Fusarium graminearum was evaluated in vitro and in vivo. Metabolomics analysis indicated that 2-phenylethanol altered the amino acid pathways of F. graminearum, affecting its normal life activities. Under SEM and TEM observation, the mycelial morphology changed, and the integrity of the cell membrane was destroyed. Furthermore, 2-phenylethanol could inhibit the production of mycotoxins (DON, 3-ADON, 15-ADON) by F. graminearum and reduce grain contamination. This research provides new ideas for green prevention and control of wheat FHB in the field.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Kun Han
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| |
Collapse
|
7
|
Haeger G, Probst J, Jaeger K, Bongaerts J, Siegert P. Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans. FEBS Open Bio 2023; 13:2224-2238. [PMID: 37879963 PMCID: PMC10699109 DOI: 10.1002/2211-5463.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236T . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC3.5.1.14), designated SgAA, and an ε-lysine acylase (EC3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-l-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.
Collapse
Affiliation(s)
- Gerrit Haeger
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Johanna Probst
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfJülichGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Johannes Bongaerts
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Petra Siegert
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| |
Collapse
|
8
|
Cao L, Zou J, Qin B, Bei S, Ma W, Yan B, Jin X, Zhang Y. Response of exogenous melatonin on transcription and metabolism of soybean under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14038. [PMID: 37882298 DOI: 10.1111/ppl.14038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Amino acid metabolism is an important factor in regulating nitrogen source assimilation and source/sink transport in soybean. Melatonin can improve plant stress resistance, but whether it affects amino acid metabolism is not known. Therefore, this study investigated whether exogenous melatonin had an effect on amino acid metabolism of soybean under drought conditions and explored its relationship with yield. The treatments were normal water supply treatment (WW), drought stress treatment (D), drought stress and melatonin treatment group (D + M), sprayed with 100 μmol/L melatonin. The effects of melatonin on amino acid metabolism and grain filling were studied by physiological and omics experiments using Kangxian 9 (drought-sensitive variety) and Suinong 26 (drought-resistant variety) soybean cultivars. The results showed that drought stress decreased the activity of carbon and nitrogen metabolizing enzymes, which inhibited the accumulation of dry matter and protein, and decreased the yield. In the drought-sensitive soybean variety, glycoenzymes and amino acid synthetases synthetic genes were upregulated in melatonin-treated soybeans, hence carbon and nitrogen metabolism enzyme activity increased, increasing the carbohydrate and amino acid contents simultaneously. This resulted in higher dry matter and yield than drought-stressed soybean not treated with melatonin. In the drought-resistant variety, the grain weight per plant increased by 7.98% and 6.57% in 2020 and 2021, respectively, while it increased by 23.20% and 14.07% in the drought-sensitive variety during the respective years. In conclusion, melatonin treatment can enhance the activity of nitrogen and carbon metabolism and amino acid content by upregulating the expression of soybean metabolic pathway and related genes, thus increasing the yield of soybean under drought stress.
Collapse
Affiliation(s)
- Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingnan Zou
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Bin Qin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shijun Bei
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Weiran Ma
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Bowei Yan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xijun Jin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Technology Research Center, Daqing, China
| |
Collapse
|
9
|
Liveris ZJ, Kelley EH, Simmons E, Konczak K, Lutz MR, Ballicora M, Olsen KW, Becker DP. Synthesis and characterization of the N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) alternate substrate analog N,N-dimethyl-l,l-SDAP. Bioorg Med Chem 2023; 91:117415. [PMID: 37459673 DOI: 10.1016/j.bmc.2023.117415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Growing antibiotic resistance by pathogenic bacteria has led to a global crisis. The bacterial enzyme N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) provides a very attractive target for the discovery of a new class of antibiotics, as it resides exclusively in many pathogenic bacterial strains and is a key enzyme in the lysine biosynthetic pathway. This pathway is responsible for the production of lysine as well as meso-diaminopimelate (m-DAP), both of which are required for peptidoglycan cell-wall synthesis, and lysine for peptide synthesis. The enzyme DapE catalyzes the hydrolysis of N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) to succinate and l,l-diaminopimelic acid (l,l-DAP), and due to its absence in humans, inhibition of DapE avoids mechanism-based side effects. We have executed the asymmetric synthesis of N,N-dimethyl-SDAP, an l,l-SDAP substrate analog and an analog of the synthetic substrate of our previously described DapE assay. Previous modeling studies advocated that N,N-dimethyl-SDAP might function as an inhibitor, however the compound behaves as a substrate, and we have demonstrated the use of N,N-dimethyl-SDAP as the substrate in a modified ninhydrin-based DapE assay. Thermal shift experiments of DapE in the presence of N,N-dimethyl-SDAP are consistent with a melt temperature (Tm) shifted by succinate, the product of enzymatic hydrolysis.
Collapse
Affiliation(s)
- Zachary J Liveris
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Emma H Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Emma Simmons
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Katherine Konczak
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Marlon R Lutz
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Miguel Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States.
| |
Collapse
|
10
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
11
|
Paul A, Mishra S. Deciphering the role of the two metal-binding sites of DapE enzyme via metal substitution. Comput Biol Chem 2023; 103:107832. [PMID: 36805170 DOI: 10.1016/j.compbiolchem.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
DapE is a microbial metalloenzyme that hosts two Zn ions in its active site, although it shows catalytic activity with varying efficiency when the Zn ions in one or both of its metal-binding sites (MBS) are replaced by other transition-metal ions. The metal-ion promiscuity of DapE is believed to be a microbial strategy to overcome the homeostatic regulation of Zn ions by the mammalian host. Here, a hybrid QM/MM study is performed on a series of mixed-metal DapEs, where the Zn ion in the first MBS (MBS-1) is substituted by Mn, Co, Ni, and Cu ions, while the MBS-2 is occupied by Zn(II). The substrate binding affinity and the mechanism of catalytic action are estimated by optimizing the intermediates and the transition states with hybrid QM/MM method. Comparison of the binding affinity of the MBS-1 and MBS-2 substituted DapEs reveals that the MBS-1 substitution does not affect the substrate binding affinity in the mixed-metal DapEs, while a strong metal specificity was observed in MBS-2 substituted DapEs. On the contrary, the activation energy barriers show a high metal specificity at MBS-1 compared to MBS-2. Taken together, the QM/MM studies indicate that MBS-2 leads the substrate binding process, while MBS-1 steers the catalytic activity of the DapE enzyme.
