1
|
Liu Z, Grigas AT, Sumner J, Knab E, Davis CM, O'Hern CS. Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling. Protein Sci 2024; 33:e5219. [PMID: 39548730 PMCID: PMC11568256 DOI: 10.1002/pro.5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure in vivo. Inter-residue distances measured in vivo can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics in vivo. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairsN r $$ {N}_r $$ that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints,N r / N ≲ 0.08 $$ {N}_r/N\lesssim 0.08 $$ , whereN $$ N $$ is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins in vivo.
Collapse
Affiliation(s)
- Zhuoyi Liu
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
| | - Alex T. Grigas
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| | - Jacob Sumner
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| | - Edward Knab
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | | | - Corey S. O'Hern
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Department of PhysicsYale UniversityNew HavenConnecticutUSA
- Department of Applied PhysicsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
2
|
Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW. Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide. Structure 2024; 32:1834-1846.e3. [PMID: 39106858 DOI: 10.1016/j.str.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Pauline Juyoux
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nicola J Baxter
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Hugh R W Dannatt
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Yi Jin
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan P Waltho
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| |
Collapse
|
3
|
Houghton MC, Kashanian SV, Derrien TL, Masuda K, Vollmer F. Whispering-Gallery Mode Optoplasmonic Microcavities: From Advanced Single-Molecule Sensors and Microlasers to Applications in Synthetic Biology. ACS PHOTONICS 2024; 11:892-903. [PMID: 38523742 PMCID: PMC10958601 DOI: 10.1021/acsphotonics.3c01570] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
Optical microcavities, specifically, whispering-gallery mode (WGM) microcavities, with their remarkable sensitivity to environmental changes, have been extensively employed as biosensors, enabling the detection of a wide range of biomolecules and nanoparticles. To push the limits of detection down to the most sensitive single-molecule level, plasmonic nanorods are strategically introduced to enhance the evanescent fields of WGM microcavities. This advancement of optoplasmonic WGM sensors allows for the detection of single molecules of a protein, conformational changes, and even atomic ions, marking significant contributions in single-molecule sensing. This Perspective discusses the exciting research prospects in optoplasmonic WGM sensing of single molecules, including the study of enzyme thermodynamics and kinetics, the emergence of thermo-optoplasmonic sensing, the ultrasensitive single-molecule sensing on WGM microlasers, and applications in synthetic biology.
Collapse
Affiliation(s)
- Matthew C. Houghton
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
- Department
of Life Sciences, University of Bath, Bath BA2 7AX, United Kingdom
| | - Samir Vartabi Kashanian
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| | - Thomas L. Derrien
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| | - Koji Masuda
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| | - Frank Vollmer
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| |
Collapse
|
4
|
Riley MJ, Mitchell CC, Ernst SE, Taylor EB, Welsh MJ. A model for stimulation of enzyme activity by a competitive inhibitor based on the interaction of terazosin and phosphoglycerate kinase 1. Proc Natl Acad Sci U S A 2024; 121:e2318956121. [PMID: 38377207 PMCID: PMC10907273 DOI: 10.1073/pnas.2318956121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
The drug terazosin (TZ) binds to and can enhance the activity of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) and can increase ATP levels. That finding prompted studies of TZ in Parkinson's disease (PD) in which decreased neuronal energy metabolism is a hallmark feature. TZ was neuroprotective in cell-based and animal PD models and in large epidemiological studies of humans. However, how TZ might increase PGK1 activity has remained a perplexing question because structural data revealed that the site of TZ binding to PGK1 overlaps with the site of substrate binding, predicting that TZ would competitively inhibit activity. Functional data also indicate that TZ is a competitive inhibitor. To explore the paradoxical observation of a competitive inhibitor increasing enzyme activity under some conditions, we developed a mass action model of TZ and PGK1 interactions using published data on PGK1 kinetics and the effect of varying TZ concentrations. The model indicated that TZ-binding introduces a bypass pathway that accelerates product release. At low concentrations, TZ binding circumvents slow product release and increases the rate of enzymatic phosphotransfer. However, at high concentrations, TZ inhibits PGK1 activity. The model explains stimulation of enzyme activity by a competitive inhibitor and the biphasic dose-response relationship for TZ and PGK1 activity. By providing a plausible mechanism for interactions between TZ and PGK1, these findings may aid development of TZ or other agents as potential therapeutics for neurodegenerative diseases. The results may also have implications for agents that interact with the active site of other enzymes.
