1
|
Radojković M, Bruggeling van Ingen A, Timmer M, Ubbink M. Stabilizing Mutations Enhance Evolvability of BlaC β-lactamase by Widening the Mutational Landscape. J Mol Biol 2025; 437:168999. [PMID: 39971266 DOI: 10.1016/j.jmb.2025.168999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
Antimicrobial resistance is fueled by the rapid evolution of β-lactamases. However, a gain of new enzyme activity often comes at the expense of reduced protein stability. This evolutionary constraint is often overcome by the acquisition of stabilizing mutations that compensate for the loss of stability invoked by new function mutations. Here, we report three stabilizing mutations (I105F, H184R, and V263I) in BlaC, a serine β-lactamase from Mycobacterium tuberculosis. Using a severely destabilized variant as a template for random mutagenesis and selection, these three mutations emerged together and were able to fully restore resistance toward the antibiotic carbenicillin. In vitro characterization shows that all three mutations increase chemical and thermal stability, which leads to elevated protein levels in the periplasm of Escherichia coli. We demonstrate that the introduction of stabilizing mutations substantially enhances the evolvability of the enzyme. These findings illustrate the important role of stabilizing mutations in enzyme evolution by alleviating function-stability trade-offs and broadening the accessible evolutionary landscape.
Collapse
Affiliation(s)
- Marko Radojković
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | | | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
2
|
Jena C, Chinnaraj S, Deolankar S, Matange N. Proteostasis modulates gene dosage evolution in antibiotic-resistant bacteria. eLife 2025; 13:RP99785. [PMID: 40073078 PMCID: PMC11903035 DOI: 10.7554/elife.99785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, eLife, 2021) shown that, in Escherichia coli, mutations at the mgrB locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the folA gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing folA and spanning hundreds of kilobases. This duplication was rare in wild-type E. coli. However, its frequency was elevated in a lon-knockout strain, altering the mutational landscape early during trimethoprim adaptation. We then exploit this system to investigate the relationship between trimethoprim pressure and folA copy number. During long-term evolution, folA duplications were frequently reversed. Reversal was slower under antibiotic pressure, first requiring the acquisition of point mutations in DHFR or its promoter. Unexpectedly, despite resistance-conferring point mutations, some populations under high trimethoprim pressure maintained folA duplication to compensate for low abundance DHFR mutants. We find that evolution of gene dosage depends on expression demand, which is generated by antibiotic and exacerbated by proteolysis of drug-resistant mutants of DHFR. We propose a novel role for proteostasis as a determinant of copy number evolution in antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chinmaya Jena
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Saillesh Chinnaraj
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Soham Deolankar
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
3
|
Krapp LF, Meireles FA, Abriata LA, Devillard J, Vacle S, Marcaida MJ, Dal Peraro M. Context-aware geometric deep learning for protein sequence design. Nat Commun 2024; 15:6273. [PMID: 39054322 PMCID: PMC11272779 DOI: 10.1038/s41467-024-50571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Protein design and engineering are evolving at an unprecedented pace leveraging the advances in deep learning. Current models nonetheless cannot natively consider non-protein entities within the design process. Here, we introduce a deep learning approach based solely on a geometric transformer of atomic coordinates and element names that predicts protein sequences from backbone scaffolds aware of the restraints imposed by diverse molecular environments. To validate the method, we show that it can produce highly thermostable, catalytically active enzymes with high success rates. This concept is anticipated to improve the versatility of protein design pipelines for crafting desired functions.
Collapse
Affiliation(s)
- Lucien F Krapp
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Fernando A Meireles
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Jean Devillard
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah Vacle
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Maria J Marcaida
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
4
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
5
|
Klamer ZL, June CM, Wawrzak Z, Taracila MA, Grey JA, Benn AMI, Russell CP, Bonomo RA, Powers RA, Leonard DA, Szarecka A. Structural and Dynamic Features of Acinetobacter baumannii OXA-66 β-Lactamase Explain Its Stability and Evolution of Novel Variants. J Mol Biol 2024; 436:168603. [PMID: 38729259 PMCID: PMC11198252 DOI: 10.1016/j.jmb.2024.168603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
OXA-66 is a member of the OXA-51 subfamily of class D β-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and β5-β6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.
Collapse
Affiliation(s)
- Zachary L Klamer
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | - Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Zdzislaw Wawrzak
- Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, IL, USA
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Joshua A Grey
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | - Alyssa M I Benn
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | | | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Departments of Pharmacology, Biochemistry, and Molecular Biology and Microbiology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA.
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA.
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA.
| | - Agnieszka Szarecka
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA.
| |
Collapse
|
6
|
Gangar T, Patra S. Antibiotic persistence and its impact on the environment. 3 Biotech 2023; 13:401. [PMID: 37982084 PMCID: PMC10654327 DOI: 10.1007/s13205-023-03806-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
From boon molecules to molecules contributing to rising concern has been the sojourn of antibiotics. The problem of antibiotic contamination has gotten worse due to antibiotics' pervasive use in every aspect of the environment. One such consequence of pollution is the increase in infections with antibiotic resistance. All known antimicrobials being used for human benefit lead to their repetitive and routine release into the environment. The misuse of antibiotics has aggravated the situation to a level that we are short of antibiotics to treat infections as organisms have developed resistance against them. Overconsumption is not just limited to human health care, but also occurs in other areas such as aquaculture, livestock, and veterinary applications for the purpose of improving feed and meat products. Due to their harmful effects on non-target species, the trace level of antibiotics in the aquatic ecosystem presents a significant problem. Since the introduction of antibiotics into the environment is more than their removal, they have been given the status of persistent pollutants. The buildup of antibiotics in the environment threatens aquatic life and may lead to bacterial strains developing resistance. As newer organisms are becoming resistant, there exists a shortage of antibiotics to treat infections. This has presented a very critical problem for the health-care community. Another rising concern is that the development of newer drug molecules as antibiotics is minimal. This review article critically explains the cause and nature of the pollution and the effects of this emerging trend. Also, in the latter sections, why we need newer antibiotics is questioned and discussed.
Collapse
Affiliation(s)
- Tarun Gangar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| |
Collapse
|
7
|
Khodaparast L, Khodaparast L, Wu G, Michiels E, Gallardo R, Houben B, Garcia T, De Vleeschouwer M, Ramakers M, Wilkinson H, Duran-Romaña R, Van Eldere J, Rousseau F, Schymkowitz J. Exploiting the aggregation propensity of beta-lactamases to design inhibitors that induce enzyme misfolding. Nat Commun 2023; 14:5571. [PMID: 37689716 PMCID: PMC10492782 DOI: 10.1038/s41467-023-41191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
There is an arms race between beta-lactam antibiotics development and co-evolving beta-lactamases, which provide resistance by breaking down beta-lactam rings. We have observed that certain beta-lactamases tend to aggregate, which persists throughout their evolution under the selective pressure of antibiotics on their active sites. Interestingly, we find that existing beta-lactamase active site inhibitors can act as molecular chaperones, promoting the proper folding of these resistance factors. Therefore, we have created Pept-Ins, synthetic peptides designed to exploit the structural weaknesses of beta-lactamases by causing them to misfold into intracellular inclusion bodies. This approach restores sensitivity to a wide range of beta-lactam antibiotics in resistant clinical isolates, including those with Extended Spectrum variants that pose significant challenges in medical practice. Our findings suggest that targeted aggregation of resistance factors could offer a strategy for identifying molecules that aid in addressing the global antibiotic resistance crisis.
