1
|
Gordon BH, Silvers R. 1H, 13C, and 15N resonance assignment of the 5'SL-bound La domain of the human La-related protein 6. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:165-173. [PMID: 40304844 DOI: 10.1007/s12104-025-10232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/30/2025] [Indexed: 05/02/2025]
Abstract
Human La-related protein 6 (HsLARP6) participates in the post-transcriptional regulation of type I collagen biosynthesis and is involved in the onset and progression of fibroproliferative disease. The RNA-binding protein HsLARP6 recognizes a hairpin structure known as the 5' stem-loop (5'SL) located at the junction of 5' untranslated and coding regions of type I collagen mRNA. Despite extensive biochemical and functional studies of the interaction between HsLARP6 and the 5'SL motif, the lack of high-resolution molecular data significantly hampers our understanding of the binding mechanism. Here, we introduced a shorter 5'SL model, named A2M5, reducing the molecular size of the protein-RNA complex as well as spectral overlap in RNA-based spectra. Furthermore, we reported the near-complete backbone and side chain resonance assignment of the La domain of HsLARP6 in a 1:1 complex with the A2M5 model RNA. These results will provide a significant platform for future NMR spectroscopic studies of 5'SL binding to the La domain of HsLARP6.
Collapse
Affiliation(s)
- Blaine H Gordon
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Robert Silvers
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA.
| |
Collapse
|
2
|
Astrab LR, Skelton ML, Caliari SR. Direct M2 macrophage co-culture overrides viscoelastic hydrogel mechanics to promote fibroblast activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618034. [PMID: 39463963 PMCID: PMC11507682 DOI: 10.1101/2024.10.13.618034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fibroblast activation drives fibrotic diseases such as pulmonary fibrosis. However, the complex interplay of how tissue mechanics and macrophage signals combine to influence fibroblast activation is not well understood. Here, we use hyaluronic acid hydrogels as a tunable cell culture system to mimic lung tissue stiffness and viscoelasticity. We applied this platform to investigate the influence of macrophage signaling on fibroblast activation. Fibroblasts cultured on stiff (50 kPa) hydrogels mimicking fibrotic tissue exhibit increased activation as measured by spreading as well as type I collagen and cadherin-11 expression compared to fibroblasts cultured on soft (1 kPa) viscoelastic hydrogels mimicking normal tissue. These trends were unchanged in fibroblasts cultured with macrophage-conditioned media. However, fibroblasts directly co-cultured with M2 macrophages show increased activation, even on soft viscoelastic hydrogels that normally suppress activation. Inhibition of interleukin 6 (IL6) signaling does not change activation in fibroblast-only cultures but ameliorates the pro-fibrotic effects of M2 macrophage co-culture. These results underscore the ability of direct M2 macrophage co-culture to override hydrogel viscoelasticity to promote fibroblast activation in an IL6-dependent manner. This work also highlights the utility of using hydrogels to deconstruct complex tissue microenvironments to better understand the interplay between microenvironmental mechanical and cellular cues.
Collapse
Affiliation(s)
- Leilani R. Astrab
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Mackenzie L. Skelton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Steven R. Caliari
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
3
|
Xiang X, Deng Q, Zheng Y, He Y, Ji D, Vejlupkova Z, Fowler JE, Zhou L. Genome-wide investigation of the LARP gene family: focus on functional identification and transcriptome profiling of ZmLARP6c1 in maize pollen. BMC PLANT BIOLOGY 2024; 24:348. [PMID: 38684961 PMCID: PMC11057080 DOI: 10.1186/s12870-024-05054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. RESULTS In this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs, cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions of ZmLARP genes in maize. Moreover, ZmLARP6c1 was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression of ZmLARP6c1 enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes included PABP homologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in a Zmlarp6c1::Ds mutant and ZmLARP6c1-overexpression line compared with the corresponding wild type. CONCLUSIONS The findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function of ZmLARP6c1 in maize pollen germination.
Collapse
Affiliation(s)
- Xiaoqin Xiang
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Qianxia Deng
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Zheng
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi He
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Dongpu Ji
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Lian Zhou
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
4
|
Mähönen K, Keskitalo S, Salokas K, Tuhkala A, Panelius J, Ranki A, Varjosalo M. Mass spectrometry -based proteomic analysis of the skin of patients with localized scleroderma. J Dermatol Sci 2024; 113:148-150. [PMID: 38350786 DOI: 10.1016/j.jdermsci.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Affiliation(s)
- Katariina Mähönen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Finland.
| | | | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, Finland
| | - Antti Tuhkala
- Institute of Biotechnology, University of Helsinki, Finland
| | - Jaana Panelius
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Finland
| | | |
Collapse
|
5
|
Zhou M, Ma Y, Rock EC, Chiang CC, Luker KE, Luker GD, Chen YC. Microfluidic single-cell migration chip reveals insights into the impact of extracellular matrices on cell movement. LAB ON A CHIP 2023; 23:4619-4635. [PMID: 37750357 PMCID: PMC10615797 DOI: 10.1039/d3lc00651d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Zarei Ghobadi M, Afsaneh E, Emamzadeh R. Gene biomarkers and classifiers for various subtypes of HTLV-1-caused ATLL cancer identified by a combination of differential gene co‑expression and support vector machine algorithms. Med Microbiol Immunol 2023:10.1007/s00430-023-00767-8. [PMID: 37222763 DOI: 10.1007/s00430-023-00767-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is pathogen-caused cancer that is progressed after the infection by human T-cell leukemia virus type 1. Four significant subtypes comprising acute, lymphoma, chronic, and smoldering have been identified for this cancer. However, there are no trustworthy prognostic biomarkers for these subtypes. We utilized a combination of two powerful network-based and machine-learning algorithms including differential co-expressed genes (DiffCoEx) and support vector machine-recursive feature elimination with cross-validation (SVM-RFECV) methods to categorize disparate ATLL subtypes from asymptomatic carriers (ACs). The results disclosed the significant involvement of CBX6, CNKSR1, and MAX in chronic, MYH10 and P2RY1 in acute, C22orf46 and HNRNPA0 in smoldering subtypes. These genes also can classify each ATLL subtype from AC carriers. The integration of the results of two powerful algorithms led to the identification of reliable gene classifiers and biomarkers for diverse ATLL subtypes.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | | | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
7
|
D’Arcy BR, Lennox AL, Manso Musso C, Bracher A, Escobar-Tomlienovich C, Perez-Sanchez S, Silver DL. Non-muscle myosins control radial glial basal endfeet to mediate interneuron organization. PLoS Biol 2023; 21:e3001926. [PMID: 36854011 PMCID: PMC9974137 DOI: 10.1371/journal.pbio.3001926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Radial glial cells (RGCs) are essential for the generation and organization of neurons in the cerebral cortex. RGCs have an elongated bipolar morphology with basal and apical endfeet that reside in distinct niches. Yet, how this subcellular compartmentalization of RGCs controls cortical development is largely unknown. Here, we employ in vivo proximity labeling, in the mouse, using unfused BirA to generate the first subcellular proteome of RGCs and uncover new principles governing local control of cortical development. We discover a cohort of proteins that are significantly enriched in RGC basal endfeet, with MYH9 and MYH10 among the most abundant. Myh9 and Myh10 transcripts also localize to endfeet with distinct temporal dynamics. Although they each encode isoforms of non-muscle myosin II heavy chain, Myh9 and Myh10 have drastically different requirements for RGC integrity. Myh9 loss from RGCs decreases branching complexity and causes endfoot protrusion through the basement membrane. In contrast, Myh10 controls endfoot adhesion, as mutants have unattached apical and basal endfeet. Finally, we show that Myh9- and Myh10-mediated regulation of RGC complexity and endfoot position non-cell autonomously controls interneuron number and organization in the marginal zone. Our study demonstrates the utility of in vivo proximity labeling for dissecting local control of complex systems and reveals new mechanisms for dictating RGC integrity and cortical architecture.
Collapse
Affiliation(s)
- Brooke R. D’Arcy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ashley L. Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Camila Manso Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Annalise Bracher
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carla Escobar-Tomlienovich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stephany Perez-Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Regeneration Center, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
8
|
Lee KJ, Rambault L, Bou-Gharios G, Clegg PD, Akhtar R, Czanner G, van ‘t Hof R, Canty-Laird EG. Collagen (I) homotrimer potentiates the osteogenesis imperfecta (oim) mutant allele and reduces survival in male mice. Dis Model Mech 2022; 15:dmm049428. [PMID: 36106514 PMCID: PMC9555767 DOI: 10.1242/dmm.049428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
The osteogenesis imperfecta murine (oim) model with solely homotrimeric (α1)3 type I collagen, owing to a dysfunctional α2(I) collagen chain, has a brittle bone phenotype, implying that the (α1)2(α2)1 heterotrimer is required for physiological bone function. Here, we comprehensively show, for the first time, that mice lacking the α2(I) chain do not have impaired bone biomechanical or structural properties, unlike oim homozygous mice. However, Mendelian inheritance was affected in male mice of both lines, and male mice null for the α2(I) chain exhibited age-related loss of condition. Compound heterozygotes were generated to test whether gene dosage was responsible for the less-severe phenotype of oim heterozygotes, after allelic discrimination showed that the oim mutant allele was not downregulated in heterozygotes. Compound heterozygotes had impaired bone structural properties compared to those of oim heterozygotes, albeit to a lesser extent than those of oim homozygotes. Hence, the presence of heterotrimeric type I collagen in oim heterozygotes alleviates the effect of the oim mutant allele, but a genetic interaction between homotrimeric type I collagen and the oim mutant allele leads to bone fragility.
Collapse
Affiliation(s)
- Katie J. Lee
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Lisa Rambault
- Département d'Informatique, Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - George Bou-Gharios
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Peter D. Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Gabriela Czanner
- School of Computer Science and Mathematics, Faculty of Engineering and Technology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Rob van ‘t Hof
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Elizabeth G. Canty-Laird
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
9
|
Ostrowska-Podhorodecka Z, Ding I, Norouzi M, McCulloch CA. Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Front Cell Dev Biol 2022; 10:869069. [PMID: 35359446 PMCID: PMC8961691 DOI: 10.3389/fcell.2022.869069] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Vimentin expression contributes to cellular mechanoprotection and is a widely recognized marker of fibroblasts and of epithelial-mesenchymal transition. But it is not understood how vimentin affects signaling that controls cell migration and extracellular matrix (ECM) remodeling. Recent data indicate that vimentin controls collagen deposition and ECM structure by regulating contractile force application to the ECM and through post-transcriptional regulation of ECM related genes. Binding of cells to the ECM promotes the association of vimentin with cytoplasmic domains of adhesion receptors such as integrins. After initial adhesion, cell-generated, myosin-dependent forces and signals that impact vimentin structure can affect cell migration. Post-translational modifications of vimentin determine its adaptor functions, including binding to cell adhesion proteins like paxillin and talin. Accordingly, vimentin regulates the growth, maturation and adhesive strength of integrin-dependent adhesions, which enables cells to tune their attachment to collagen, regulate the formation of cell extensions and control cell migration through connective tissues. Thus, vimentin tunes signaling cascades that regulate cell migration and ECM remodeling. Here we consider how specific properties of vimentin serve to control cell attachment to the underlying ECM and to regulate mesenchymal cell migration and remodeling of the ECM by resident fibroblasts.
Collapse
|
10
|
Different transcriptomic architecture of the gill epithelia in Nile and Mozambique tilapia after salinity challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 41:100927. [PMID: 34794104 DOI: 10.1016/j.cbd.2021.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Tilapiine fishes of the genus Oreochromis vary in their euryhaline capabilities, therefore inhabiting aquatic environments of different salinities across the African continent. We analyzed the differential gene expression in the gills before and after 6 weeks salinity challenge between the highly tolerant Mozambique tilapia (Oreochromis mossambicus) and the less tolerant Nile tilapia (O. niloticus). The pathways triggered by salinity in both tilapia species reveal immune and cell stress responses as well as turnover of ionocytes. Nevertheless, the actual differential expressed genes vary between these two species, pointing at differential transcriptomic architecture, which likely contribute to the species osmoregulation capabilities in elevated salinities.