Collapse
Affiliation(s)
- Mitchell J. Riley
- Department of Mathematics, University of Iowa, Iowa City, IA52242
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | | | - Sarah E. Ernst
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- HHMI, University of Iowa, Iowa City, IA52242
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- HHMI, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| |
Collapse
|
5
|
Russell PPS, Maytin AK, Rickard MM, Russell MC, Pogorelov TV, Gruebele M. Metastable States in the Hinge-Bending Landscape of an Enzyme in an Atomistic Cytoplasm Simulation. J Phys Chem Lett 2024; 15:940-946. [PMID: 38252018 PMCID: PMC11180962 DOI: 10.1021/acs.jpclett.3c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Many enzymes undergo major conformational changes to function in cells, particularly when they bind to more than one substrate. We quantify the large-amplitude hinge-bending landscape of human phosphoglycerate kinase (PGK) in a human cytoplasm. Approximately 70 μs of all-atom simulations, upon coarse graining, reveal three metastable states of PGK with different hinge angle distributions and additional substates. The "open" state was more populated than the "semi-open" or "closed" states. In addition to free energies and barriers within the landscape, we characterized the average transition state passage time of ≈0.3 μs and reversible substrate and product binding. Human PGK in a dilute solution simulation shows a transition directly from the open to closed states, in agreement with previous SAXS experiments, suggesting that the cell-like model environment promotes stability of the human PGK semi-open state. Yeast PGK also sampled three metastable states within the cytoplasm model, with the closed state favored in our simulation.
Collapse
Affiliation(s)
| | - Andrew K. Maytin
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Meredith M. Rickard
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Matthew C. Russell
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
6
|
Wang Y, Hanrahan G, Azar FA, Mittermaier A. Binding interactions in a kinase active site modulate background ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140720. [PMID: 34597835 DOI: 10.1016/j.bbapap.2021.140720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Kinases play central roles in many cellular processes, transferring the terminal phosphate groups of nucleoside triphosphates (NTPs) onto substrates. In the absence of substrates, kinases can also hydrolyse NTPs producing NDPs and inorganic phosphate. Hydrolysis is usually much less efficient than the native phosphoryl transfer reaction. This may be related to the fact that NTP hydrolysis is metabolically unfavorable as it unproductively consumes the cell's energy stores. It has been suggested that substrate interactions could drive changes in NTP binding pocket, activating catalysis only when substrates are present. Structural data show substrate-induced conformational rearrangements, however there is a lack of corresponding functional information. To better understand this phenomenon, we developed a suite of isothermal titration calorimetry (ITC) kinetics methods to characterize ATP hydrolysis by the antibiotic resistance enzyme aminoglycoside-3'-phosphotransferase-IIIa (APH(3')-IIIa). We measured Km, kcat, and product inhibition constants and single-turnover kinetics in the presence and absence of non-substrate aminoglycosides (nsAmgs) that are structurally similar to the native substrates. We found that the presence of an nsAmg increased the chemical step of cleaving the ATP γ-phosphate by at least 10- to 20-fold under single-turnover conditions, supporting the existence of interactions that link substrate binding to substantially enhanced catalytic rates. Our detailed kinetic data on the association and dissociation rates of nsAmgs and ADP shed light on the biophysical processes underlying the enzyme's Theorell-Chance reaction mechanism. Furthermore, they provide clues on how to design small-molecule effectors that could trigger efficient ATP hydrolysis and generate selective pressure against bacteria harboring the APH(3')-IIIa.