Collapse
Affiliation(s)
- Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hannah Wilkinson
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ramon Duran-Romaña
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Johan Van Eldere
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology & Immunology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Wagner A. Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein. Nat Commun 2023; 14:3624. [PMID: 37336901 PMCID: PMC10279741 DOI: 10.1038/s41467-023-39321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Can evolvability-the ability to produce adaptive heritable variation-itself evolve through adaptive Darwinian evolution? If so, then Darwinian evolution may help create the conditions that enable Darwinian evolution. Here I propose a framework that is suitable to address this question with available experimental data on adaptive landscapes. I introduce the notion of an evolvability-enhancing mutation, which increases the likelihood that subsequent mutations in an evolving organism, protein, or RNA molecule are adaptive. I search for such mutations in the experimentally characterized and combinatorially complete fitness landscapes of a protein and an RNA molecule. I find that such evolvability-enhancing mutations indeed exist. They constitute a small fraction of all mutations, which shift the distribution of fitness effects of subsequent mutations towards less deleterious mutations, and increase the incidence of beneficial mutations. Evolving populations which experience such mutations can evolve significantly higher fitness. The study of evolvability-enhancing mutations opens many avenues of investigation into the evolution of evolvability.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
9
|
Seo D, Koh B, Eom GE, Kim HW, Kim S. A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo. Nucleic Acids Res 2023; 51:e59. [PMID: 37070179 PMCID: PMC10250238 DOI: 10.1093/nar/gkad266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Targeted in vivo hypermutation accelerates directed evolution of proteins through concurrent DNA diversification and selection. Although systems employing a fusion protein of a nucleobase deaminase and T7 RNA polymerase present gene-specific targeting, their mutational spectra have been limited to exclusive or dominant C:G→T:A mutations. Here we describe eMutaT7transition, a new gene-specific hypermutation system, that installs all transition mutations (C:G→T:A and A:T→G:C) at comparable frequencies. By using two mutator proteins in which two efficient deaminases, PmCDA1 and TadA-8e, are separately fused to T7 RNA polymerase, we obtained similar numbers of C:G→T:A and A:T→G:C substitutions at a sufficiently high frequency (∼6.7 substitutions in 1.3 kb gene during 80-h in vivo mutagenesis). Through eMutaT7transition-mediated TEM-1 evolution for antibiotic resistance, we generated many mutations found in clinical isolates. Overall, with a high mutation frequency and wider mutational spectrum, eMutaT7transition is a potential first-line method for gene-specific in vivo hypermutation.
Collapse
Affiliation(s)
- Daeje Seo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Bonghyun Koh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ga-eul Eom
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hye Won Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Standley M, Blay V, Beleva Guthrie V, Kim J, Lyman A, Moya A, Karchin R, Camps M. Experimental and In Silico Analysis of TEM β-Lactamase Adaptive Evolution. ACS Infect Dis 2022; 8:2451-2463. [PMID: 36377311 PMCID: PMC9745794 DOI: 10.1021/acsinfecdis.2c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple mutations often have non-additive (epistatic) phenotypic effects. Epistasis is of fundamental biological relevance but is not well understood mechanistically. Adaptive evolution, i.e., the evolution of new biochemical activities, is rich in epistatic interactions. To better understand the principles underlying epistasis during genetic adaptation, we studied the evolution of TEM-1 β-lactamase variants exhibiting cefotaxime resistance. We report the collection of a library of 487 observed evolutionary trajectories for TEM-1 and determine the epistasis status based on cefotaxime resistance phenotype for 206 combinations of 2-3 TEM-1 mutations involving 17 positions under adaptive selective pressure. Gain-of-function (GOF) mutations are gatekeepers for adaptation. To see if GOF phenotypes can be inferred based solely on sequence data, we calculated the enrichment of GOF mutations in the different categories of epistatic pairs. Our results suggest that this is possible because GOF mutations are particularly enriched in sign and reciprocal sign epistasis, which leave a major imprint on the sequence space accessible to evolution. We also used FoldX to explore the relationship between thermodynamic stability and epistasis. We found that mutations in observed evolutionary trajectories tend to destabilize the folded structure of the protein, albeit their cumulative effects are consistently below the protein's free energy of folding. The destabilizing effect is stronger for epistatic pairs, suggesting that modest or local alterations in folding stability can modulate catalysis. Finally, we report a significant relationship between epistasis and the degree to which two protein positions are structurally and dynamically coupled, even in the absence of ligand.
Collapse
Affiliation(s)
- Melissa Standley
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Vincent Blay
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,
| | - Violeta Beleva Guthrie
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Jay Kim
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Audrey Lyman
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Andrés Moya
- Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,Foundation
for the Promotion of Sanitary and Biomedical Research of Valencia
Region (FISABIO), 46021Valencia, Spain,CIBER
in Epidemiology and Public Health (CIBEResp), 28029Madrid, Spain
| | - Rachel Karchin
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Manel Camps
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,
| |
Collapse
|
11
|
Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother 2022; 66:e0044722. [PMID: 35980232 PMCID: PMC9487638 DOI: 10.1128/aac.00447-22] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
First variants of the Klebsiella pneumoniae carbapenemase (KPC), KPC-2 and KPC-3, have encountered a worldwide success, particularly in K. pneumoniae isolates. These beta-lactamases conferred resistance to most beta-lactams including carbapenems but remained susceptible to new beta-lactam/beta-lactamase inhibitors, such as ceftazidime-avibactam. After the marketing of ceftazidime-avibactam, numerous variants of KPC resistant to this association have been described among isolates recovered from clinical samples or derived from experimental studies. In KPC variants resistant to ceftazidime-avibactam, point mutations, insertions and/or deletions have been described in various hot spots. Deciphering the impact of these mutations is crucial, not only from a therapeutic point of view, but also to follow the evolution in time and space of KPC variants resistant to ceftazidime-avibactam. In this review, we describe the mutational landscape of the KPC beta-lactamase toward ceftazidime-avibactam resistance based on a multidisciplinary approach including epidemiology, microbiology, enzymology, and thermodynamics. We show that resistance is associated with three hot spots, with a high representation of insertions and deletions compared with other class A beta-lactamases. Moreover, extension of resistance to ceftazidime-avibactam is associated with a trade-off in the resistance to other beta-lactams and a decrease in enzyme stability. Nevertheless, the high natural stability of KPC could underlay the propensity of this enzyme to acquire in vivo mutations conferring resistance to ceftazidime-avibactam (CAZavi), particularly via insertions and deletions.
Collapse
|
12
|
Chattopadhyay G, Bhowmick J, Manjunath K, Ahmed S, Goyal P, Varadarajan R. Mechanistic insights into global suppressors of protein folding defects. PLoS Genet 2022; 18:e1010334. [PMID: 36037221 PMCID: PMC9491731 DOI: 10.1371/journal.pgen.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/09/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023] Open
Abstract
Most amino acid substitutions in a protein either lead to partial loss-of-function or are near neutral. Several studies have shown the existence of second-site mutations that can rescue defects caused by diverse loss-of-function mutations. Such global suppressor mutations are key drivers of protein evolution. However, the mechanisms responsible for such suppression remain poorly understood. To address this, we characterized multiple suppressor mutations both in isolation and in combination with inactive mutants. We examined six global suppressors of the bacterial toxin CcdB, the known M182T global suppressor of TEM-1 β-lactamase, the N239Y global suppressor of p53-DBD and three suppressors of the SARS-CoV-2 spike Receptor Binding Domain. When coupled to inactive mutants, they promote increased in-vivo solubilities as well as regain-of-function phenotypes. In the case of CcdB, where novel suppressors were isolated, we determined the crystal structures of three such suppressors to obtain insight into the specific molecular interactions responsible for the observed effects. While most individual suppressors result in small stability enhancements relative to wildtype, which can be combined to yield significant stability increments, thermodynamic stabilisation is neither necessary nor sufficient for suppressor action. Instead, in diverse systems, we observe that individual global suppressors greatly enhance the foldability of buried site mutants, primarily through increase in refolding rate parameters measured in vitro. In the crowded intracellular environment, mutations that slow down folding likely facilitate off-pathway aggregation. We suggest that suppressor mutations that accelerate refolding can counteract this, enhancing the yield of properly folded, functional protein in vivo.