Collapse
|
11
|
Bousquet-Antonelli C. LARP6 proteins in plants. Biochem Soc Trans 2021; 49:1975-1983. [PMID: 34709399 DOI: 10.1042/bst20200715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
RNA binding proteins, through control of mRNA fate and expression, are key players of organism development. The LARP family of RBPs sharing the La motif, are largely present in eukaryotes. They classify into five subfamilies which members acquired specific additional domains, including the RRM1 moiety which teams up with the La motif to form a versatile RNA binding unit. The LARP6 subfamily has had a peculiar history during plant evolution. While containing a single LARP6 in algae and non-vascular plants, they expanded and neofunctionalized into three subclusters in vascular plants. Studies from Arabidopsis thaliana, support that they acquired specific RNA binding properties and physiological roles. In particular LARP6C participates, through spatiotemporal control of translation, to male fertilization, a role seemingly conserved in maize. Interestingly, human LARP6 also acts in translation control and mRNA transport and similarly to LARP6C which is required for pollen tube guided elongation, is necessary to cell migration, through protrusion extension. This opens the possibility that some cellular and molecular functions of LARP6 were retained across eukaryote evolution. With their peculiar evolutionary history, plants provide a unique opportunity to uncover how La-module RNA binding properties evolved and identify species specific and basal roles of the LARP6 function. Deciphering of how LARP6, in particular LARP6C, acts at the molecular level, will foster novel knowledge on translation regulation and dynamics in changing cellular contexts. Considering the seemingly conserved function of LARP6C in male reproduction, it should fuel studies aimed at deriving crop species with improved seed yields.
Collapse
Affiliation(s)
- Cécile Bousquet-Antonelli
- CNRS LGDP-UMR5096, 58 Av. Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 58 Av. Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
12
|
Billey E, Hafidh S, Cruz-Gallardo I, Litholdo CG, Jean V, Carpentier MC, Picart C, Kumar V, Kulichova K, Maréchal E, Honys D, Conte MR, Deragon JM, Bousquet-Antonelli C. LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. THE PLANT CELL 2021; 33:2637-2661. [PMID: 34124761 PMCID: PMC8408461 DOI: 10.1093/plcell/koab131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/06/2021] [Indexed: 05/15/2023]
Abstract
Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.
Collapse
Affiliation(s)
- Elodie Billey
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Isabel Cruz-Gallardo
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Celso G. Litholdo
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Viviane Jean
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Katarina Kulichova
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 38054 Grenoble, France
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Jean-Marc Deragon
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Institut Universitaire de France, 75231 Paris Cedex 5, France
| | - Cécile Bousquet-Antonelli
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
13
|
Billey E, Hafidh S, Cruz-Gallardo I, Litholdo CG, Jean V, Carpentier MC, Picart C, Kumar V, Kulichova K, Maréchal E, Honys D, Conte MR, Deragon JM, Bousquet-Antonelli C. LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. THE PLANT CELL 2021; 33:2637-2661. [PMID: 34124761 DOI: 10.1101/2020.11.27.401307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/06/2021] [Indexed: 05/19/2023]
Abstract
Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.
Collapse
Affiliation(s)
- Elodie Billey
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Isabel Cruz-Gallardo
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Celso G Litholdo
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Viviane Jean
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Katarina Kulichova
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 38054 Grenoble, France
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Jean-Marc Deragon
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Institut Universitaire de France, 75231 Paris Cedex 5, France
| | - Cécile Bousquet-Antonelli
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
14
|
Mergault C, Lisée F, Tiroille V, Magnien M, Parent C, Lenga Mabonda W, Sizaret D, Jaillet M, Crestani B, Marchand-Adam S, Plantier L. Inhibition of the Arp2/3 complex represses human lung myofibroblast differentiation and attenuates bleomycin-induced pulmonary fibrosis. Br J Pharmacol 2021; 179:125-140. [PMID: 34453744 DOI: 10.1111/bph.15675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The Arp2/3 multiprotein complex regulates branched polymerisation of the actin cytoskeleton and may contribute to collagen synthesis and fibrogenesis in the lung. EXPERIMENTAL APPROACH Expression of Arp2/3 components was assessed in human lung fibroblasts and in the bleomycin-induced pulmonary fibrosis model in mice. The Arp2/3 complex was repressed with the allosteric inhibitor CK666 and with interfering RNAs targeting the ARP2, ARP3 and ARPC2 subunits (siARP2, siARP3 and siARPC2) in CCD-16Lu human lung fibroblasts in vitro. Mice received daily intraperitoneal injections of CK666 from the 7th to the 14th day after tracheal bleomycin instillation. KEY RESULTS Expression of Arp2/3 complex subunits mRNAs was increased in fibroblasts treated with TGF-β1 and in the lungs of bleomycin-treated mice compared with controls. In vitro, CK666 and siARPC2 inhibited cell growth and TGF-β1-induced α-smooth muscle actin (ACTA2) and collagen-1 (COL1) expression. CK666 also decreased ACTA2 and COL1 expression in unstimulated cells. CK666 reduced Akt phosphorylation and repressed phospho-GSK3β, β-catenin and MRTF-A levels in unstimulated fibroblasts. In vivo, CK666 reduced levels of both procollagen-1 and insoluble collagen in bleomycin-treated mice. CONCLUSION AND IMPLICATIONS Expression of the Arp2/3 complex was increased in profibrotic environments in vitro and in vivo. Inhibition of the Arp2/3 complex repressed ACTA2 and COL1 expression and repressed an Akt/phospho-GSK3β/β-catenin/MRTF-A pathway in lung fibroblasts. CK666 exerted antifibrotic properties in the lung in vivo. Inhibition of the Arp2/3 complex could represent an interesting new therapy for idiopathic pulmonary fibrosis and other fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Coralie Mergault
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Fanny Lisée
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Victor Tiroille
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Mélia Magnien
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Christelle Parent
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France
| | - Woodys Lenga Mabonda
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Damien Sizaret
- CHRU de Tours, Service d'Anatomie Pathologique, Tours, France
| | | | - Bruno Crestani
- Université de Paris, Inserm UMR1152, Labex Inflamex, Paris, France.,Service de Pneumologie A, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Sylvain Marchand-Adam
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France.,CHRU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| | - Laurent Plantier