Collapse
Affiliation(s)
- Atanuka Paul
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
12
|
Muduli S, Mishra S. Ligands-induced open-close conformational change during DapE catalysis: Insights from molecular dynamics simulations. Proteins 2023; 91:781-797. [PMID: 36633566 DOI: 10.1002/prot.26466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
The microbial enzyme DapE plays a critical role in the lysine biosynthetic pathway and is considered as a potentially safe antibiotic target. In this study, atomistic simulations are employed to identify the modes of essential dynamics that define the conformational response of the enzyme to ligand binding and unbinding. The binding modes and the binding affinities of the products to the DapE enzyme are estimated from the MM-PBSA method, and the residues contributing to the ligand binding are identified. Various structural analyses and the principal component analysis of the molecular dynamics trajectories reveal that the removal of products from the active site causes a significant change in the overall enzyme structure. Both Cartesian and dihedral principal component analyses are used to characterize the structural changes in terms of domain unfolding and domain twisting motions. In the most dominant mode, that is, the domain unfolding motion, the two catalytic domains move away from the two dimerization domains of the dimeric enzyme, representing a closed-to-open conformational change. The conformational changes are initiated by the coordinated movement of three loops (Asp75-Pro82, Gly240-Asn244, and Thr347-Glu353) that trigger a domain-level movement. From multiple short trajectories, the time constant associated with the domain opening motion is estimated as 43.6 ns. Physiologically, this close-to-open conformational change is essential for the regeneration of the initial state of the enzyme for the subsequent cycle of catalytic action and provides the apo enzyme enough flexibility for efficient substrate binding.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
13
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
14
|
Brambley CA, Yared TJ, Gonzalez M, Jansch AL, Wallen JR, Weiland MH, Miller JM. Sphingomonas sp. KT-1 PahZ2 Structure Reveals a Role for Conformational Dynamics in Peptide Bond Hydrolysis. J Phys Chem B 2021; 125:5722-5739. [PMID: 34060838 PMCID: PMC8657308 DOI: 10.1021/acs.jpcb.1c01216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(aspartic acid) (PAA) is a common water-soluble polycarboxylate used in a broad range of applications. PAA biodegradation and environmental assimilation were first identified in river water bacterial strains, Sphingomonas sp. KT-1 and Pedobacter sp. KP-2. Within Sphingomonas sp. KT-1, PahZ1KT-1 cleaves β-amide linkages to oligo(aspartic acid) and then is degraded by PahZ2KT-1. Recently, we reported the first structure for PahZ1KT-1. Here, we report novel structures for PahZ2KT-1 bound to either Gd3+/Sm3+ or Zn2+ cations in a dimeric state consistent with M28 metallopeptidase family members. PahZ2KT-1 monomers include a dimerization domain and a catalytic domain with dual Zn2+ cations. MD methods predict the putative substrate binding site to span across the dimerization and catalytic domains, where NaCl promotes the transition from an open conformation to a closed conformation that positions the substrate adjacent to catalytic zinc ions. Structural knowledge of PahZ1KT-1 and PahZ2KT-1 will allow for protein engineering endeavors to develop novel biodegradation reagents.
Collapse
Affiliation(s)
- Chad A Brambley
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| | - Tarah J Yared
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Marriah Gonzalez
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| | - Amanda L Jansch
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Jamie R Wallen
- Department of Chemistry and Physics, Western Carolina University, 111 Memorial Drive, Cullowhee, North Carolina 28723, United States
| | - Mitch H Weiland
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Justin M Miller
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
15
|
Kochert M, Nocek BP, Habeeb Mohammad TS, Gild E, Lovato K, Heath TK, Holz RC, Olsen KW, Becker DP. Atomic-Resolution 1.3 Å Crystal Structure, Inhibition by Sulfate, and Molecular Dynamics of the Bacterial Enzyme DapE. Biochemistry 2021; 60:908-917. [PMID: 33721990 DOI: 10.1021/acs.biochem.0c00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the atomic-resolution (1.3 Å) X-ray crystal structure of an open conformation of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE, EC 3.5.1.18) from Neisseria meningitidis. This structure [Protein Data Bank (PDB) entry 5UEJ] contains two bound sulfate ions in the active site that mimic the binding of the terminal carboxylates of the N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) substrate. We demonstrated inhibition of DapE by sulfate (IC50 = 13.8 ± 2.8 mM). Comparison with other DapE structures in the PDB demonstrates the flexibility of the interdomain connections of this protein. This high-resolution structure was then utilized as the starting point for targeted molecular dynamics experiments revealing the conformational change from the open form to the closed form that occurs when DapE binds l,l-SDAP and cleaves the amide bond. These simulations demonstrated closure from the open to the closed conformation, the change in RMS throughout the closure, and the independence in the movement of the two DapE subunits. This conformational change occurred in two phases with the catalytic domains moving toward the dimerization domains first, followed by a rotation of catalytic domains relative to the dimerization domains. Although there were no targeting forces, the substrate moved closer to the active site and bound more tightly during the closure event.
Collapse
Affiliation(s)
- Matthew Kochert
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Boguslaw P Nocek
- The Center for Structural Genomics of Infectious Diseases, Computation Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Thahani S Habeeb Mohammad
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Elliot Gild
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Kaitlyn Lovato
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Tahirah K Heath
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Richard C Holz
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
16
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Bustos-Jaimes I, Marcos-Víquez JÁ, González-Segura L, Díaz-Sánchez ÁG. Interaction of N-succinyl diaminopimelate desuccinylase with orphenadrine and disulfiram. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Cuen-Andrade JL, de la Rosa LA, Alvarez-Parrilla E, Martínez-Martínez A, Díaz-Sánchez ÁG. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids. Biochimie 2020; 177:198-212. [DOI: 10.1016/j.biochi.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022]
|
18
|
Reidl CT, Heath TK, Darwish I, Torrez RM, Moore M, Gild E, Nocek BP, Starus A, Holz RC, Becker DP. Indoline-6-Sulfonamide Inhibitors of the Bacterial Enzyme DapE. Antibiotics (Basel) 2020; 9:E595. [PMID: 32933028 PMCID: PMC7560015 DOI: 10.3390/antibiotics9090595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Inhibitors of the bacterial enzyme dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18) hold promise as antibiotics with a new mechanism of action. Herein we describe the discovery of a new series of indoline sulfonamide DapE inhibitors from a high-throughput screen and the synthesis of a series of analogs. Inhibitory potency was measured by a ninhydrin-based DapE assay recently developed by our group. Molecular docking experiments suggest active site binding with the sulfonamide acting as a zinc-binding group (ZBG).