Collapse
Affiliation(s)
| | - Jayantika Bhowmick
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore,
India
| | - Kavyashree Manjunath
- Centre for Chemical Biology and Therapeutics, Institute For Stem Cell
Science and Regenerative Medicine, Bangalore, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore,
India
| | - Parveen Goyal
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore,
India
| | | |
Collapse
|
13
|
Ding D, Green AG, Wang B, Lite TLV, Weinstein EN, Marks DS, Laub MT. Co-evolution of interacting proteins through non-contacting and non-specific mutations. Nat Ecol Evol 2022; 6:590-603. [PMID: 35361892 PMCID: PMC9090974 DOI: 10.1038/s41559-022-01688-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Proteins often accumulate neutral mutations that do not affect current functions but can profoundly influence future mutational possibilities and functions. Understanding such hidden potential has major implications for protein design and evolutionary forecasting but has been limited by a lack of systematic efforts to identify potentiating mutations. Here, through the comprehensive analysis of a bacterial toxin-antitoxin system, we identified all possible single substitutions in the toxin that enable it to tolerate otherwise interface-disrupting mutations in its antitoxin. Strikingly, the majority of enabling mutations in the toxin do not contact and promote tolerance non-specifically to many different antitoxin mutations, despite covariation in homologues occurring primarily between specific pairs of contacting residues across the interface. In addition, the enabling mutations we identified expand future mutational paths that both maintain old toxin-antitoxin interactions and form new ones. These non-specific mutations are missed by widely used covariation and machine learning methods. Identifying such enabling mutations will be critical for ensuring continued binding of therapeutically relevant proteins, such as antibodies, aimed at evolving targets.
Collapse
Affiliation(s)
- David Ding
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Anna G Green
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Boyuan Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Thuy-Lan Vo Lite
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | | | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Schneider S, Kozuch J, Boxer SG. The Interplay of Electrostatics and Chemical Positioning in the Evolution of Antibiotic Resistance in TEM β-Lactamases. ACS CENTRAL SCIENCE 2021; 7:1996-2008. [PMID: 34963893 PMCID: PMC8704030 DOI: 10.1021/acscentsci.1c00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 05/25/2023]
Abstract
The interplay of enzyme active site electrostatics and chemical positioning is important for understanding the origin(s) of enzyme catalysis and the design of novel catalysts. We reconstruct the evolutionary trajectory of TEM-1 β-lactamase to TEM-52 toward extended-spectrum activity to better understand the emergence of antibiotic resistance and to provide insights into the structure-function paradigm and noncovalent interactions involved in catalysis. Utilizing a detailed kinetic analysis and the vibrational Stark effect, we quantify the changes in rates and electric fields in the Michaelis and acyl-enzyme complexes for penicillin G and cefotaxime to ascertain the evolutionary role of electric fields to modulate function. These data are combined with MD simulations to interpret and quantify the substrate-dependent structural changes during evolution. We observe that this evolutionary trajectory utilizes a large preorganized electric field and substrate-dependent chemical positioning to facilitate catalysis. This governs the evolvability, substrate promiscuity, and protein fitness landscape in TEM β-lactamase antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Steven G. Boxer
- Chemistry Department, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H, Iqbal Z, Kulyar MFEA, Zaheer T, Li K. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb Pathog 2021; 158:105040. [PMID: 34119627 PMCID: PMC8445154 DOI: 10.1016/j.micpath.2021.105040] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Antibiotic-resistant bacteria are considered one of the major global threats to human and animal health. The most harmful among the resistant bacteria are β-lactamase producing Gram-negative species (β-lactamases). β-lactamases constitute a paradigm shift in the evolution of antibiotic resistance. Therefore, it is imperative to present a comprehensive review of the mechanisms responsible for developing antimicrobial resistance. Resistance due to β-lactamases develops through a variety of mechanisms, and the number of resistant genes are involved that can be transferred between bacteria, mostly via plasmids. Over time, these new molecular-based resistance mechanisms have been progressively disclosed. The present review article provides information on the recent findings regarding the molecular mechanisms of resistance to β-lactams in Gram-negative bacteria, including CTX-M-type ESBLs with methylase activity, plasmids harbouring phages with β-lactam resistance genes, the co-presence of β-lactam resistant genes of unique combinations and the presence of β-lactam and non-β-lactam antibiotic-resistant genes in the same bacteria. Keeping in view, the molecular level resistance development, multifactorial and coordinated measures may be taken to counter the challenge of rapidly increasing β-lactam resistance.
Collapse
Affiliation(s)
- Hafiz Iftikhar Hussain
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, USA
| | | | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zahid Iqbal
- Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China.
| | | | - Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Assessment of Phenotype Relevant Amino Acid Residues in TEM-β-Lactamases by Mathematical Modelling and Experimental Approval. Microorganisms 2021; 9:microorganisms9081726. [PMID: 34442804 PMCID: PMC8399295 DOI: 10.3390/microorganisms9081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Single substitutions or combinations of them alter the hydrolytic activity towards specific β-lactam-antibiotics and β-lactamase inhibitors of TEM-β-lactamases. The sequences and phenotypic classification of allelic TEM variants, as provided by the NCBI National Database of Antibiotic Resistant Organisms, does not attribute phenotypes to all variants. Some entries are doubtful as the data assessment differs strongly between the studies or no data on the methodology are provided at all. This complicates mathematical and bioinformatic predictions of phenotypes that rely on the database. The present work aimed to prove the role of specific substitutions on the resistance phenotype of TEM variants in, to our knowledge, the most extensive mutagenesis study. In parallel, the predictive power of extrapolation algorithms was assessed. Most well-known substitutions with direct impact on the phenotype could be reproduced, both mathematically and experimentally. Most discrepancies were found for supportive substitutions, where some resulted in antagonistic effects in contrast to previously described synergism. The mathematical modelling proved to predict the strongest phenotype-relevant substitutions accurately but showed difficulties in identifying less prevalent but still phenotype transforming ones. In general, mutations increasing cephalosporin resistance resulted in increased sensitivity to β-lactamase inhibitors and vice versa. Combining substitutions related to cephalosporin and β-lactamase inhibitor resistance in almost all cases increased BLI susceptibility, indicating the rarity of the combined phenotype.
Collapse
|
17
|
Zheng J, Bratulic S, Lischer HEL, Wagner A. Mistranslation can promote the exploration of alternative evolutionary trajectories in enzyme evolution. J Evol Biol 2021; 34:1302-1315. [PMID: 34145657 PMCID: PMC8457080 DOI: 10.1111/jeb.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Darwinian evolution preferentially follows mutational pathways whose individual steps increase fitness. Alternative pathways with mutational steps that do not increase fitness are less accessible. Here, we show that mistranslation, the erroneous incorporation of amino acids into nascent proteins, can increase the accessibility of such alternative pathways and, ultimately, of high fitness genotypes. We subject populations of the beta‐lactamase TEM‐1 to directed evolution in Escherichia coli under both low‐ and high‐mistranslation rates, selecting for high activity on the antibiotic cefotaxime. Under low mistranslation rates, different evolving TEM‐1 populations ascend the same high cefotaxime‐resistance peak, which requires three canonical DNA mutations. In contrast, under high mistranslation rates they ascend three different high cefotaxime‐resistance genotypes, which leads to higher genotypic diversity among populations. We experimentally reconstruct the adaptive DNA mutations and the potential evolutionary paths to these high cefotaxime‐resistance genotypes. This reconstruction shows that some of the DNA mutations do not change fitness under low mistranslation, but cause a significant increase in fitness under high‐mistranslation, which helps increase the accessibility of different high cefotaxime‐resistance genotypes. In addition, these mutations form a network of pairwise epistatic interactions that leads to mutually exclusive evolutionary trajectories towards different high cefotaxime‐resistance genotypes. Our observations demonstrate that protein mistranslation and the phenotypic mutations it causes can alter the evolutionary exploration of fitness landscapes and reduce the predictability of evolution.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | | | - Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
18
|
An in vivo selection system with tightly regulated gene expression enables directed evolution of highly efficient enzymes. Sci Rep 2021; 11:11669. [PMID: 34083677 PMCID: PMC8175713 DOI: 10.1038/s41598-021-91204-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
In vivo selection systems are powerful tools for directed evolution of enzymes. The selection pressure of the systems can be tuned by regulating the expression levels of the catalysts. In this work, we engineered a selection system for laboratory evolution of highly active enzymes by incorporating a translationally suppressing cis repressor as well as an inducible promoter to impart stringent and tunable selection pressure. We demonstrated the utility of our selection system by performing directed evolution experiments using TEM β-lactamase as the model enzyme. Five evolutionary rounds afforded a highly active variant exhibiting 440-fold improvement in catalytic efficiency. We also showed that, without the cis repressor, the selection system cannot provide sufficient selection pressure required for evolving highly efficient TEM β-lactamase. The selection system should be applicable for the exploration of catalytic perfection of a wide range of enzymes.