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France.,CHRU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| |
Collapse
|
15
|
Zuo S, Wang B, Liu J, Kong D, Cui H, Jia Y, Wang C, Xu X, Chen G, Wang Y, Yang L, Zhang K, Ai D, Du J, Shen Y, Yu Y. ER-anchored CRTH2 antagonizes collagen biosynthesis and organ fibrosis via binding LARP6. EMBO J 2021; 40:e107403. [PMID: 34223653 PMCID: PMC8365266 DOI: 10.15252/embj.2020107403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Shengkai Zuo
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Bei Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Deping Kong
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hui Cui
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yaonan Jia
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenyao Wang
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Xin Xu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Guilin Chen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yuanyang Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Linlin Yang
- Department of PharmacologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Kai Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yujun Shen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
16
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
17
|
Manojlovic Z, Earwood R, Kato A, Perez D, Cabrera OA, Didier R, Megraw TL, Stefanovic B, Kato Y. La-related protein 6 controls ciliated cell differentiation. Cilia 2017; 6:4. [PMID: 28344782 PMCID: PMC5364628 DOI: 10.1186/s13630-017-0047-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
Background La-related protein 6 (LARP6) is an evolutionally conserved RNA-binding protein. Vertebrate LARP6 binds the 5′ stem-loop found in mRNAs encoding type I collagen to regulate their translation, but other target mRNAs and additional functions for LARP6 are unknown. The aim of this study was to elucidate an additional function of LARP6 and to evaluate the importance of its function during development. Methods To uncover the role of LARP6 in development, we utilized Morpholino Oligos to deplete LARP6 protein in Xenopus embryos. Then, embryonic phenotypes and ciliary structures of LAPR6 morphants were examined. To identify the molecular mechanism underlying ciliogenesis regulated by LARP6, we tested the expression level of cilia-related genes, which play important roles in ciliogenesis, by RT-PCR or whole mount in situ hybridization (WISH). Results We knocked down LARP6 in Xenopus embryos and found neural tube closure defects. LARP6 mutant, which compromises the collagen synthesis, could rescue these defects. Neural tube closure defects are coincident with lack of cilia, antenna-like cellular organelles with motility- or sensory-related functions, in the neural tube. The absence of cilia at the epidermis was also observed in LARP6 morphants, and this defect was due to the absence of basal bodies which are formed from centrioles and required for ciliary assembly. In the process of multi-ciliated cell (MCC) differentiation, mcidas, which activates the transcription of genes required for centriole formation during ciliogenesis, could partially restore MCCs in LARP6 morphants. In addition, LARP6 likely controls the expression of mcidas in a Notch-independent manner. Conclusions La-related protein 6 is involved in ciliated cell differentiation during development by controlling the expression of cilia-related genes including mcidas. This LARP6 function involves a mechanism that is distinct from its established role in binding to collagen mRNAs and regulating their translation. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0047-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA.,Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089-9601 USA
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Diana Perez
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Oscar A Cabrera
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| |
Collapse
|
18
|
Zhang Y, Stefanovic B. mTORC1 phosphorylates LARP6 to stimulate type I collagen expression. Sci Rep 2017; 7:41173. [PMID: 28112218 PMCID: PMC5255556 DOI: 10.1038/srep41173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
Excessive deposition of type I collagen causes fibrotic diseases. Binding of La ribonucleoprotein domain family, member 6 (LARP6) to collagen mRNAs regulates their translation and is necessary for high type I collagen expression. Here we show that mTORC1 phosphorylates LARP6 on S348 and S409. The S348A/S409A mutant of LARP6 acts as a dominant negative protein in collagen biosynthesis, which retards secretion of type I collagen and causes excessive posttranslational modifications. Similar effects are seen using mTORC1 inhibitor rapamycin or by knocking down raptor. The S348A/S409A mutant weakly interacts with the accessory protein STRAP, needed for coordinated translation of collagen mRNAs. The interaction of wt LARP6 and STRAP is also attenuated by rapamycin and by raptor knockdown. Additionally, in the absence of S348/S409 phosphorylation LARP6 is sequestered in increasing amounts at the ER membrane. We postulate that phosphorylation of S348/S409 by mTORC1 stimulates the interaction of LARP6 and STRAP to coordinate translation of collagen mRNAs and to release LARP6 from the ER for new round of translation. These mechanisms contribute to high level of collagen expression in fibrosis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
19
|
Kleppe L, Edvardsen RB, Furmanek T, Andersson E, Juanchich A, Wargelius A. bmp15l,figla,smc1bl, andlarp6lare preferentially expressed in germ cells in Atlantic salmon (Salmo salarL.). Mol Reprod Dev 2016; 84:76-87. [DOI: 10.1002/mrd.22755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/02/2016] [Indexed: 11/11/2022]
|
20
|
Zhang Y, Stefanovic B. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression. Int J Mol Sci 2016; 17:419. [PMID: 27011170 PMCID: PMC4813270 DOI: 10.3390/ijms17030419] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/15/2023] Open
Abstract
Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60-70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6), is specifically involved in type I collagen regulation. In the 5'untranslated region (5'UTR) of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL) structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5'SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP), 25 kD FK506 binding protein (FKBP25) and RNA helicase A (RHA), contribute to this process.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
21
|
Zhang Y, Stefanovic B. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen. Sci Rep 2016; 6:22597. [PMID: 26932461 PMCID: PMC4773855 DOI: 10.1038/srep22597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022] Open
Abstract
La ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for phosphorylations of other serines. Inhibition of PI3K/Akt pathway reduced the phosphorylation of LARP6, but had no effect on the S451A mutant, suggesting that PI3K/Akt pathway targets S451 and we have identified Akt as the responsible kinase. Overexpression of S451A mutant had dominant negative effect on collagen biosynthesis; drastically reduced secretion of collagen and induced hyper-modifications of collagen α2 (I) polypeptides. This indicates that LARP6 phosphorylation at S451 is critical for regulating translation and folding of collagen polypeptides. Akt inhibitor, GSK-2141795, which is in clinical trials for treatment of solid tumors, reduced collagen production by human lung fibroblasts with EC50 of 150 nM. This effect can be explained by inhibition of LARP6 phosphorylation and suggests that Akt inhibitors may be effective in treatment of various forms of fibrosis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