Collapse
Affiliation(s)
- Yun Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Grace Hanrahan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Frederic Abou Azar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Anthony Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
7
|
Ahmad A, Khan TA, Mubeen S, Shahzadi I, Akram W, Saeed T, Bashir Z, Wang R, Alam M, Ahmed S, Hu D, Li G, Wu T. Metabolic and Proteomic Perspectives of Augmentation of Nutritional Contents and Plant Defense in Vigna unguiculata. Biomolecules 2020; 10:biom10020224. [PMID: 32028654 PMCID: PMC7072685 DOI: 10.3390/biom10020224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
The current study enlists metabolites of Alstonia scholaris with bioactivities, and the most active compound, 3-(1-methylpyrrolidin-2-yl) pyridine, was selected against Macrophomina phaseolina. Appraisal of the Alstonia metabolites identified the 3-(1-methylpyrrolidin-2-yl) pyridine as a bioactive compound which elevated vitamins and nutritional contents of Vigna unguiculata up to ≥18%, and other physiological parameters up to 28.9%. The bioactive compound (0.1%) upregulated key defense genes, shifted defense metabolism from salicylic acid to jasmonic acid, and induced glucanase enzymes for improved defenses. The structural studies categorized four glucanase-isozymes under beta-glycanases falling in (Trans) glycosidases with TIM beta/alpha-barrel fold. The study determined key-protein factors (Q9SAJ4) for elevated nutritional contents, along with its structural and functional mechanisms, as well as interactions with other loci. The nicotine-docked Q9SAJ4 protein showed a 200% elevated activity and interacted with AT1G79550.2, AT1G12900.1, AT1G13440.1, AT3G04120.1, and AT3G26650.1 loci to ramp up the metabolic processes. Furthermore, the study emphasizes the physiological mechanism involved in the enrichment of the nutritional contents of V. unguiculata. Metabolic studies concluded that increased melibiose and glucose 6-phosphate contents, accompanied by reduced trehalose (-0.9-fold), with sugar drifts to downstream pyruvate biosynthesis and acetyl Co-A metabolism mainly triggered nutritional contents. Hydrogen bonding at residues G.357, G.380, and G.381 docked nicotine with Q9SAJ4 and transformed its bilobed structure for easy exposure toward substrate molecules. The current study augments the nutritional value of edible stuff and supports agriculture-based country economies.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
| | - Tanveer Alam Khan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
| | - Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Iqra Shahzadi
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China;
| | - Waheed Akram
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
| | - Taiba Saeed
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
| | - Zoobia Bashir
- National Laboratory of Solid State Microstructures Department of Physics Nanjing University 22 Hankou Road, Nanjing 210093, China;
| | - Rui Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
| | - Mufid Alam
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| | - Du Hu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
| | - Guihua Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
| | - Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (A.A.); (T.A.K.); (W.A.); (T.S.); (R.W.); (D.H.); (G.L.)
- Correspondence: ; Tel.: +86-133-1618-8657
| |
Collapse
|
8
|
PTEN Suppresses Glycolysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Mol Cell 2019; 76:516-527.e7. [PMID: 31492635 DOI: 10.1016/j.molcel.2019.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 06/03/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023]
Abstract
The PTEN tumor suppressor is frequently mutated or deleted in cancer and regulates glucose metabolism through the PI3K-AKT pathway. However, whether PTEN directly regulates glycolysis in tumor cells is unclear. We demonstrate here that PTEN directly interacts with phosphoglycerate kinase 1 (PGK1). PGK1 functions not only as a glycolytic enzyme but also as a protein kinase intermolecularly autophosphorylating itself at Y324 for activation. The protein phosphatase activity of PTEN dephosphorylates and inhibits autophosphorylated PGK1, thereby inhibiting glycolysis, ATP production, and brain tumor cell proliferation. In addition, knockin expression of a PGK1 Y324F mutant inhibits brain tumor formation. Analyses of human glioblastoma specimens reveals that PGK1 Y324 phosphorylation levels inversely correlate with PTEN expression status and are positively associated with poor prognosis in glioblastoma patients. This work highlights the instrumental role of PGK1 autophosphorylation in its activation and PTEN protein phosphatase activity in governing glycolysis and tumorigenesis.