Collapse
|
19
|
Farhat N, Khan AU. Evolving trends of New Delhi Metallo-betalactamse (NDM) variants: A threat to antimicrobial resistance. INFECTION GENETICS AND EVOLUTION 2020; 86:104588. [PMID: 33038522 DOI: 10.1016/j.meegid.2020.104588] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023]
Abstract
The rapid emergence of carbapenemase producing Gram-negative bacterial strains exhibit broad-spectrum β-lactam resistance, especially New Delhi metallo-β-lactamase (NDM-1). It is a major public health threat as it catalyses the hydrolysis of a vast variety of β-lactam antibiotics, including carbapenems, which is the last choice for physicians to treat infections. NDM-1 and its variants are continuously spreading worldwide, in spite of constant efforts to control. Its clinical treatment remains challenging due to continuous evolution of new variants. A thorough structural study of all variants is required to develop new and effective inhibitors. This review focuses on the dissemination, position of substitution and carbapenemases activity of all the 28 NDM variants so far reported.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
20
|
Chen JZ, Fowler DM, Tokuriki N. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase. eLife 2020; 9:e56707. [PMID: 32510322 PMCID: PMC7308095 DOI: 10.7554/elife.56707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Metallo-β-lactamases (MBLs) degrade a broad spectrum of β-lactam antibiotics, and are a major disseminating source for multidrug resistant bacteria. Despite many biochemical studies in diverse MBLs, molecular understanding of the roles of residues in the enzyme's stability and function, and especially substrate specificity, is lacking. Here, we employ deep mutational scanning (DMS) to generate comprehensive single amino acid variant data on a major clinical MBL, VIM-2, by measuring the effect of thousands of VIM-2 mutants on the degradation of three representative classes of β-lactams (ampicillin, cefotaxime, and meropenem) and at two different temperatures (25°C and 37°C). We revealed residues responsible for expression and translocation, and mutations that increase resistance and/or alter substrate specificity. The distribution of specificity-altering mutations unveiled distinct molecular recognition of the three substrates. Moreover, these function-altering mutations are frequently observed among naturally occurring variants, suggesting that the enzymes have continuously evolved to become more potent resistance genes.
Collapse
Affiliation(s)
- John Z Chen
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Douglas M Fowler
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| |
Collapse
|
21
|
Brown CA, Hu L, Sun Z, Patel MP, Singh S, Porter JR, Sankaran B, Prasad BVV, Bowman GR, Palzkill T. Antagonism between substitutions in β-lactamase explains a path not taken in the evolution of bacterial drug resistance. J Biol Chem 2020; 295:7376-7390. [PMID: 32299911 PMCID: PMC7247304 DOI: 10.1074/jbc.ra119.012489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/14/2020] [Indexed: 11/06/2022] Open
Abstract
CTX-M β-lactamases are widespread in Gram-negative bacterial pathogens and provide resistance to the cephalosporin cefotaxime but not to the related antibiotic ceftazidime. Nevertheless, variants have emerged that confer resistance to ceftazidime. Two natural mutations, causing P167S and D240G substitutions in the CTX-M enzyme, result in 10-fold increased hydrolysis of ceftazidime. Although the combination of these mutations would be predicted to increase ceftazidime hydrolysis further, the P167S/D240G combination has not been observed in a naturally occurring CTX-M variant. Here, using recombinantly expressed enzymes, minimum inhibitory concentration measurements, steady-state enzyme kinetics, and X-ray crystallography, we show that the P167S/D240G double mutant enzyme exhibits decreased ceftazidime hydrolysis, lower thermostability, and decreased protein expression levels compared with each of the single mutants, indicating negative epistasis. X-ray structures of mutant enzymes with covalently trapped ceftazidime suggested that a change of an active-site Ω-loop to an open conformation accommodates ceftazidime leading to enhanced catalysis. 10-μs molecular dynamics simulations further correlated Ω-loop opening with catalytic activity. We observed that the WT and P167S/D240G variant with acylated ceftazidime both favor a closed conformation not conducive for catalysis. In contrast, the single substitutions dramatically increased the probability of open conformations. We conclude that the antagonism is due to restricting the conformation of the Ω-loop. These results reveal the importance of conformational heterogeneity of active-site loops in controlling catalytic activity and directing evolutionary trajectories.
Collapse
Affiliation(s)
- Cameron A Brown
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Meha P Patel
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Sukrit Singh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Justin R Porter
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Gregory R Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
22
|
Sun Z, Wakefield AE, Kolossvary I, Beglov D, Vajda S. Structure-Based Analysis of Cryptic-Site Opening. Structure 2019; 28:223-235.e2. [PMID: 31810712 DOI: 10.1016/j.str.2019.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Many proteins in their unbound structures have cryptic sites that are not appropriately sized for drug binding. We consider here 32 proteins from the recently published CryptoSite set with validated cryptic sites, and study whether the sites remain cryptic in all available X-ray structures of the proteins solved without any ligand bound near the sites. It was shown that only few of these proteins have binding pockets that never form without ligand binding. Sites that are cryptic in some structures but spontaneously form in others are also rare. In most proteins the forming of pockets is affected by mutations or ligand binding at locations far from the cryptic site. To further explore these mechanisms, we applied adiabatic biased molecular dynamics simulations to guide the proteins from their ligand-free structures to ligand-bound conformations, and studied the distribution of druggability scores of the pockets located at the cryptic sites.
Collapse
Affiliation(s)
- Zhuyezi Sun
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Amanda Elizabeth Wakefield
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Istvan Kolossvary
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Shcherbinin D, Veselovsky A, Rubtsova M, Grigorenko V, Egorov A. The impact of long-distance mutations on the Ω-loop conformation in TEM type β-lactamases. J Biomol Struct Dyn 2019; 38:2369-2376. [PMID: 31241429 DOI: 10.1080/07391102.2019.1634642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
β-lactamases are hydrolytic enzymes primarily responsible for occurrence and abundance of bacteria resistant to β-lactam antibiotics. TEM type β-lactamases are formed by the parent enzyme TEM-1 and more than two hundred of its mutants. Positions for the known amino acid substitutions cover ∼30% of TEM type enzyme's sequence. These substitutions are divided into the key mutations that lead to changes in catalytic properties of β-lactamases, and the secondary ones, which role is poorly understood. In this study, Residue Interaction Networks were constructed from molecular dynamic trajectories of β-lactamase TEM-1 and its variants with two key substitutions, G238S and E240K, and their combinations with secondary ones (M182T and Q39K). Particular attention was paid to a detailed analysis of the interactions that affect conformation and mobility of the Ω-loop, representing a part of the β-lactamase active site. It was shown that key mutations weakened the stability of contact inside the Ω-loop thus increasing its mobility. Combination of three amino acid substitutions, including the 182 residue, leads to the release of R65 promoting its new contacts with N175 and D176. As a result, Ω-loop is fixed on the protein globule. The second distal mutation Q39K prevents changes in spatial position of R65, which lead to the weakening of the effect of M182T substitution and the recovery of the Ω-loop mobility. Thus, the distal secondary mutations are directed for recovering the mobility of enzyme disturbed by the key mutations responsible for expansion of substrate specificity. AbbreviationsESBLextended spectrum beta-lactamasesIRinhibitor resistant beta-lactamasesMDmolecular dynamicsRINresidue interaction networksRMSDroot mean square deviationRMSFroot mean square fluctuations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dmitrii Shcherbinin
- Institute of Biomedical Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Maya Rubtsova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vitaly Grigorenko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Egorov
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
24
|
Beleva Guthrie V, Masica DL, Fraser A, Federico J, Fan Y, Camps M, Karchin R. Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations. Mol Biol Evol 2019. [PMID: 29522102 PMCID: PMC5967520 DOI: 10.1093/molbev/msy036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure.