Collapse
Affiliation(s)
- Cory T. Reidl
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tahirah K. Heath
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
| | - Iman Darwish
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
| | - Rachel M. Torrez
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
| | - Maxwell Moore
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
| | - Elliot Gild
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
| | - Boguslaw P. Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA;
| | - Anna Starus
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
| | - Richard C. Holz
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (C.T.R.); (T.K.H.); (I.D.); (R.M.T.); (M.M.); (E.G.); (A.S.)
| |
Collapse
|
19
|
Kelly SM, Lanigan N, O'Neill IJ, Bottacini F, Lugli GA, Viappiani A, Turroni F, Ventura M, van Sinderen D. Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure. Sci Rep 2020; 10:11598. [PMID: 32665665 PMCID: PMC7360559 DOI: 10.1038/s41598-020-68179-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the current study, we show that biofilm formation by various strains and species belonging to Bifidobacterium, a genus that includes gut commensals with reported health-promoting activities, is induced by high concentrations of bile (0.5% (w/v) or higher) and individual bile salts (20 mM or higher), rather than by acid or osmotic stress. The transcriptomic response of a bifidobacterial prototype Bifidobacterium breve UCC2003 to such high bile concentrations was investigated and a random transposon bank of B. breve UCC2003 was screened for mutants that affect biofilm formation in order to identify genes involved in this adaptive process. Eleven mutants affected in their ability to form a biofilm were identified, while biofilm formation capacity of an insertional mutation in luxS and an exopolysaccharide (EPS) negative B. breve UCC2003 was also studied. Reduced capacity to form biofilm also caused reduced viability when exposed to porcine bile. We propose that bifidobacterial biofilm formation is an adaptive response to high concentrations of bile in order to avoid bactericidal effects of high bile concentrations in the gastrointestinal environment. Biofilm formation appears to be a multi-factorial process involving EPS production, proteins and extracellular DNA release, representing a crucial strategy in response to bile stress in order to enhance fitness in the gut environment.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Noreen Lanigan
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Ian J O'Neill
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Western Road, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
20
|
Cunha AF, Andrade HM, Souza FN, Fialho Júnior LC, Rosa DLSO, Ramos Sanchez EM, Gidlund M, Goto H, Brito MAVP, Guimarães AS, Lage AP, Reis LC, Della Libera AMMP, Heinemann MB, Cerqueira MMOP. Comparison of antibody repertories against Staphylococcus aureus in healthy and infected dairy cows with a distinct mastitis history and vaccinated with a polyvalent mastitis vaccine. J Dairy Sci 2020; 103:4588-4605. [PMID: 32113759 DOI: 10.3168/jds.2019-17084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is one of the pathogens most frequently isolated from cases of mastitis worldwide. To decrease the effect of S. aureus mastitis in dairy farming, alternative strategies for controlling mastitis are needed that depend on a better knowledge of cow-to-cow variations in S. aureus antibody production. The present study sought to explore the diversity of S. aureus antibodies produced by dairy cows with a distinct mastitis history and vaccinated with a polyvalent mastitis vaccine. We obtained protein extracts from S. aureus isolates derived from persistent subclinical mastitis. Proteins were fractionated using 2-dimensional gel electrophoresis and Western blotting. Then, Western blotting membranes were exposed to sera from 24 dairy cows that had been divided into the following groups: vaccinated dairy cows that were infected with S. aureus, further subdivided according to whether they (a) remained infected by S. aureus or (b) recovered from the intramammary infection; unvaccinated dairy cows infected with S. aureus; and vaccinated healthy dairy cows with no history of S. aureus mastitis. Proteins found to be reactive by Western blot were identified by mass spectrometry (MALDI/TOF-TOF). Our most important finding was that F0F1 ATP synthase subunit α, succinyl-diaminopimelate desuccinylase, and cysteinyl-tRNA synthetase were potential candidate proteins for the prevention of S. aureus mastitis. This study strengthens the notion that variations among animals should not be ignored and shows that the heterogeneity of antibody production against anti-staphylococcal antigens in animals may enable the identification of new immunotherapy targets.
Collapse
Affiliation(s)
- A F Cunha
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil; Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil.
| | - H M Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - F N Souza
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil; Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil; Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; Programa de Pós-graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
| | - L C Fialho Júnior
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - D L S O Rosa
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil; Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - E M Ramos Sanchez
- Laboratório de Sorologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil; Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - M Gidlund
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - H Goto
- Laboratório de Sorologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - M A V P Brito
- EMBRAPA-Gado de Leite, Avenida Eugênio do Nascimento, 610, Juiz de Fora 36038-330, Brazil
| | - A S Guimarães
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - A P Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - L C Reis
- Laboratório de Sorologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - A M M P Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - M B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - M M O P Cerqueira
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| |
Collapse
|
21
|
Dutta D, Mishra S. L-Captopril and its derivatives as potential inhibitors of microbial enzyme DapE: A combined approach of drug repurposing and similarity screening. J Mol Graph Model 2018; 84:82-89. [PMID: 29936366 DOI: 10.1016/j.jmgm.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The perils of antimicrobial drug resistance can be overcome by finding novel antibiotic targets and corresponding small molecule inhibitors. Microbial enzyme DapE is a promising antibiotic target due to its importance to the bacterial survival. The potency of L-Captopril, a well known angiotensin-converting enzyme inhibitor, as an inhibitor of DapE enzyme has been evaluated by analyzing its binding modes and binding affinity towards DapE enzyme. L-Captopril is found to bind the metal centers of DapE enzyme either via its thiolate group or through its carboxylate group. While the latter binding mode is found to be thermodynamically favorable, the former binding mode, also seen in the crystal structure, is kinetically favored. To optimize the binding affinity of the inhibitor towards DapE enzyme, a series of L-Captopril-based inhibitors have been modelled by changing the side groups of L-Captopril. The introduction of a bipolar functional group at the C4 position of the pyrrolidine ring of L-Captopril and the substitution of the thiol group with a carboxylate group, have been shown to provide excellent enzyme affinity that supersedes the binding affinity of DapE enzyme towards its natural substrate, thus making this molecule a potential inhibitor with great promise.