22
|
Sun L, Lamont SJ, Cooksey AM, McCarthy F, Tudor CO, Vijay-Shanker K, DeRita RM, Rothschild M, Ashwell C, Persia ME, Schmidt CJ. Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones 2015; 20:939-50. [PMID: 26238561 PMCID: PMC4595433 DOI: 10.1007/s12192-015-0621-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
Heat stress triggers an evolutionarily conserved set of responses in cells. The transcriptome responds to hyperthermia by altering expression of genes to adapt the cell or organism to survive the heat challenge. RNA-seq technology allows rapid identification of environmentally responsive genes on a large scale. In this study, we have used RNA-seq to identify heat stress responsive genes in the chicken male white leghorn hepatocellular (LMH) cell line. The transcripts of 812 genes were responsive to heat stress (p < 0.01) with 235 genes upregulated and 577 downregulated following 2.5 h of heat stress. Among the upregulated were genes whose products function as chaperones, along with genes affecting collagen synthesis and deposition, transcription factors, chromatin remodelers, and genes modulating the WNT and TGF-beta pathways. Predominant among the downregulated genes were ones that affect DNA replication and repair along with chromosomal segregation. Many of the genes identified in this study have not been previously implicated in the heat stress response. These data extend our understanding of the transcriptome response to heat stress with many of the identified biological processes and pathways likely to function in adapting cells and organisms to hyperthermic stress. Furthermore, this study should provide important insight to future efforts attempting to improve species abilities to withstand heat stress through genome-wide association studies and breeding.
Collapse
Affiliation(s)
- Liang Sun
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Fiona McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Catalina O Tudor
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - K Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Rachael M DeRita
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Max Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Chris Ashwell
- Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael E Persia
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
23
|
Martino L, Salisbury NJH, Brown P, Kelly G, Atkinson RA, Conte MR. (1)H, (15)N and (13)C chemical shift assignments of the La motif and RRM1 from human LARP6. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:337-40. [PMID: 25896032 PMCID: PMC4568005 DOI: 10.1007/s12104-015-9605-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
We report here the nearly complete (1)H, (15)N and (13)C resonance assignment of the La motif and RNA recognition motif 1 of human LARP6, an RNA binding protein involved in regulating collagen synthesis.
Collapse
Affiliation(s)
- Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Nicholas J H Salisbury
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paul Brown
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Geoff Kelly
- MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - R Andrew Atkinson
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Maria R Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
24
|
Murphy S, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles. Proteomes 2015; 3:298-327. [PMID: 28248273 PMCID: PMC5217383 DOI: 10.3390/proteomes3030298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023] Open
Abstract
The full-length dystrophin protein isoform of 427 kDa (Dp427), the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Co. Kildare, Ireland.
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Co. Kildare, Ireland.
| |
Collapse
|
25
|
Küspert M, Murakawa Y, Schäffler K, Vanselow JT, Wolf E, Juranek S, Schlosser A, Landthaler M, Fischer U. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation. RNA (NEW YORK, N.Y.) 2015; 21:1294-305. [PMID: 26001795 PMCID: PMC4478348 DOI: 10.1261/rna.051441.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/02/2015] [Indexed: 05/23/2023]
Abstract
mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.
Collapse
Affiliation(s)
- Maritta Küspert
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Katrin Schäffler
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jens T Vanselow
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | - Elmar Wolf
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Stefan Juranek
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | | | - Utz Fischer
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany Department of Radiation Medicine and Applied Sciences, University of California at San Diego, San Diego, California 92037, USA
| |
Collapse
|
26
|
Wang H, Stefanovic B. Role of LARP6 and nonmuscle myosin in partitioning of collagen mRNAs to the ER membrane. PLoS One 2014; 9:e108870. [PMID: 25271881 PMCID: PMC4182744 DOI: 10.1371/journal.pone.0108870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
Type I collagen is extracellular matrix protein composed of two α1(I) and one α2(I) polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high collagen production, like fibrosis. It has been assumed that collagen mRNAs are targeted to the membrane of the endoplasmic reticulum (ER) after translation of the signal peptide and by signal peptide recognition particle (SRP). Here we show that collagen mRNAs associate with the ER membrane even when translation is inhibited. Knock down of LARP6, an RNA binding protein which binds 5' stem-loop of collagen mRNAs, releases a small amount of collagen mRNAs from the membrane. Depolimerization of nonmuscle myosin filaments has a similar, but stronger effect. In the absence of LARP6 or nonmuscle myosin filaments collagen polypeptides become hypermodified, are poorly secreted and accumulate in the cytosol. This indicates lack of coordination of their synthesis and retro-translocation due to hypermodifications and misfolding. Depolimerization of nonmuscle myosin does not alter the secretory pathway through ER and Golgi, suggesting that the role of nonmuscle myosin is primarily to partition collagen mRNAs to the ER membrane. We postulate that collagen mRNAs directly partition to the ER membrane prior to synthesis of the signal peptide and that LARP6 and nonmuscle myosin filaments mediate this process. This allows coordinated initiation of translation on the membrane bound collagen α1(I) and α2(I) mRNAs, a necessary step for proper synthesis of type I collagen.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
27
|
Screening for antifibrotic compounds using high throughput system based on fluorescence polarization. BIOLOGY 2014; 3:281-94. [PMID: 24833510 PMCID: PMC4085608 DOI: 10.3390/biology3020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/28/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023]
Abstract
Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I) mRNA and α2(I) mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL). Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.