Collapse
Affiliation(s)
- Violeta Beleva Guthrie
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Andrew Fraser
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Joseph Federico
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Yunfan Fan
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Manel Camps
- Department of Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD.,Department of Oncology, Johns Hopkins University Medicine, Baltimore, MD
| |
Collapse
|
25
|
Patel MP, Hu L, Brown CA, Sun Z, Adamski CJ, Stojanoski V, Sankaran B, Prasad BVV, Palzkill T. Synergistic effects of functionally distinct substitutions in β-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem 2018; 293:17971-17984. [PMID: 30275013 PMCID: PMC6240883 DOI: 10.1074/jbc.ra118.003792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
The CTX-M β-lactamases have emerged as the most widespread extended-spectrum β-lactamases (ESBLs) in Gram-negative bacteria. These enzymes rapidly hydrolyze cefotaxime, but not the related cephalosporin, ceftazidime. ESBL variants have evolved, however, that provide enhanced ceftazidime resistance. We show here that a natural variant at a nonactive site, i.e. second-shell residue N106S, enhances enzyme stability but reduces catalytic efficiency for cefotaxime and ceftazidime and decreases resistance levels. However, when the N106S variant was combined with an active-site variant, D240G, that enhances enzyme catalytic efficiency, but decreases stability, the resultant double mutant exhibited higher resistance levels than predicted on the basis of the phenotypes of each variant. We found that this epistasis is due to compensatory effects, whereby increased stability provided by N106S overrides its cost of decreased catalytic activity. X-ray structures of the variant enzymes in complex with cefotaxime revealed conformational changes in the active-site loop spanning residues 103-106 that were caused by the N106S substitution and relieve steric strain to stabilize the enzyme, but also alter contacts with cefotaxime and thereby reduce catalytic activity. We noted that the 103-106 loop conformation in the N106S-containing variants is different from that of WT CTX-M but nearly identical to that of the non-ESBL, TEM-1 β-lactamase, having a serine at the 106 position. Therefore, residue 106 may serve as a "switch" that toggles the conformations of the 103-106 loop. When it is serine, the loop is in the non-ESBL, TEM-like conformation, and when it is asparagine, the loop is in a CTX-M-like, cefotaximase-favorable conformation.
Collapse
Affiliation(s)
- Meha P Patel
- From the Interdepartmental Graduate Program in Translational Biology and Molecular Medicine; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Cameron A Brown
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Carolyn J Adamski
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Vlatko Stojanoski
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030; Verna Marrs McLean Department of Biochemistry and Molecular Biology.
| |
Collapse
|
26
|
Egorov AM, Ulyashova MM, Rubtsova MY. Bacterial Enzymes and Antibiotic Resistance. Acta Naturae 2018; 10:33-48. [PMID: 30713760 PMCID: PMC6351036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 11/01/2022] Open
Abstract
The resistance of microorganisms to antibiotics has been developing for more than 2 billion years and is widely distributed among various representatives of the microbiological world. Bacterial enzymes play a key role in the emergence of resistance. Classification of these enzymes is based on their participation in various biochemical mechanisms: modification of the enzymes that act as antibiotic targets, enzymatic modification of intracellular targets, enzymatic transformation of antibiotics, and the implementation of cellular metabolism reactions. The main mechanisms of resistance development are associated with the evolution of superfamilies of bacterial enzymes due to the variability of the genes encoding them. The collection of all antibiotic resistance genes is known as the resistome. Tens of thousands of enzymes and their mutants that implement various mechanisms of resistance form a new community that is called "the enzystome." Analysis of the structure and functional characteristics of enzymes, which are the targets for different classes of antibiotics, will allow us to develop new strategies for overcoming the resistance.
Collapse
Affiliation(s)
- A. M. Egorov
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| | - M. M. Ulyashova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| | - M. Yu. Rubtsova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Leninskie gori, 1, bldg. 3, Moscow, 119991, Russia
| |
Collapse
|
27
|
Takahashi M, Sakamoto K. Engineering of Escherichia coli β-lactamase TEM-1 variants showing higher activity under acidic conditions than at the neutral pH. Biochem Biophys Res Commun 2018; 505:333-337. [DOI: 10.1016/j.bbrc.2018.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 01/26/2023]
|
28
|
Cheng Z, Thomas PW, Ju L, Bergstrom A, Mason K, Clayton D, Miller C, Bethel CR, VanPelt J, Tierney DL, Page RC, Bonomo RA, Fast W, Crowder MW. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J Biol Chem 2018; 293:12606-12618. [PMID: 29909397 PMCID: PMC6093243 DOI: 10.1074/jbc.ra118.003835] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Infections by carbapenem-resistant Enterobacteriaceae are difficult to manage owing to broad antibiotic resistance profiles and because of the inability of clinically used β-lactamase inhibitors to counter the activity of metallo-β-lactamases often harbored by these pathogens. Of particular importance is New Delhi metallo-β-lactamase (NDM), which requires a di-nuclear zinc ion cluster for catalytic activity. Here, we compare the structures and functions of clinical NDM variants 1-17. The impact of NDM variants on structure is probed by comparing melting temperature and refolding efficiency and also by spectroscopy (UV-visible, 1H NMR, and EPR) of di-cobalt metalloforms. The impact of NDM variants on function is probed by determining the minimum inhibitory concentrations of various antibiotics, pre-steady-state and steady-state kinetics, inhibitor binding, and zinc dependence of resistance and activity. We observed only minor differences among the fully loaded di-zinc enzymes, but most NDM variants had more distinguishable selective advantages in experiments that mimicked zinc scarcity imposed by typical host defenses. Most NDM variants exhibited improved thermostability (up to ∼10 °C increased Tm ) and improved zinc affinity (up to ∼10-fold decreased Kd, Zn2). We also provide first evidence that some NDM variants have evolved the ability to function as mono-zinc enzymes with high catalytic efficiency (NDM-15, ampicillin: kcat/Km = 5 × 106 m-1 s-1). These findings reveal the molecular mechanisms that NDM variants have evolved to overcome the combined selective pressures of β-lactam antibiotics and zinc deprivation.