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
22
|
Badawi M, Moumen B, Giraud I, Grève P, Cordaux R. Investigating the Molecular Genetic Basis of Cytoplasmic Sex Determination Caused by Wolbachia Endosymbionts in Terrestrial Isopods. Genes (Basel) 2018; 9:genes9060290. [PMID: 29890648 PMCID: PMC6026926 DOI: 10.3390/genes9060290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
In animals, sexual differences between males and females are usually determined by sex chromosomes. Alternatively, sex may also be determined by vertically transmitted intracellular microbial endosymbionts. The best known cytoplasmic sex manipulative endosymbiont is Wolbachia which can, for instance, feminize genetic males into phenotypic females in the terrestrial isopod Armadillidium vulgare. However, the molecular genetic basis of cytoplasmic sex determination is unknown. To identify candidate genes of feminization induced by Wolbachia strain wVulC from A. vulgare, we sequenced the genome of Wolbachia strain wCon from Cylisticus convexus, the most closely related known Wolbachia strain to wVulC that does not induce feminization, and compared it to the wVulC genome. Then, we performed gene expression profiling of the 216 resulting wVulC candidate genes throughout host developmental stages in A. vulgare and the heterologous host C. convexus. We identified a set of 35 feminization candidate genes showing differential expression during host sexual development. Interestingly, 27 of the 35 genes are present in the f element, which is a piece of a feminizing Wolbachia genome horizontally transferred into the nuclear genome of A. vulgare and involved in female sex determination. Assuming that the molecular genetic basis of feminization by Wolbachia and the f element is the same, the 27 genes are candidates for acting as master sex determination genes in A. vulgare females carrying the f element.
Collapse
Affiliation(s)
- Myriam Badawi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
23
|
Practical spectrophotometric assay for the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase, a potential antibiotic target. PLoS One 2018; 13:e0196010. [PMID: 29698518 PMCID: PMC5919655 DOI: 10.1371/journal.pone.0196010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
A new enzymatic assay for the bacterial enzyme succinyl-diaminopimelate desuccinylase (DapE, E.C. 3.5.1.18) is described. This assay employs N6-methyl-N2-succinyl-L,L-diaminopimelic acid (N6-methyl-L,L-SDAP) as the substrate with ninhydrin used to detect cleavage of the amide bond of the modified substrate, wherein N6-methylation enables selective detection of the primary amine enzymatic product. Molecular modeling supported preparation of the mono-N6-methylated-L,L-SDAP as an alternate substrate for the assay, given binding in the active site of DapE predicted to be comparable to the endogenous substrate. The alternate substrate for the assay, N6-methyl-L,L-SDAP, was synthesized from the tert-butyl ester of Boc-L-glutamic acid employing a Horner-Wadsworth-Emmons olefination followed by an enantioselective reduction employing Rh(I)(COD)(S,S)-Et-DuPHOS as the chiral catalyst. Validation of the new ninhydrin assay was demonstrated with known inhibitors of DapE from Haemophilus influenza (HiDapE) including captopril (IC50 = 3.4 [± 0.2] μM, 3-mercaptobenzoic acid (IC50 = 21.8 [±2.2] μM, phenylboronic acid (IC50 = 316 [± 23.6] μM, and 2-thiopheneboronic acid (IC50 = 111 [± 16] μM. Based on these data, this assay is simple and robust, and should be amenable to high-throughput screening, which is an important step forward as it opens the door to medicinal chemistry efforts toward the discovery of DapE inhibitors that can function as a new class of antibiotics.
Collapse
|
24
|
Nocek B, Reidl C, Starus A, Heath T, Bienvenue D, Osipiuk J, Jedrzejczak R, Joachimiak A, Becker DP, Holz RC. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism. Biochemistry 2018; 57:574-584. [PMID: 29272107 PMCID: PMC6886521 DOI: 10.1021/acs.biochem.7b01151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.
Collapse
Affiliation(s)
- Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Cory Reidl
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Anna Starus
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Tahirah Heath
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - David Bienvenue
- 19010 33rd Avenue Northeast, Seattle, Washington 98155, United States
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jerzy Osipiuk
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Richard C. Holz
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
25
|
Fujita S, Cho SH, Yoshida A, Hasebe F, Tomita T, Kuzuyama T, Nishiyama M. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW. Biochem Biophys Res Commun 2017; 491:409-415. [PMID: 28720495 DOI: 10.1016/j.bbrc.2017.07.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022]
Abstract
LysK is an M20 peptidase family enzyme that hydrolyzes the isopeptide bond between the carrier protein LysW and lysine in order to release lysine, which is the last step of lysine biosynthesis in Thermus thermophilus. In the present study, we determined the crystal structure of LysK in complex with lysine at a resolution of 2.4 Å. The α-amino group of the bound lysine was oriented toward the catalytic center, which was composed of the residues coordinating divalent metal ions for the hydrolysis of the isopeptide bond. An 11 Å-long path was observed from the active site binding lysine to the protein surface, which may be responsible for recognizing the C-terminal extension domain of LysW with the conserved EDWGE sequence. A positively-charged surface region was detected around the exit of the path, similar to other lysine biosynthetic enzymes using LysW as the carrier protein. Mutational studies of the surface residues provided a plausible model for the electrostatic interaction with LysW.
Collapse
Affiliation(s)
- Satomi Fujita
- Biotechnology Research Center, The University of Tokyo, Japan
| | - Su-Hee Cho
- Biotechnology Research Center, The University of Tokyo, Japan
| | - Ayako Yoshida
- Biotechnology Research Center, The University of Tokyo, Japan
| | - Fumihito Hasebe
- Biotechnology Research Center, The University of Tokyo, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Japan
| | | | | |
Collapse
|
26
|
Dutta D, Mishra S. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation. J Phys Chem B 2017; 121:7075-7085. [DOI: 10.1021/acs.jpcb.7b04431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
27
|
Du S, Lutkenhaus J. The N-succinyl-l,l-diaminopimelic acid desuccinylase DapE acts through ZapB to promote septum formation in Escherichia coli. Mol Microbiol 2017; 105:326-345. [PMID: 28470834 DOI: 10.1111/mmi.13703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Spatial regulation of cell division in Escherichia coli occurs at the stage of Z ring formation. It consists of negative (the Min and NO systems) and positive (Ter signal mediated by MatP/ZapA/ZapB) regulators. Here, we find that N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) facilitates functional Z ring formation by strengthening the Ter signal via ZapB. DapE depends on ZapB to localize to the Z ring and its overproduction suppresses the division defect caused by loss of both the Min and NO systems. DapE shows a strong interaction with ZapB and requires the presence of ZapB to exert its function in division. Consistent with the idea that DapE strengthens the Ter signal, overproduction of DapE supports cell division with reduced FtsZ levels and provides some resistance to the FtsZ inhibitors MinCD and SulA, while deletion of dapE, like deletion of zapB, exacerbates the phenotypes of cells impaired in Z ring formation such as ftsZ84 or a min mutant. Taken together, our results report DapE as a new component of the divisome that promotes the integrity of the Z ring by acting through ZapB and raises the possibility of the existence of additional divisome proteins that also function in other cellular processes.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
28
|
Yachnin BJ, Khare SD. Engineering carboxypeptidase G2 circular permutations for the design of an autoinhibited enzyme. Protein Eng Des Sel 2017; 30:321-331. [PMID: 28160000 PMCID: PMC6283397 DOI: 10.1093/protein/gzx005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 11/14/2022] Open
Abstract
Carboxypeptidase G2 (CPG2) is an Food and Drug Administration (FDA)-approved enzyme drug used to treat methotrexate (MTX) toxicity in cancer patients receiving MTX treatment. It has also been used in directed enzyme-prodrug chemotherapy, but this strategy has been hampered by off-site activation of the prodrug by the circulating enzyme. The development of a tumor protease activatable CPG2, which could be achieved using a circular permutation of CPG2 fused to an inactivating 'prodomain', would aid in these applications. We report the development of a protease accessibility-based screen to identify candidate sites for circular permutation in proximity of the CPG2 active site. The resulting six circular permutants showed similar expression, structure, thermal stability, and, in four cases, activity levels compared to the wild-type enzyme. We rationalize these results based on structural models of the permutants obtained using the Rosetta software. We developed a cell growth-based selection system, and demonstrated that when fused to periplasm-directing signal peptides, one of our circular permutants confers MTX resistance in Escherichia coli with equal efficiency as the wild-type enzyme. As the permutants have similar properties to wild-type CPG2, these enzymes are promising starting points for the development of autoinhibited, protease-activatable zymogen forms of CPG2 for use in therapeutic contexts.