Collapse
|
28
|
Blackstock CD, Higashi Y, Sukhanov S, Shai SY, Stefanovic B, Tabony AM, Yoshida T, Delafontaine P. Insulin-like growth factor-1 increases synthesis of collagen type I via induction of the mRNA-binding protein LARP6 expression and binding to the 5' stem-loop of COL1a1 and COL1a2 mRNA. J Biol Chem 2014; 289:7264-74. [PMID: 24469459 PMCID: PMC3953245 DOI: 10.1074/jbc.m113.518951] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/15/2014] [Indexed: 12/27/2022] Open
Abstract
Collagen content in atherosclerotic plaque is a hallmark of plaque stability. Our earlier studies showed that insulin-like growth factor-1 (IGF-1) increases collagen content in atherosclerotic plaques of Apoe(-/-) mice. To identify mechanisms we investigated the effect of IGF-1 on the la ribonucleoprotein domain family member 6 (LARP6). LARP6 binds a stem-loop motif in the 5'-UTR of the mRNAs encoding the collagen type I α-subunits (α1(I) and α2(I)), and coordinates their translation into the heterotrimeric collagen type I molecule. In human aortic smooth muscle cells (SMCs), IGF-1 rapidly increased LARP6 expression and the rate of collagen synthesis and extracellular accumulation. IGF-1 increased both LARP6 and collagen type I expression via a post-transcriptional and translation-dependent mechanism involving PI3K/Akt/p70S6k-signaling. Immunoprecipitation of LARP6, followed by qPCR indicated that IGF-1 increased the level of COL1a1 and COL1a2 mRNA bound to LARP6. Mutation of the 5' stem-loop of Col1a1 mRNA, which inhibits binding of LARP6, abolished the ability of IGF-1 to increase synthesis of collagen type I. Furthermore, overexpression of a 5' stem-loop RNA molecular decoy that sequesters LARP6, prevented the ability of IGF-1 to increase pro-α1(I) and mature α1(I) expression in cultured medium. IGF-1 infusion in Apoe(-/-) mice increased expression of LARP6 and pro-α1(I) in aortic lysates, and SMC-specific IGF-1-overexpression robustly increased collagen fibrillogenesis in atherosclerotic plaque. In conclusion, we identify LARP6 as a critical mediator by which IGF-1 augments synthesis of collagen type I in vascular smooth muscle, which may play an important role in promoting atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Christopher D. Blackstock
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Yusuke Higashi
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Sergiy Sukhanov
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Shaw-Yung Shai
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Branko Stefanovic
- the Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - A. Michael Tabony
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Tadashi Yoshida
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Patrice Delafontaine
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| |
Collapse
|
29
|
Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol 2014; 11:1386-401. [PMID: 25692237 PMCID: PMC4615758 DOI: 10.1080/15476286.2014.996467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/11/2023] Open
Abstract
Type I collagen is composed of 2 polypeptides, α1(I) and α2(I), which fold into triple helix. Collagen α1(I) and α2(I) mRNAs have a conserved stem-loop structure in their 5' UTRs, the 5'SL. LARP6 binds the 5'SL to regulate type I collagen expression. We show that 5 nucleotides within the single stranded regions of 5'SL contribute to the high affinity of LARP6 binding. Mutation of individual nucleotides abolishes the binding in gel mobility shift assay. LARP6 binding to 5'SL of collagen α2(I) mRNA is more stable than the binding to 5'SL of α1(I) mRNA, although the equilibrium binding constants are similar. The more stable binding to α2(I) mRNA may favor synthesis of the heterotrimeric type I collagen. LARP6 needs 2 domains to contact 5'SL, the La domain and the RRM. T133 in the La domain is critical for folding of the protein, while loop 3 in the RRM is critical for binding 5'SL. Loop 3 is also involved in the interaction of LARP6 and protein translocation channel SEC61. This interaction is essential for type I collagen synthesis, because LARP6 mutant which binds 5'SL but which does not interact with SEC61, suppresses collagen synthesis in a dominant negative manner. We postulate that LARP6 directly targets collagen mRNAs to the SEC61 translocons to facilitate coordinated translation of the 2 collagen mRNAs. The unique sequences of LARP6 identified in this work may have evolved to enable its role in type I collagen biosynthesis.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Liam Longo
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Yujie Zhang
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | | |
Collapse
|
30
|
Stephens DN, Klein RH, Salmans ML, Gordon W, Ho H, Andersen B. The Ets transcription factor EHF as a regulator of cornea epithelial cell identity. J Biol Chem 2013; 288:34304-24. [PMID: 24142692 DOI: 10.1074/jbc.m113.504399] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways.