Collapse
|
9
|
Xia J, Feng B, Shao Q, Yuan Y, Wang XS, Chen N, Wu S. Virtual Screening against Phosphoglycerate Kinase 1 in Quest of Novel Apoptosis Inhibitors. Molecules 2017. [PMID: 28635653 PMCID: PMC5720137 DOI: 10.3390/molecules22061029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibition of apoptosis is a potential therapy to treat human diseases such as neurodegenerative disorders (e.g., Parkinson’s disease), stroke, and sepsis. Due to the lack of druggable targets, it remains a major challenge to discover apoptosis inhibitors. The recent repositioning of a marketed drug (i.e., terazosin) as an anti-apoptotic agent uncovered a novel target (i.e., human phosphoglycerate kinase 1 (hPgk1)). In this study, we developed a virtual screening (VS) pipeline based on the X-ray structure of Pgk1/terazosin complex and applied it to a screening campaign for potential anti-apoptotic agents. The hierarchical filters in the pipeline (i.e., similarity search, a pharmacophore model, a shape-based model, and molecular docking) rendered 13 potential hits from Specs chemical library. By using PC12 cells (exposed to rotenone) as a cell model for bioassay, we first identified that AK-918/42829299, AN-465/41520984, and AT-051/43421517 were able to protect PC12 cells from rotenone-induced cell death. Molecular docking suggested these hit compounds were likely to bind to hPgk1 in a similar mode to terazosin. In summary, we not only present a versatile VS pipeline for potential apoptosis inhibitors discovery, but also provide three novel-scaffold hit compounds that are worthy of further development and biological study.
Collapse
Affiliation(s)
- Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bo Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qianhang Shao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yuhe Yuan
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiang Simon Wang
- Molecular Modeling and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA.
| | - Naihong Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Kaplan E, Guichou JF, Chaloin L, Kunzelmann S, Leban N, Serpersu EH, Lionne C. Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:802-13. [PMID: 26802312 PMCID: PMC4769084 DOI: 10.1016/j.bbagen.2016.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Aminoglycoside O-phosphotransferases make up a large class of bacterial enzymes that is widely distributed among pathogens and confer a high resistance to several clinically used aminoglycoside antibiotics. Aminoglycoside 2″-phosphotransferase IVa, APH(2″)-IVa, is an important member of this class, but there is little information on the thermodynamics of aminoglycoside binding and on the nature of its rate-limiting step. METHODS We used isothermal titration calorimetry, electrostatic potential calculations, molecular dynamics simulations and X-ray crystallography to study the interactions between the enzyme and different aminoglycosides. We determined the rate-limiting step of the reaction by the means of transient kinetic measurements. RESULTS For the first time, Kd values were determined directly for APH(2″)-IVa and different aminoglycosides. The affinity of the enzyme seems to anti-correlate with the molecular weight of the ligand, suggesting a limited degree of freedom in the binding site. The main interactions are electrostatic bonds between the positively charged amino groups of aminoglycosides and Glu or Asp residues of APH. In spite of the significantly different ratio Kd/Km, there is no large difference in the transient kinetics obtained with the different aminoglycosides. We show that a product release step is rate-limiting for the overall reaction. CONCLUSIONS APH(2″)-IVa has a higher affinity for aminoglycosides carrying an amino group in 2' and 6', but tighter bindings do not correlate with higher catalytic efficiencies. As with APH(3')-IIIa, an intermediate containing product is preponderant during the steady state. GENERAL SIGNIFICANCE This intermediate may constitute a good target for future drug design.
Collapse
Affiliation(s)
- Elise Kaplan
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | - Jean-François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, F-34090 Montpellier, France; INSERM, U1054, F-34090 Montpellier, France
| | - Laurent Chaloin
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | | | - Nadia Leban
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | - Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Corinne Lionne
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France.
| |
Collapse
|
11
|
Wang S, Jiang B, Zhang T, Liu L, Wang Y, Wang Y, Chen X, Lin H, Zhou L, Xia Y, Chen L, Yang C, Xiong Y, Ye D, Guan KL. Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PGK1. PLoS Biol 2015; 13:e1002243. [PMID: 26356530 PMCID: PMC4565669 DOI: 10.1371/journal.pbio.1002243] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023] Open
Abstract
Phosphoglycerate kinase 1 (PGK1) catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. PGK1 plays a key role in coordinating glycolytic energy production with one-carbon metabolism, serine biosynthesis, and cellular redox regulation. Here, we report that PGK1 is acetylated at lysine 220 (K220), which inhibits PGK1 activity by disrupting the binding with its substrate, ADP. We have identified KAT9 and HDAC3 as the potential acetyltransferase and deacetylase, respectively, for PGK1. Insulin promotes K220 deacetylation to stimulate PGK1 activity. We show that the PI3K/AKT/mTOR pathway regulates HDAC3 S424 phosphorylation, which promotes HDAC3-PGK1 interaction and PGK1 K220 deacetylation. Our study uncovers a previously unknown mechanism for the insulin and mTOR pathway in regulation of glycolytic ATP production and cellular redox potential via HDAC3-mediated PGK1 deacetylation.