Collapse
Affiliation(s)
- Brahm J. Yachnin
- Department of Chemistry & Chemical Biology and the Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| | - Sagar D. Khare
- Department of Chemistry & Chemical Biology and the Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Molesini B, Zanzoni S, Mennella G, Francese G, Losa A, L Rotino G, Pandolfini T. The Arabidopsis N-Acetylornithine Deacetylase Controls Ornithine Biosynthesis via a Linear Pathway with Downstream Effects on Polyamine Levels. PLANT & CELL PHYSIOLOGY 2017; 58:130-144. [PMID: 28064246 DOI: 10.1093/pcp/pcw167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Arabidopsis thaliana At4g17830 codes for a protein showing sequence similarity with the Escherichia coli N-acetylornithine deacetylase (EcArgE), an enzyme implicated in the linear ornithine (Orn) biosynthetic pathway. In plants, N-acetylornithine deacetylase (NAOD) activity has yet to be demonstrated; however, At4g17830-silenced and mutant (atnaod) plants display an impaired reproductive phenotype and altered foliar levels of Orn and polyamines (PAs). Here, we showed the direct connection between At4g17830 function and Orn biosynthesis, demonstrating biochemically that At4g17830 codes for a NAOD. These results are the first experimental proof that Orn can be produced in Arabidopsis via a linear pathway. In this study, to identify the role of AtNAOD in reproductive organs, we carried out a transcriptomic analysis on atnaod mutant and wild-type flowers. In the atnaod mutant, the most relevant effects were the reduced expression of cysteine-rich peptide-coding genes, known to regulate male-female cross-talk during reproduction, and variation in the expression of genes involved in nitrogen:carbon (N:C) status. The atnaod mutant also exhibited increased levels of sucrose and altered sensitivity to glucose. We hypothesize that AtNAOD participates in Orn and PA homeostasis, contributing to maintain an optimal N:C balance during reproductive development.
Collapse
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giuseppe Mennella
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per l'Orticoltura, Pontecagnano-Faiano (Salerno), Italy
| | - Gianluca Francese
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per l'Orticoltura, Pontecagnano-Faiano (Salerno), Italy
| | - Alessia Losa
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di ricerca per l'Orticoltura (ORL), Montanaso Lombardo (Lodi), Italy
| | - Giuseppe L Rotino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di ricerca per l'Orticoltura (ORL), Montanaso Lombardo (Lodi), Italy
| | | |
Collapse
|
30
|
Kalyoncu S, Heaner DP, Kurt Z, Bethel CM, Ukachukwu CU, Chakravarthy S, Spain JC, Lieberman RL. Enzymatic hydrolysis by transition-metal-dependent nucleophilic aromatic substitution. Nat Chem Biol 2016; 12:1031-1036. [PMID: 27694799 PMCID: PMC5110390 DOI: 10.1038/nchembio.2191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
Nitroaromatic compounds are typically toxic and resistant to degradation. Bradyrhizobium species strain JS329 metabolizes 5-nitroanthranilic acid (5NAA), which is a molecule secreted by Streptomyces scabies, the plant pathogen responsible for potato scab. The first biodegradation enzyme is 5NAA-aminohydrolase (5NAA-A), a metalloprotease family member that converts 5NAA to 5-nitrosalicylic acid. We characterized 5NAA-A biochemically and obtained snapshots of its mechanism. 5NAA-A, an octamer that can use several divalent transition metals for catalysis in vitro, employs a nucleophilic aromatic substitution mechanism. Unexpectedly, the metal in 5NAA-A is labile but is readily loaded in the presence of substrate. 5NAA-A is specific for 5NAA and cannot hydrolyze other tested derivatives, which are likewise poor inhibitors. The 5NAA-A structure and mechanism expand our understanding of the chemical ecology of an agriculturally important plant and pathogen, and will inform bioremediation and biocatalytic approaches to mitigate the environmental and ecological impact of nitroanilines and other challenging substrates.
Collapse
Affiliation(s)
- Sibel Kalyoncu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - David P. Heaner
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Zohre Kurt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Casey M. Bethel
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | | | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Advanced Photon Source, Argonne National Labs, Lemont, IL
| | - Jim C. Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
31
|
Dutta D, Mishra S. Loss of Catalytic Activity in the E134D, H67A, and H349A Mutants of DapE: Mechanistic Analysis with QM/MM Investigation. J Phys Chem B 2016; 120:11654-11664. [DOI: 10.1021/acs.jpcb.6b07446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
32
|
Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase. Sci Rep 2016; 6:23191. [PMID: 26976706 PMCID: PMC4791643 DOI: 10.1038/srep23191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug.
Collapse
|
33
|
Dutta D, Mishra S. Structural and mechanistic insight into substrate binding from the conformational dynamics in apo and substrate-bound DapE enzyme. Phys Chem Chem Phys 2016; 18:1671-80. [DOI: 10.1039/c5cp06024a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conformational dynamics induced by substrate binding in DapE enzyme.