Collapse
|
31
|
Vukmirovic M, Manojlovic Z, Stefanovic B. Serine-threonine kinase receptor-associated protein (STRAP) regulates translation of type I collagen mRNAs. Mol Cell Biol 2013; 33:3893-906. [PMID: 23918805 PMCID: PMC3811873 DOI: 10.1128/mcb.00195-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022] Open
Abstract
Type I collagen is the most abundant protein in the human body and is composed of two α1(I) and one α2(I) polypeptides which assemble into a triple helix. For the proper assembly of the collagen triple helix, the individual polypeptides must be translated in coordination. Here, we show that serine-threonine kinase receptor-associated protein (STRAP) is tethered to collagen mRNAs by interaction with LARP6. LARP6 is a protein which directly binds the 5' stem-loop (5'SL) present in collagen α1(I) and α2(I) mRNAs, but it interacts with STRAP with its C-terminal domain, which is not involved in binding 5'SL. Being tethered to collagen mRNAs, STRAP prevents unrestricted translation, primarily that of collagen α2(I) mRNAs, by interacting with eukaryotic translation initiation factor 4A (eIF4A). In the absence of STRAP, more collagen α2(I) mRNA can be pulled down with eIF4A, and collagen α2(I) mRNA is unrestrictedly loaded onto the polysomes. This results in an imbalance of synthesis of α1(I) and α2(I) polypeptides, in hypermodifications of α1(I) polypeptide, and in inefficient assembly of the polypeptides into a collagen trimer and their secretion as monomers. These defects can be partially restored by supplementing STRAP. Thus, we discovered STRAP as a novel regulator of the coordinated translation of collagen mRNAs.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | | | | |
Collapse
|
32
|
Stefanovic B. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:535-45. [PMID: 23907854 PMCID: PMC3748166 DOI: 10.1002/wrna.1177] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
33
|
Manojlovic Z, Blackmon J, Stefanovic B. Tacrolimus (FK506) prevents early stages of ethanol induced hepatic fibrosis by targeting LARP6 dependent mechanism of collagen synthesis. PLoS One 2013; 8:e65897. [PMID: 23755290 PMCID: PMC3670911 DOI: 10.1371/journal.pone.0065897] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023] Open
Abstract
Tacrolimus (FK506) is a widely used immunosuppressive drug. Its effects on hepatic fibrosis have been controversial and attributed to immunosuppression. We show that in vitro FK506, inhibited synthesis of type I collagen polypeptides, without affecting expression of collagen mRNAs. In vivo, administration of FK506 at a dose of 4 mg/kg completely prevented development of alcohol/carbon tetrachloride induced liver fibrosis in rats. Activation of hepatic stellate cells (HSCs) was absent in the FK506 treated livers and expression of collagen α2(I) mRNA was at normal levels. Collagen α1(I) mRNA was increased in the FK506 treated livers, but this mRNA was not translated into α1(I) polypeptide. No significant inflammation was associated with the fibrosis model used. FK506 binding protein 3 (FKBP3) is one of cellular proteins which binds FK506 with high affinity. We discovered that FKBP3 interacts with LARP6 and LARP6 is the major regulator of translation and stability of collagen mRNAs. In the presence of FK506 the interaction between FKBP3 and LARP6 is weakened and so is the pull down of collagen mRNAs with FKBP3. We postulate that FK506 inactivates FKBP3 and that lack of interaction of LARP6 and FKBP3 results in aberrant translation of collagen mRNAs and prevention of fibrosis. This is the first report of such activity of FK506 and may renew the interest in using this drug to alleviate hepatic fibrosis.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - John Blackmon
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
34
|
Merret R, Martino L, Bousquet-Antonelli C, Fneich S, Descombin J, Billey É, Conte MR, Deragon JM. The association of a La module with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led to the neofunctionalization of La-related proteins. RNA (NEW YORK, N.Y.) 2013; 19:36-50. [PMID: 23148093 PMCID: PMC3527725 DOI: 10.1261/rna.035469.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/12/2012] [Indexed: 05/27/2023]
Abstract
La-related proteins (LARPs) are largely uncharacterized factors, well conserved throughout evolution. Recent reports on the function of human LARP4 and LARP6 suggest that these proteins fulfill key functions in mRNA metabolism and/or translation. We report here a detailed evolutionary history of the LARP4 and 6 families in eukaryotes. Genes coding for LARP4 and 6 were duplicated in the common ancestor of the vertebrate lineage, but one LARP6 gene was subsequently lost in the common ancestor of the eutherian lineage. The LARP6 gene was also independently duplicated several times in the vascular plant lineage. We observed that vertebrate LARP4 and plant LARP6 duplication events were correlated with the acquisition of a PABP-interacting motif 2 (PAM2) and with a significant reorganization of their RNA-binding modules. Using isothermal titration calorimetry (ITC) and immunoprecipitation methods, we show that the two plant PAM2-containing LARP6s (LARP6b and c) can, indeed, interact with the major plant poly(A)-binding protein (PAB2), while the third plant LARP6 (LARP6a) is unable to do so. We also analyzed the RNA-binding properties and the subcellular localizations of the two types of plant LARP6 proteins and found that they display nonredundant characteristics. As a whole, our results support a model in which the acquisition by LARP4 and LARP6 of a PAM2 allowed their targeting to mRNA 3' UTRs and led to their neofunctionalization.
Collapse
Affiliation(s)
- Rémy Merret
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Cécile Bousquet-Antonelli
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Sara Fneich
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Julie Descombin
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Élodie Billey
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| |
Collapse
|
35
|
Stefanovic L, Stefanovic B. Role of cytokine receptor-like factor 1 in hepatic stellate cells and fibrosis. World J Hepatol 2012; 4:356-64. [PMID: 23355913 PMCID: PMC3554799 DOI: 10.4254/wjh.v4.i12.356] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 07/06/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the role of cytokine receptor-like factor 1 (CRLF1) in hepatic stellate cells and liver fibrosis. METHODS Rat hepatic stellate cells (HSCs) were isolated by Nykodenz gradient centrifugation and activated by culturing in vitro. Differentially expressed genes in quiescent and culture activated HSCs were identified using microarrays. Injections of carbon tetrachloride (CCl(4)) for 4 wk were employed to induce liver fibrosis. The degree of fibrosis was assessed by Sirius red staining. Adenovirus expressing CRLF1 was injected through tail vein into mice to achieve overexpression of CRLF1 in the liver. The same adenovirus was used to overexpress CRLF1 in quiescent HSCs cultured in vitro. Expression of CRLF1, CLCF1 and ciliary neurotrophic factor receptor (CNTFR) in hepatic stellate cells and fibrotic livers was analyzed by semi-quantitative reverse transcription-polymerase chain reaction and Western blotting. Expression of profibrotic cytokines and collagens was analyzed by the same method. RESULTS CRLF1 is a secreted cytokine with unknown function. Human mutations suggested a role in development of autonomous nervous system and a role of CRLF1 in immune response was implied by its similarity to interleukin (IL)-6. Here we show that expression of CRLF1 was undetectable in quiescent HSCs and was highly upregulated in activated HSCs. Likewise, expression of CRLF1 was very low in normal livers, but was highly upregulated in fibrotic livers, where its expression correlated with the degree of fibrosis. A cofactor of CLRF1, cardiotrophin-like cytokine factor 1 (CLCF1), and the receptor which binds CRLF1/CLCF1 dimer, the CNTFR, were expressed to similar levels in quiescent and activated HSCs and in normal and fibrotic livers, indicating a constitutive expression. Overexpression of CLRF1 alone in the normal liver did not stimulate expression of profibrotic cytokines, suggesting that the factor itself is not pro-inflammatory. Ectopic expression in quiescent HSCs, however, retarded their activation into myofibroblasts and specifically decreased expression of type III collagen. Inhibition of type III collagen expression by CRLF1 was also seen in the whole liver. Our results suggest that CLRF1 is the only component of the CRLF1/CLCF1/CNTFR signaling system that is inducible by a profibrotic stimulus and that activation of this system by CLRF1 may regulate expression of type III collagen in fibrosis. CONCLUSION By regulating activation of HSCs and expression of type III collagen, CRLF1 may have an ability to change the composition of extracellular matrix in fibrosis.