Collapse
Affiliation(s)
- Zishuo Cheng
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Pei W Thomas
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center of Infectious Disease, University of Texas, Austin, Texas 78712
| | - Lincheng Ju
- the Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Alexander Bergstrom
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Kelly Mason
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Delaney Clayton
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Callie Miller
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Christopher R Bethel
- the Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and
| | - Jamie VanPelt
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - David L Tierney
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056,
| | - Richard C Page
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056,
| | - Robert A Bonomo
- the Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and
- the Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics, and Bioinformatics, Case Western Reserve University (CWRU)-Cleveland Veterans Administration Medical Center (VAMC) Center of Antimicrobial Resistance and Epidemiology (CARES), Cleveland, Ohio 44106
| | - Walter Fast
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center of Infectious Disease, University of Texas, Austin, Texas 78712,
| | - Michael W Crowder
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056,
| |
Collapse
|
29
|
Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5:16. [PMID: 29527530 PMCID: PMC5829062 DOI: 10.3389/fmolb.2018.00016] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 11/13/2022] Open
Abstract
The most common mechanism of resistance to β-lactam antibiotics in Gram-negative bacteria is the production of β-lactamases that hydrolyze the drugs. Class A β-lactamases are serine active-site hydrolases that include the common TEM, CTX-M, and KPC enzymes. The TEM enzymes readily hydrolyze penicillins and older cephalosporins. Oxyimino-cephalosporins, such as cefotaxime and ceftazidime, however, are poor substrates for TEM-1 and were introduced, in part, to circumvent β-lactamase-mediated resistance. Nevertheless, the use of these antibiotics has lead to evolution of numerous variants of TEM with mutations that significantly increase the hydrolysis of the newer cephalosporins. The CTX-M enzymes emerged in the late 1980s and hydrolyze penicillins and older cephalosporins and derive their name from the ability to also hydrolyze cefotaxime. The CTX-M enzymes, however, do not efficiently hydrolyze ceftazidime. Variants of CTX-M enzymes, however, have evolved that exhibit increased hydrolysis of ceftazidime. Finally, the KPC enzyme emerged in the 1990s and is characterized by its broad specificity that includes penicillins, most cephalosporins, and carbapenems. The KPC enzyme, however, does not efficiently hydrolyze ceftazidime. As with the TEM and CTX-M enzymes, variants have recently evolved that extend the spectrum of KPC β-lactamase to include ceftazidime. This review discusses the structural and mechanistic basis for the expanded substrate specificity of each of these enzymes that result from natural mutations that confer oxyimino-cephalosporin resistance. For the TEM enzyme, extended-spectrum mutations act by establishing new interactions with the cephalosporin. These mutations increase the conformational heterogeneity of the active site to create sub-states that better accommodate the larger drugs. The mutations expanding the spectrum of CTX-M enzymes also affect the flexibility and conformation of the active site to accommodate ceftazidime. Although structural data are limited, extended-spectrum mutations in KPC may act by mediating new, direct interactions with substrate and/or altering conformations of the active site. In many cases, mutations that expand the substrate profile of these enzymes simultaneously decrease the thermodynamic stability. This leads to the emergence of additional global suppressor mutations that help correct the stability defects leading to increased protein expression and increased antibiotic resistance.
Collapse
Affiliation(s)
- Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
30
|
Grigorenko V, Uporov I, Rubtsova M, Andreeva I, Shcherbinin D, Veselovsky A, Serova O, Ulyashova M, Ishtubaev I, Egorov A. Mutual influence of secondary and key drug-resistance mutations on catalytic properties and thermal stability of TEM-type β-lactamases. FEBS Open Bio 2018; 8:117-129. [PMID: 29321962 PMCID: PMC5757180 DOI: 10.1002/2211-5463.12352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/26/2022] Open
Abstract
Highly mutable β-lactamases are responsible for the ability of Gram-negative bacteria to resist β-lactam antibiotics. Using site-directed mutagenesis technique, we have produced in vitro a number of recombinant analogs of naturally occurring TEM-type β-lactamases, bearing the secondary substitution Q39K and key mutations related to the extended-spectrum (E104K, R164S) and inhibitor-resistant (M69V) β-lactamases. The mutation Q39K alone was found to be neutral and hardly affected the catalytic properties of β-lactamases. However, in combination with the key mutations, this substitution resulted in decreased KM values towards hydrolysis of a chromogenic substrate, CENTA. The ability of enzymes to restore catalytic activity after exposure to elevated temperature has been examined. All double and triple mutants of β-lactamase TEM-1 bearing the Q39K substitution showed lower thermal stability compared with the enzyme with Q39 intact. A sharp decrease in the stability was observed when Q39K was combined with E104K and M69V. The key R164S substitution demonstrated unusual ability to resist thermal inactivation. Computer analysis of the structure and molecular dynamics of β-lactamase TEM-1 revealed a network of hydrogen bonds from the residues Q39 and K32, related to the N-terminal α-helix, towards the residues R244 and G236, located in the vicinity of the enzyme's catalytic site. Replacement of Q39 by lysine in combination with the key drug resistance mutations may be responsible for loss of protein thermal stability and elevated mobility of its secondary structure elements. This effect on the activity of β-lactamases can be used as a new potential target for inhibiting the enzyme.
Collapse
Affiliation(s)
| | - Igor Uporov
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Maya Rubtsova
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Irina Andreeva
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | | | | | - Oksana Serova
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Maria Ulyashova
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Igor Ishtubaev
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| | - Alexey Egorov
- Chemistry FacultyM.V. Lomonosov Moscow State UniversityRussia
| |
Collapse
|
31
|
Cohen-Khait R, Dym O, Hamer-Rogotner S, Schreiber G. Promiscuous Protein Binding as a Function of Protein Stability. Structure 2017; 25:1867-1874.e3. [DOI: 10.1016/j.str.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 11/03/2017] [Indexed: 11/28/2022]
|
32
|
Knies JL, Cai F, Weinreich DM. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase. Mol Biol Evol 2017; 34:1040-1054. [PMID: 28087769 PMCID: PMC5400381 DOI: 10.1093/molbev/msx053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 β-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.
Collapse
Affiliation(s)
- Jennifer L Knies
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Fei Cai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| |
Collapse
|
33
|
Shcherbinin DS, Rubtsova MY, Grigorenko VG, Uporov IV, Veselovsky AV, Egorov AM. The study of the role of mutations M182T and Q39K in the TEM-72 β-lactamase structure by the molecular dynamics method. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817020056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Shcherbinin DS, Rubtsova MY, Grigorenko VG, Uporov IV, Veselovsky AV, Egorov AM. [Investigation the role of mutations M182T and Q39K in structure of beta-lactamase TEM-72 by molecular dynamics method]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:527-534. [PMID: 27797327 DOI: 10.18097/pbmc20166205527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synthesis of b-lactamases is one of the common mechanisms of bacterial resistance to b-lactam antibiotics including penicillins and cephalosporins. The widespread use of antibiotics results in appearance of numerous extended-spectrum b-lactamase variants or resistance to inhibitors. Mutations of 92 residues of TEM type were found. Several mutations are the key mutations that determine the extension of spectrum of substrates. However, roles of the most associated mutations, located far from active site, remain unknown. We have investigated the role of associated mutations in structure of b-lactamase TEM-72, which contain two key mutation (G238S, E240K) and two associated mutations (Q39K, M182T) by means of simulation of molecular dynamics. The key mutation lead to destabilization of the protein globule, characterized by increased mobility of amino acid residues at high temperature of modelling. Mutation M182T lead to stabilization protein, whereas mutation Q39K is destabilizing mutation. It seems that the last mutation serves for optimization of conformational mobility of b-lactamase and may influence on enzyme activity.