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
34
|
Okumura N, Tamura J, Takao T. Evidence for an essential role of intradimer interaction in catalytic function of carnosine dipeptidase II using electrospray-ionization mass spectrometry. Protein Sci 2015; 25:511-22. [PMID: 26549037 DOI: 10.1002/pro.2842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022]
Abstract
Carnosine dipeptidase II (CN2/CNDP2) is an M20 family metallopeptidase that hydrolyses various dipeptides including β-alanyl-L-histidine (carnosine). Crystallographic analysis showed that CN2 monomer is composed of one catalytic and one dimerization domains, and likely to form homodimer. In this crystal, H228 residue of the dimerization domain interacts with the substrate analogue bestatin on the active site of the dimer counterpart, indicating that H228 is involved in enzymatic reaction. In the present study, the role of intradimer interaction of CN2 in its catalytic activity was investigated using electrospray-ionization time-of-flight mass spectrometry (ESI-TOF MS). First, a dimer interface mutant I319K was prepared and shown to be present as a folded monomer in solution as examined by using ESI-TOF MS. Since the mutant was inactive, it was suggested that dimer formation is essential to its enzymatic activity. Next, we prepared H228A and D132A mutant proteins with different N-terminal extended sequences, which enabled us to monitor dimer exchange reaction by ESI-TOF MS. The D132A mutant is a metal ligand mutant and also inactive. But the activity was partially recovered time-dependently when H228A and D132A mutant proteins were incubated together. In parallel, H228A/D132A heterodimer was formed as detected by ESI-TOF MS, indicating that interaction of a catalytic center with H228 residue of the other subunit is essential to the enzymatic reaction. These results provide evidence showing that intradimer interaction of H228 with the reaction center of the dimer counterpart is essential to the enzymatic activity of CN2.
Collapse
Affiliation(s)
- Nobuaki Okumura
- Laboratory of Homeostatic Integration, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jun Tamura
- Mass Spectrometry Business Unit, JEOL Ltd, Akishima, Tokyo, 196-8558, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
35
|
Starus A, Nocek B, Bennett B, Larrabee JA, Shaw DL, Sae-Lee W, Russo MT, Gillner DM, Makowska-Grzyska M, Joachimiak A, Holz RC. Inhibition of the dapE-Encoded N-Succinyl-L,L-diaminopimelic Acid Desuccinylase from Neisseria meningitidis by L-Captopril. Biochemistry 2015; 54:4834-44. [PMID: 26186504 DOI: 10.1021/acs.biochem.5b00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of the competitive inhibitor L-captopril to the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. L-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. L-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of L-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with L-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of L-captopril to the active site of DapE enzymes as well as important inhibitor-active site residue interaction's. Such information is critical for the design of new, potent inhibitors of DapE enzymes.
Collapse
Affiliation(s)
- Anna Starus
- †Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Boguslaw Nocek
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Brian Bennett
- §Department of Physics, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - James A Larrabee
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Daniel L Shaw
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Wisath Sae-Lee
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Marie T Russo
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Danuta M Gillner
- ⊥Department of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Magdalena Makowska-Grzyska
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrzej Joachimiak
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Richard C Holz
- #Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
36
|
Mandal RS, Das S. In silicoapproach towards identification of potential inhibitors ofHelicobacter pyloriDapE. J Biomol Struct Dyn 2014; 33:1460-73. [DOI: 10.1080/07391102.2014.954272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Structural Insights into the Substrate Specificity of (S)-Ureidoglycolate Amidohydrolase and Its Comparison with Allantoate Amidohydrolase. J Mol Biol 2014; 426:3028-40. [DOI: 10.1016/j.jmb.2014.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022]
|
38
|
Nocek B, Starus A, Makowska-Grzyska M, Gutierrez B, Sanchez S, Jedrzejczak R, Mack JC, Olsen KW, Joachimiak A, Holz RC. The dimerization domain in DapE enzymes is required for catalysis. PLoS One 2014; 9:e93593. [PMID: 24806882 PMCID: PMC4012986 DOI: 10.1371/journal.pone.0093593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/04/2014] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.
Collapse
Affiliation(s)
- Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Starus
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Blanca Gutierrez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Stephen Sanchez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Robert Jedrzejczak
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Jamey C. Mack
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Kenneth W. Olsen
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- * E-mail: (AJ); (RCH)
| | - Richard C. Holz
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (AJ); (RCH)
| |
Collapse
|
39
|
Uda NR, Upert G, Angelici G, Nicolet S, Schmidt T, Schwede T, Creus M. Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibioticdrug design. Metallomics 2014; 6:88-95. [DOI: 10.1039/c3mt00125c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Dutta D, Mishra S. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method. Phys Chem Chem Phys 2014; 16:26348-58. [DOI: 10.1039/c4cp03986f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substrate binding and the mechanism of action of the DapE-encodedN-succinyl-l,l-diaminopimelic acid desuccinylase (DapE).
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| |
Collapse
|
41
|
McGregor WC, Gillner DM, Swierczek SI, Liu D, Holz RC. Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli. SPRINGERPLUS 2013; 2:482. [PMID: 25674394 PMCID: PMC4320195 DOI: 10.1186/2193-1801-2-482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022]
Abstract
The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (Kd) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae confirming the assignment of H355 as well as H80 as active site ligands.
Collapse
Affiliation(s)
- Wade C McGregor
- The Department of Applied Sciences and Mathematics, College of Technology and Innovation, Arizona State University, Mesa, AZ 85212 USA
| | - Danuta M Gillner
- Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA ; The Department of Chemistry, Silesian University of Technology, Gliwice, 44-100 Poland
| | - Sabina I Swierczek
- Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA
| | - Dali Liu
- Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA
| | - Richard C Holz
- Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA ; Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA
| |
Collapse
|
42
|
Arêde P, Botelho T, Guevara T, Usón I, Oliveira DC, Gomis-Rüth FX. Structure-function studies of the staphylococcal methicillin resistance antirepressor MecR2. J Biol Chem 2013; 288:21267-21278. [PMID: 23733184 DOI: 10.1074/jbc.m112.448134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methicillin resistance in Staphylococcus aureus is elicited by the MecI-MecR1-MecA axis encoded by the mec locus. Recently, MecR2 was also identified as a regulator of mec through binding of the methicillin repressor, MecI. Here we show that plasmid-encoded full-length MecR2 restores resistance in a sensitive S. aureus mecR2 deletion mutant of the resistant strain N315. The crystal structure of MecR2 reveals an N-terminal DNA-binding domain, an intermediate scaffold domain, and a C-terminal dimerization domain that contributes to oligomerization. The protein shows structural similarity to ROK (repressors, open reading frames, and kinases) family proteins, which bind DNA and/or sugar molecules. We found that functional cell-based assays of three point mutants affecting residues participating in sugar binding in ROK proteins had no effect on the resistance phenotype. By contrast, MecR2 bound short double-stranded DNA oligonucleotides nonspecifically, and a deletion mutant affecting the N-terminal DNA-binding domain showed a certain effect on activity, thus contributing to resistance less than the wild-type protein. Similarly, a deletion mutant, in which a flexible segment of intermediate scaffold domain had been replaced by four glycines, significantly reduced MecR2 function, thus indicating that this domain may likewise be required for activity. Taken together, these results provide the structural basis for the activity of a methicillin antirepressor, MecR2, which would sequester MecI away from its cognate promoter region and facilitate its degradation.