Collapse
Affiliation(s)
- Lela Stefanovic
- Lela Stefanovic, Branko Stefanovic, Department of Biomedical sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, United States
| | | |
Collapse
|
36
|
Manojlovic Z, Stefanovic B. A novel role of RNA helicase A in regulation of translation of type I collagen mRNAs. RNA (NEW YORK, N.Y.) 2012; 18:321-34. [PMID: 22190748 PMCID: PMC3264918 DOI: 10.1261/rna.030288.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/04/2011] [Indexed: 05/30/2023]
Abstract
Type I collagen is composed of two α1(I) polypeptides and one α2(I) polypeptide and is the most abundant protein in the human body. Expression of type I collagen is primarily controlled at the level of mRNA stability and translation. Coordinated translation of α(I) and α2(I) mRNAs is necessary for efficient folding of the corresponding peptides into the collagen heterotrimer. In the 5' untranslated region (5' UTR), collagen mRNAs have a unique 5' stem-loop structure (5' SL). La ribonucleoprotein domain family member 6 (LARP6) is the protein that binds 5' SL with high affinity and specificity and coordinates their translation. Here we show that RNA helicase A (RHA) is tethered to the 5' SL of collagen mRNAs by interaction with the C-terminal domain of LARP6. In vivo, collagen mRNAs immunoprecipitate with RHA in an LARP6-dependent manner. Knockdown of RHA prevents formation of polysomes on collagen mRNAs and dramatically reduces synthesis of collagen protein, without affecting the level of the mRNAs. A reporter mRNA with collagen 5' SL is translated three times more efficiently in the presence of RHA than the same reporter without the 5' SL, indicating that the 5' SL is the cis-acting element conferring the regulation. During activation of quiescent cells into collagen-producing cells, expression of RHA is highly up-regulated. We postulate that RHA is recruited to the 5' UTR of collagen mRNAs by LARP6 to facilitate their translation. Thus, RHA has been discovered as a critical factor for synthesis of the most abundant protein in the human body.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
37
|
Shao R, Scully SJ, Yan W, Bentley B, Mueller J, Brown C, Bigelow C, Schwartz LM. The novel lupus antigen related protein acheron enhances the development of human breast cancer. Int J Cancer 2012; 130:544-54. [PMID: 21387291 PMCID: PMC3388741 DOI: 10.1002/ijc.26015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/17/2011] [Accepted: 01/26/2011] [Indexed: 01/03/2023]
Abstract
Acheron (Achn) is a new member of the Lupus antigen family of RNA binding proteins. Previous studies have shown that Achn controls developmental decisions in neurons and muscle. In the human mammary gland, Achn expression is restricted to ductal myoepithelial cells. Microarray analysis and immunohistochemistry have shown that Achn expression is elevated in some basal-like ductal carcinomas. To study the possible role of Achn in breast cancer, we engineered human MDA-MB-231 cells to stably express enhanced green fluorescent protein-tagged wild-type Achn (AchnWT), as well as Achn lacking either its nuclear localization signal (AchnNLS) or its nuclear export signal (AchnNES). In in vitro assays, AchnWT and AchnNES, but not AchnNLS, enhanced cell proliferation, lamellipodia formation, and invasive activity and drove expression of the elevated expression of the metastasis-associated proteins MMP-9 and VEGF. To determine if Achn could alter the behavior of human breast cancer cells in vivo, Achn-engineered MDA-MB-231 cells were injected into athymic SCID/Beige mice. AchnWT and AchnNES-expressing tumors displayed enhanced angiogenesis and an approximately 5-fold increase in tumor size relative to either control cells or those expressing AchnNLS. These data suggest that Achn enhances human breast tumor growth and vascularization and that this activity is dependent on nuclear localization.
Collapse
Affiliation(s)
- Rong Shao
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, MA, 01199
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Steve J. Scully
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, MA, 01199
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, MA 01003
| | - Wei Yan
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, MA, 01199
| | - Brooke Bentley
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, MA, 01199
| | - James Mueller
- Department of Pathology, Baystate Medical Center, Springfield, MA, 01199
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Carol Bigelow
- Division of Biostatistics and Epidemiology, Department of Public Health, University of Massachusetts, Amherst MA 01003
| | - Lawrence M. Schwartz
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, MA, 01199
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, MA 01003
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
38
|
Challa AA, Stefanovic B. A novel role of vimentin filaments: binding and stabilization of collagen mRNAs. Mol Cell Biol 2011; 31:3773-89. [PMID: 21746880 PMCID: PMC3165730 DOI: 10.1128/mcb.05263-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/04/2011] [Indexed: 12/17/2022] Open
Abstract
The stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5'SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| |
Collapse
|
39
|
Thompson KJ, McKillop IH, Schrum LW. Targeting collagen expression in alcoholic liver disease. World J Gastroenterol 2011; 17:2473-81. [PMID: 21633652 PMCID: PMC3103805 DOI: 10.3748/wjg.v17.i20.2473] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/17/2011] [Accepted: 04/24/2011] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of liver disease and liver-related deaths globally, particularly in developed nations. Liver fibrosis is a consequence of ALD and other chronic liver insults, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Liver fibrosis is characterized by accumulation of excess extracellular matrix components, including type I collagen, which disrupts liver microcirculation and leads to injury. To date, there is no therapy for the treatment of liver fibrosis; thus treatments that either prevent the accumulation of type I collagen or hasten its degradation are desirable. The focus of this review is to examine the regulation of type I collagen in fibrogenic cells of the liver and to discuss current advances in therapeutics to eliminate excessive collagen deposition.
Collapse
|