Collapse
Affiliation(s)
| | - M Yu Rubtsova
- Lomonosov Moscow State University, Chemical Department, Moscow, Russia
| | - V G Grigorenko
- Lomonosov Moscow State University, Chemical Department, Moscow, Russia
| | - I V Uporov
- Lomonosov Moscow State University, Chemical Department, Moscow, Russia
| | | | - A M Egorov
- Lomonosov Moscow State University, Chemical Department, Moscow, Russia
| |
Collapse
|
35
|
Molecular basis of thermostability enhancement of Renilla luciferase at higher temperatures by insertion of a disulfide bridge into the structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:252-259. [DOI: 10.1016/j.bbapap.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 11/20/2022]
|
36
|
Klebsiella pneumoniae blaKPC-3 nosocomial epidemic: Bayesian and evolutionary analysis. INFECTION GENETICS AND EVOLUTION 2016; 46:85-93. [PMID: 27815135 DOI: 10.1016/j.meegid.2016.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/08/2016] [Accepted: 10/30/2016] [Indexed: 01/05/2023]
Abstract
K. pneumoniae isolates carrying blaKPC-3 gene were collected to perform Bayesian phylogenetic and selective pressure analysis and to apply homology modeling to the KPC-3 protein. A dataset of 44 blakpc-3 gene sequences from clinical isolates of K. pneumoniae was used for Bayesian phylogenetic, selective pressure analysis and homology modeling. The mean evolutionary rate for blakpc-3 gene was 2.67×10-3 substitution/site/year (95% HPD: 3.4×10-4-5.59×10-3). The root of the Bayesian tree dated back to the year 2011 (95% HPD: 2007-2012). Two main clades (I and II) were identified. The population dynamics analysis showed an exponential growth from 2011 to 2013 and the reaching of a plateau. The phylogeographic reconstruction showed that the root of the tree had a probable common ancestor in the general surgery ward. Selective pressure analysis revealed twelve positively selected sites. Structural analysis of KPC-3 protein predicted that the amino acid mutations are destabilizing for the protein and could alter the substrate specificity. Phylogenetic analysis and homology modeling of blaKPC-3 gene could represent a useful tool to follow KPC spread in nosocomial setting and to evidence amino acid substitutions altering the substrate specificity.
Collapse
|
37
|
Starr TN, Thornton JW. Epistasis in protein evolution. Protein Sci 2016; 25:1204-18. [PMID: 26833806 PMCID: PMC4918427 DOI: 10.1002/pro.2897] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 01/18/2023]
Abstract
The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions-called epistasis-within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage-specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis-in which one mutation influences the phenotypic effect of few other mutations-is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low-probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families.
Collapse
Affiliation(s)
- Tyler N Starr
- Graduate Program in Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois, 60637
| | - Joseph W Thornton
- Departments of Ecology and Evolution and Human Genetics, University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
38
|
Abstract
A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ashley M Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
39
|
Abstract
Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a library of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ∼9 °C was identified. This result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.
Collapse
|
40
|
Stojanoski V, Adamski CJ, Hu L, Mehta SC, Sankaran B, Zwart P, Prasad BVV, Palzkill T. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain. Biochemistry 2016; 55:2479-90. [PMID: 27073009 DOI: 10.1021/acs.biochem.6b00056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine β-lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. In this study, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M-14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutant were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. Additionally, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. These findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.
Collapse
Affiliation(s)
| | | | | | | | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Peter Zwart
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | | | | |
Collapse
|
41
|
Winkler ML, Bonomo RA. SHV-129: A Gateway to Global Suppressors in the SHV β-Lactamase Family? Mol Biol Evol 2015; 33:429-41. [PMID: 26531195 DOI: 10.1093/molbev/msv235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enzymes are continually evolving in response to environmental pressures. In order to increase enzyme fitness, amino acid substitutions can occur leading to a changing function or an increased stability. These evolutionary drivers determine the activity of an enzyme and its success in future generations in response to changing conditions such as environmental stressors or to improve physiological function allowing continual persistence of the enzyme. With recent warning reports on antibiotic resistance and multidrug resistant bacterial infections, understanding the evolution of β-lactamase enzymes, which are a large contributor to antibiotic resistance, is increasingly important. Here, we investigated a variant of the SHV β-lactamase identified from a clinical isolate of Escherichia coli in 2011 (SHV-129, G238S-E240K-R275L-N276D) to identify the first instance of a global suppressor substitution in the SHV β-lactamase family. We have used this enzyme to show that several evolutionary principles are conserved in different class A β-lactamases, such as active site mutations reducing stability and requiring compensating suppressor substitutions in order to ensure evolutionary persistence of a given β-lactamase. However, the pathway taken by a given β-lactamase in order to reach its evolutionary peak under a given set of conditions is likely different. We also provide further evidence for a conserved stabilizing substitution among class A β-lactamases, the back to consensus M182T substitution. In addition to expanding the spectrum of β-lactamase activity to include the hydrolysis of cefepime, the amino acid substitutions found in SHV-129 provide the enzyme with an excess of stability, which expands the evolutionary landscape of this enzyme and may result in further evolution to potentially include resistance to carbapenems or β-lactamase inhibitors.
Collapse
Affiliation(s)
- Marisa L Winkler
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH Department of Molecular Biology and Microbiology, Case Western Reserve University
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH Department of Molecular Biology and Microbiology, Case Western Reserve University Department of Pharmacology, Case Western Reserve University Department of Biochemistry, Case Western Reserve University Department of Medicine, Case Western Reserve University
| |
Collapse
|
42
|
Kusumi J, Ichinose M, Takefu M, Piskol R, Stephan W, Iizuka M. A model of compensatory molecular evolution involving multiple sites in RNA molecules. J Theor Biol 2015; 388:96-107. [PMID: 26506471 DOI: 10.1016/j.jtbi.2015.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/17/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
Abstract
Consider two sites under compensatory fitness interaction, such as a Watson-Crick base pair in an RNA helix or two interacting residues in a protein. A mutation at any one of these two sites may reduce the fitness of an individual. However, fitness may be restored by the occurrence of a second mutation at the other site. Kimura modeled this process using a two-locus haploid fitness scheme with two alleles at each locus. He predicted that compensatory evolution following this model is very rare unless selection against the deleterious single mutations is weak and linkage between the interacting sites is tight. Here we investigate the question whether the rate of compensatory evolution increases if we take the context of the two directly interacting sites into account. By "context", we mean the effect of neighboring sites in an RNA helix. Interaction between the focal pair of sites under consideration and the context may lead to so-called indirect compensation. Thus, extending Kimura's classical model of compensatory evolution, we study the effects of both direct and indirect compensation on the rate of compensatory evolution. It is shown that the effects of indirect compensation are very strong. We find that recombination does not slow down the rate of compensatory evolution as predicted by the classical model. Instead, compensatory substitutions may be relatively frequent, even if linkage between the focal interacting sites is loose, selection against deleterious mutations is strong, and mutation rate is low. We compare our theoretical results with data on RNA secondary structures from vertebrate introns.
Collapse
Affiliation(s)
- Junko Kusumi
- Department of Environmental Changes, Kyushu University, Fukuoka, Japan.
| | - Motoshi Ichinose
- Department of English and Multimedia Studies, Chikushi Jogakuen University, Dazaifu, Japan
| | - Masasuke Takefu
- Center for Comprehensive Community Medicine, Saga University, Saga, Japan
| | - Robert Piskol
- Department of Genetics, Stanford University, Stanford, USA
| | - Wolfgang Stephan
- Biocenter, Ludwig-Maximilian University Munich, Planegg, Germany
| | - Masaru Iizuka
- Division of Mathematics, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
43
|
Abstract
How biological systems such as proteins achieve robustness to ubiquitous perturbations is a fundamental biological question. Such perturbations include errors that introduce phenotypic mutations into nascent proteins during the translation of mRNA. These errors are remarkably frequent. They are also costly, because they reduce protein stability and help create toxic misfolded proteins. Adaptive evolution might reduce these costs of protein mistranslation by two principal mechanisms. The first increases the accuracy of translation via synonymous "high fidelity" codons at especially sensitive sites. The second increases the robustness of proteins to phenotypic errors via amino acids that increase protein stability. To study how these mechanisms are exploited by populations evolving in the laboratory, we evolved the antibiotic resistance gene TEM-1 in Escherichia coli hosts with either normal or high rates of mistranslation. We analyzed TEM-1 populations that evolved under relaxed and stringent selection for antibiotic resistance by single molecule real-time sequencing. Under relaxed selection, mistranslating populations reduce mistranslation costs by reducing TEM-1 expression. Under stringent selection, they efficiently purge destabilizing amino acid changes. More importantly, they accumulate stabilizing amino acid changes rather than synonymous changes that increase translational accuracy. In the large populations we study, and on short evolutionary timescales, the path of least resistance in TEM-1 evolution consists of reducing the consequences of translation errors rather than the errors themselves.