Collapse
Affiliation(s)
- Pedro Arêde
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - Tiago Botelho
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain
| | - Tibisay Guevara
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain
| | - Isabel Usón
- the Institució Catalana de Recerca i Estudis Avançats, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, E-08028 Barcelona, Catalonia, Spain
| | - Duarte C Oliveira
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - F Xavier Gomis-Rüth
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, E-08028 Barcelona, Catalonia, Spain,.
| |
Collapse
|
43
|
Gillner DM, Becker DP, Holz RC. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. J Biol Inorg Chem 2013; 18:155-163. [PMID: 23223968 PMCID: PMC3862034 DOI: 10.1007/s00775-012-0965-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 01/12/2023]
Abstract
In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure-function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.
Collapse
Affiliation(s)
- Danuta M Gillner
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
- Department of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA
| | - Richard C Holz
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
| |
Collapse
|
44
|
Reinhard L, Mueller-Dieckmann J, Weiss MS. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of succinyl-diaminopimelate desuccinylase (Rv1202, DapE) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1089-93. [PMID: 22949202 PMCID: PMC3433205 DOI: 10.1107/s174430911203062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022]
Abstract
Succinyl-diaminopimelate desuccinylase from Mycobacterium tuberculosis (DapE, Rv1202) has been cloned, heterologously expressed in Escherichia coli and purified using standard chromatographic techniques. Diffraction-quality crystals were obtained at acidic pH from ammonium sulfate and PEG and diffraction data were collected from two crystals to resolutions of 2.40 and 2.58 Å, respectively. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 79.7, b = 76.0, c = 82.9 Å, β = 119°. The most probable content of the asymmetric unit was two molecules of DapE, which would correspond to a solvent content of 56%. Both examined crystals turned out to be pseudo-merohedrally twinned, with twin operator -h, -k, h + l and twin fractions of approximately 0.46 and 0.16, respectively.
Collapse
Affiliation(s)
- Linda Reinhard
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | |
Collapse
|
45
|
Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member. J Bacteriol 2012; 194:5759-68. [PMID: 22904279 DOI: 10.1128/jb.01056-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Carbamoyl-L-amino acid amidohydrolases (L-carbamoylases) are important industrial enzymes used in kinetic resolution of racemic mixtures of N-carbamoyl-amino acids due to their strict enantiospecificity. In this work, we report the first L-carbamoylase structure belonging to Geobacillus stearothermophilus CECT43 (BsLcar), at a resolution of 2.7 Å. Structural analysis of BsLcar and several members of the peptidase M20/M25/M40 family confirmed the expected conserved residues at the active site in this family, and site-directed mutagenesis revealed their relevance to substrate binding. We also found an unexpectedly conserved arginine residue (Arg(234) in BsLcar), proven to be critical for dimerization of the enzyme. The mutation of this sole residue resulted in a total loss of activity and prevented the formation of the dimer in BsLcar. Comparative studies revealed that the dimerization domain of the peptidase M20/M25/M40 family is a "small-molecule binding domain," allowing further evolutionary considerations for this enzyme family.
Collapse
|
46
|
Tao Y, Shokes JE, McGregor WC, Scott RA, Holz RC. Structural characterization of Zn(II)-, Co(II)-, and Mn(II)-loaded forms of the argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli. J Inorg Biochem 2012; 111:157-63. [PMID: 22459917 PMCID: PMC3543689 DOI: 10.1016/j.jinorgbio.2012.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/16/2011] [Accepted: 02/07/2012] [Indexed: 11/16/2022]
Abstract
The Zn, Co, and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra of the N-acetyl-l-ornithine deacetylase (ArgE) from Escherichia coli, loaded with one or two equivalents of divalent metal ions (i.e., [Zn(II)_(ArgE)], [Zn(II)Zn(II)(ArgE)], [Co(II)_(ArgE)], [Co(II)Co(II)(ArgE)], [Mn(II)_(ArgE)], and [Mn(II)Mn(II)(ArgE)]), were recorded. The Fourier transformed data (FT) for [Zn(II)_(ArgE)], [Zn(II)Zn(II)(ArgE)], [Co(II)_(ArgE)] and [Co(II)Co(II)(ArgE)] are dominated by a peak at 2.05Å, that can be fit assuming five or six light atom (N,O) scatterers. Inclusion of multiple-scattering contributions from the outer-shell atoms of a histidine-imidazole ring resulted in reasonable Debye-Waller factors for these contributions and a slight reduction in the goodness-of-fit value (f'). Furthermore, the data best fit a model that included a M-M vector at 3.3 and 3.4Å for Zn(II) and Co(II), respectively, suggesting the formation of a dinuclear site. Multiple scattering contributions from the outer-shell atoms of a histidine-imidazole rings are observed at ~3 and 4Å for Zn(II)- and Co(II)-loaded ArgE suggesting at least one histidine ligand at each metal binding site. Likewise, EXAFS data for Mn(II)-loaded ArgE are dominated by a peak at 2.19Å that was best fit assuming six light atom (N,O) scatterers. Due to poor signal to noise ratios for the Mn EXAFS spectra, no Mn-Mn vector could be modeled. Peak intensities for [M(II)_(ArgE)] vs. [M(II)M(II)(ArgE)] suggest the Zn(II), Co(II), and Mn(II) bind to ArgE in a cooperative manner. Since no structural data has been reported for any ArgE enzyme, the EXAFS data reported herein represent the first structural glimpse for ArgE enzymes. These data also provide a structural foundation for the future design of small molecules that function as inhibitors of ArgE and may potentially function as a new class of antibiotics.
Collapse
Affiliation(s)
| | | | | | - Robert A. Scott
- Address correspondence to: Richard C. Holz, Department of Chemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL 60626, Phone (773) 508-3092, Fax: (773) 508-3045, Internet: or Robert A. Scott, Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, Phone (706) 542-3739, Fax (706) 542-5901, Internet:
| | - Richard C. Holz
- Address correspondence to: Richard C. Holz, Department of Chemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL 60626, Phone (773) 508-3092, Fax: (773) 508-3045, Internet: or Robert A. Scott, Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, Phone (706) 542-3739, Fax (706) 542-5901, Internet:
| |
Collapse
|
47
|
Usha V, Lloyd AJ, Lovering AL, Besra GS. Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiol Lett 2012; 330:10-6. [PMID: 22339732 DOI: 10.1111/j.1574-6968.2012.02527.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/10/2012] [Accepted: 02/11/2012] [Indexed: 11/28/2022] Open
Abstract
Because of an increased emergence of resistance to current antitubercular drugs, there is a need for new antitubercular agents directed against novel targets. Diaminopimelic acid (DAP) biosynthetic enzymes are unique to bacteria and are absent in mammals and provide a rich source of essential targets for antitubercular chemotherapy. Herein, we review the structure and function of the mycobacterial DAP biosynthetic enzymes.
Collapse
|
48
|
Kim Y, Tesar C, Mire J, Jedrzejczak R, Binkowski A, Babnigg G, Sacchettini J, Joachimiak A. Structure of apo- and monometalated forms of NDM-1--a highly potent carbapenem-hydrolyzing metallo-β-lactamase. PLoS One 2011; 6:e24621. [PMID: 21931780 PMCID: PMC3169612 DOI: 10.1371/journal.pone.0024621] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/14/2011] [Indexed: 11/19/2022] Open
Abstract
The New Delhi Metallo-β-lactamase (NDM-1) gene makes multiple pathogenic microorganisms resistant to all known β-lactam antibiotics. The rapid emergence of NDM-1 has been linked to mobile plasmids that move between different strains resulting in world-wide dissemination. Biochemical studies revealed that NDM-1 is capable of efficiently hydrolyzing a wide range of β-lactams, including many carbapenems considered as "last resort" antibiotics. The crystal structures of metal-free apo- and monozinc forms of NDM-1 presented here revealed an enlarged and flexible active site of class B1 metallo-β-lactamase. This site is capable of accommodating many β-lactam substrates by having many of the catalytic residues on flexible loops, which explains the observed extended spectrum activity of this zinc dependent β-lactamase. Indeed, five loops contribute "keg" residues in the active site including side chains involved in metal binding. Loop 1 in particular, shows conformational flexibility, apparently related to the acceptance and positioning of substrates for cleavage by a zinc-activated water molecule.
Collapse
Affiliation(s)
- Youngchang Kim
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, United States of America
| | | | - Joseph Mire
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Andrew Binkowski
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - James Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, United States of America
- The University of Chicago, Department of Molecular Genetics & Cell Biology, Chicago, Illinois, United States of America
| |
Collapse
|
49
|
Botelho TO, Guevara T, Marrero A, Arêde P, Fluxà VS, Reymond JL, Oliveira DC, Gomis-Rüth FX. Structural and functional analyses reveal that Staphylococcus aureus antibiotic resistance factor HmrA is a zinc-dependent endopeptidase. J Biol Chem 2011; 286:25697-709. [PMID: 21622555 PMCID: PMC3138305 DOI: 10.1074/jbc.m111.247437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/07/2011] [Indexed: 12/17/2022] Open
Abstract
HmrA is an antibiotic resistance factor of methicillin-resistant Staphylococcus aureus. Molecular analysis of this protein revealed that it is not a muramidase or β-lactamase but a nonspecific double-zinc endopeptidase consisting of a catalytic domain and an inserted oligomerization domain, which probably undergo a relative interdomain hinge rotation upon substrate binding. The active-site cleft is located at the domain interface. Four HmrA protomers assemble to a large ∼170-kDa homotetrameric complex of 125 Å. All four active sites are fully accessible and ∼50-70 Å apart, far enough apart to act on a large meshwork substrate independently but simultaneously. In vivo studies with four S. aureus strains of variable resistance levels revealed that the extracellular addition of HmrA protects against loss of viability in the presence of oxacillin and that this protection depends on proteolytic activity. All of these results indicate that HmrA is a peptidase that participates in resistance mechanisms in vivo in the presence of β-lactams. Furthermore, our results have implications for most S. aureus strains of known genomic sequences and several other cocci and bacilli, which harbor close orthologs. This suggests that HmrA may be a new widespread antibiotic resistance factor in bacteria.
Collapse
Affiliation(s)
- Tiago O. Botelho
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Tibisay Guevara
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Aniebrys Marrero
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| | - Pedro Arêde
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - Viviana S. Fluxà
- the Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-301 Berne, Switzerland
| | - Jean-Louis Reymond
- the Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-301 Berne, Switzerland
| | - Duarte C. Oliveira
- the Center for Microbiological Resources, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica, Portugal, and
| | - F. Xavier Gomis-Rüth
- From the Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028 Barcelona, Spain
| |
Collapse
|
50
|
Selectivity of Inhibition of N-Succinyl-l,l-Diaminopimelic Acid Desuccinylase in Bacteria: The product of dapE-gene Is Not the Target of l-Captopril Antimicrobial Activity. Bioinorg Chem Appl 2011; 2011:306465. [PMID: 21577314 PMCID: PMC3092495 DOI: 10.1155/2011/306465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/21/2011] [Indexed: 12/03/2022] Open
Abstract
The emergence of bacterial strains that are resistant to virtually all currently available antibiotics underscores the importance of developing new antimicrobial compounds. N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a metallohydrolase involved in the meso-diaminopimelate (mDAP)/lysine biosynthetic pathway necessary for lysine biosynthesis and for building the peptidoglycan cell wall. Because DapE is essential for Gram-negative and some Gram-positive bacteria, DapE has been proposed as a good target for antibiotic development. Recently, l-captopril has been suggested as a lead compound for inhibition of DapE, although its selectivity for this enzyme target in bacteria remains unclear (Gillner et al. (2009)). Here, we tested the selectivity of l-captopril against DapE in bacteria. Since DapE knockout strains of gram-negative bacteria are viable upon chemical supplementation with mDAP, we reasoned that the antimicrobial activity of compounds targeting DapE should be abolished in mDAP-containing media. Although l-captopril had modest antimicrobial activity in Escherichia coli and in Salmonella enterica, to our surprise, inhibition of bacterial growth was independent both of mDAP supplementation and DapE over-expression. We conclude that DapE is not the main target of l-captopril inhibition in these bacteria. The methods implemented here will be useful for screening DapE-selective antimicrobial compounds directly in bacterial cultures.
Collapse
|