Collapse
|
44
|
Characterization of the global stabilizing substitution A77V and its role in the evolution of CTX-M β-lactamases. Antimicrob Agents Chemother 2015; 59:6741-8. [PMID: 26282414 DOI: 10.1128/aac.00618-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
The widespread use of oxyimino-cephalosporin antibiotics drives the evolution of the CTX-M family of β-lactamases that hydrolyze these drugs and confer antibiotic resistance. Clinically isolated CTX-M enzymes carrying the P167S or D240G active site-associated adaptive mutation have a broadened substrate profile that includes the oxyimino-cephalosporin antibiotic ceftazidime. The D240G substitution is known to reduce the stability of CTX-M-14 β-lactamase, and the P167S substitution is shown here to also destabilize the enzyme. Proteins are marginally stable entities, and second-site mutations that stabilize the enzyme can offset a loss in stability caused by mutations that enhance enzyme activity. Therefore, the evolution of antibiotic resistance enzymes can be dependent on the acquisition of stabilizing mutations. The A77V substitution is present in CTX-M extended-spectrum β-lactamases (ESBLs) from a number of clinical isolates, suggesting that it may be important in the evolution of antibiotic resistance in this family of β-lactamases. In this study, the effects of the A77V substitution in the CTX-M-14 model enzyme were characterized with regard to the kinetic parameters for antibiotic hydrolysis as well as enzyme expression levels in vivo and protein stability in vitro. The A77V substitution has little effect on the kinetics of oxyimino-cephalosporin hydrolysis, but it stabilizes the CTX-M enzyme and compensates for the loss of stability resulting from the P167S and D240G mutations. The acquisition of global stabilizing mutations, such as A77V, is an important feature in β-lactamase evolution and a common mechanism in protein evolution.
Collapse
|
45
|
Mehta SC, Rice K, Palzkill T. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability. PLoS Pathog 2015; 11:e1004949. [PMID: 26030609 PMCID: PMC4452179 DOI: 10.1371/journal.ppat.1004949] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2) emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the ‘stability-function tradeoff’ phenomenon. The high Tm of KPC-2 (66.5°C) provides an evolutionary advantage as compared to other class A enzymes such as TEM (51.5°C) and CTX-M (51°C) in that it can acquire multiple destabilizing substitutions without losing the ability to fold into a functional enzyme. The absence of new antibiotics combined with the emergence of antibiotic-resistance enzymes like KPC-2 that can inactivate most β-lactam antibiotics has resulted in a longer duration of medical treatment, higher costs of medical care, and increased mortality. In recent years, a number of amino acid sequence variants of KPC-2 have been identified in clinical isolates worldwide suggesting continued evolution of resistance in KPC-2. In this study we have characterized nine clinically isolated variants of KPC-2 (KPC-3 to -11) that differ from the initial KPC-2 isolate by one to two amino acids. The KPC variants confer increased resistance to the antibiotic ceftazidime as compared to KPC-2. This increase in resistance is correlated with improved ability of the variant enzymes to hydrolyze the antibiotic. Additionally, the changes associated with increased ceftazidime hydrolysis also reduce the thermal stability of the enzyme, indicating the mutations that assist catalysis come with a cost on the overall stability of the enzyme. The high thermal stability of KPC-2 allows destabilizing mutations that enhance catalysis to accumulate while the enzyme retains a folded, functional structure. Thus, the high stability of KPC-2 provides an evolutionary advantage to acquire multiple mutations and retain function as compared to other β-lactamase enzymes.
Collapse
Affiliation(s)
- Shrenik C. Mehta
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kacie Rice
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 2015; 160:882-892. [PMID: 25723163 DOI: 10.1016/j.cell.2015.01.035] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/30/2014] [Accepted: 01/17/2015] [Indexed: 12/16/2022]
Abstract
Evolvability—the capacity to generate beneficial heritable variation—is a central property of biological systems. However, its origins and modulation by environmental factors have not been examined systematically. Here, we analyze the fitness effects of all single mutations in TEM-1 β-lactamase (4,997 variants) under selection for the wild-type function (ampicillin resistance) and for a new function (cefotaxime resistance). Tolerance to mutation in this enzyme is bimodal and dependent on the strength of purifying selection in vivo, a result that derives from a steep non-linear ampicillin-dependent relationship between biochemical activity and fitness. Interestingly, cefotaxime resistance emerges from mutations that are neutral at low levels of ampicillin but deleterious at high levels; thus the capacity to evolve new function also depends on the strength of selection. The key property controlling evolvability is an excess of enzymatic activity relative to the strength of selection, suggesting that fluctuating environments might select for high-activity enzymes.
Collapse
|
47
|
Thermal stabilization of dihydrofolate reductase using monte carlo unfolding simulations and its functional consequences. PLoS Comput Biol 2015; 11:e1004207. [PMID: 25905910 PMCID: PMC4407897 DOI: 10.1371/journal.pcbi.1004207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/20/2015] [Indexed: 12/28/2022] Open
Abstract
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. All-atom molecular simulations have provided valuable insight into the workings of molecular machines and the folding and unfolding of proteins. However, commonly employed molecular dynamics simulations suffer from a limitation in accessible time scale, making it difficult to model large-scale unfolding events in a realistic amount of simulation time without employing unrealistically high temperatures. Here, we describe a rapid all-atom Monte Carlo simulation approach to simulate unfolding of the essential bacterial enzyme Dihydrofolate Reductase (DHFR) and all possible single point-mutants. We use these simulations to predict which mutants will be more thermodynamically stable (i.e., reside more often in the native folded state vs. the unfolded state) than the wild-type protein, and we confirm our predictions experimentally, creating several highly stable and catalytically active mutants. Thermally stable active engineered proteins can be used as a starting point in directed evolution experiments to evolve new functions on the background of this additional “reservoir of stability.” The stabilized enzyme may be able to accumulate a greater number of destabilizing yet functionally important mutations before unfolding, protease digestion, and aggregation abolish its activity.
Collapse
|
48
|
Öztürk H, Ozkirimli E, Özgür A. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS One 2015; 10:e0117874. [PMID: 25689853 PMCID: PMC4331424 DOI: 10.1371/journal.pone.0117874] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/03/2015] [Indexed: 01/28/2023] Open
Abstract
β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs), which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.
Collapse
Affiliation(s)
- Hakime Öztürk
- Department of Computer Engineering, Bogazici University, Istanbul, Bebek, Turkey
| | - Elif Ozkirimli
- Department of Chemical Engineering, Bogazici University, Istanbul, Bebek, Turkey
- * E-mail: (EO), (AÖ)
| | - Arzucan Özgür
- Department of Computer Engineering, Bogazici University, Istanbul, Bebek, Turkey
- * E-mail: (EO), (AÖ)
| |
Collapse
|
49
|
Kinetic study of the effect of histidines 240 and 164 on TEM-149 enzyme probed by β-lactam inhibitors. Antimicrob Agents Chemother 2014; 58:6294-6. [PMID: 25092695 DOI: 10.1128/aac.02950-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we performed a detailed kinetic analysis of the enzymes TEM-149, TEM-149(H240), and TEM-149(H164-H240) versus a large panel of inhibitors/inactivators, including penicillins, penems, carbapenems, monobactams, cephamycin, and carbacephem. These compounds behaved as poor substrates versus TEM-149, TEM-149(H240), and TEM-149(H164-H240) β-lactamases, and the Ki (inhibition constant), K (dissociation constant of the Henri-Michaelis complex), k+2 and k+3 (first-order acylation and deacylation constants, respectively), and k+2/K values were calculated.
Collapse
|
50
|
Kaltenbach M, Tokuriki N. Dynamics and constraints of enzyme evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:468-87. [DOI: 10.1002/jez.b.22562] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Miriam Kaltenbach
- Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|