Collapse
Affiliation(s)
- Shiwen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Bowen Jiang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Tengfei Zhang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Lixia Liu
- Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Yiping Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Xiufei Chen
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Huaipeng Lin
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Lisha Zhou
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Yukun Xia
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Leilei Chen
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Bioinformatics Center and Laboratory of Systems Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dan Ye
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
Wellner A, Raitses Gurevich M, Tawfik DS. Mechanisms of protein sequence divergence and incompatibility. PLoS Genet 2013; 9:e1003665. [PMID: 23935519 PMCID: PMC3723536 DOI: 10.1371/journal.pgen.1003665] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/10/2013] [Indexed: 12/27/2022] Open
Abstract
Alignments of orthologous protein sequences convey a complex picture. Some positions are utterly conserved whilst others have diverged to variable degrees. Amongst the latter, many are non-exchangeable between extant sequences. How do functionally critical and highly conserved residues diverge? Why and how did these exchanges become incompatible within contemporary sequences? Our model is phosphoglycerate kinase (PGK), where lysine 219 is an essential active-site residue completely conserved throughout Eukaryota and Bacteria, and serine is found only in archaeal PGKs. Contemporary sequences tested exhibited complete loss of function upon exchanges at 219. However, a directed evolution experiment revealed that two mutations were sufficient for human PGK to become functional with serine at position 219. These two mutations made position 219 permissive not only for serine and lysine, but also to a range of other amino acids seen in archaeal PGKs. The identified trajectories that enabled exchanges at 219 show marked sign epistasis - a relatively small loss of function with respect to one amino acid (lysine) versus a large gain with another (serine, and other amino acids). Our findings support the view that, as theoretically described, the trajectories underlining the divergence of critical positions are dominated by sign epistatic interactions. Such trajectories are an outcome of rare mutational combinations. Nonetheless, as suggested by the laboratory enabled K219S exchange, given enough time and variability in selection levels, even utterly conserved and functionally essential residues may change. Orthologs are proteins in different species sharing the same function and structure. However, the mechanisms that underline the divergence of different sequences from a single ancestor remain unclear, particularly because many amino acid exchanges between orthologs result in loss of function (incompatibility). We aimed at disentangling an ancient divergence event within the active-site of a universally spread enzyme that mediates ATP synthesis. Using laboratory evolution experiments, we found that an exchange in a functionally critical active-site residue that is incompatible within contemporary orthologs is enabled by few mutations. These mutations lead to transition sequences in which, unlike the extant sequences, a wide range of amino acids is tolerated. Our experiment reveals the properties of these transition sequences that may resemble the historical ancestral states that underlined this divergence event, and the mechanisms that led to incompatibility within the contemporary orthologs. Our results support theoretical predictions and reshape our understanding of protein structure-function. That a given position is entirely conserved and essential for function does not indicate that it will never exchange, but rather, that the exchange may depend on changes in many other positions.
Collapse
Affiliation(s)
- Alon Wellner
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | - Dan S. Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
13
|
Conformational dynamics in phosphoglycerate kinase, an open and shut case? FEBS Lett 2013; 587:1878-83. [DOI: 10.1016/j.febslet.2013.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/06/2013] [Indexed: 01/24/2023]
|
14
|
Lallemand P, Leban N, Kunzelmann S, Chaloin L, Serpersu EH, Webb MR, Barman T, Lionne C. Transient kinetics of aminoglycoside phosphotransferase(3')-IIIa reveals a potential drug target in the antibiotic resistance mechanism. FEBS Lett 2012; 586:4223-7. [PMID: 23108046 PMCID: PMC3510435 DOI: 10.1016/j.febslet.2012.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022]
Abstract
Aminoglycoside phosphotransferases are bacterial enzymes responsible for the inactivation of aminoglycoside antibiotics by O-phosphorylation. It is important to understand the mechanism of enzymes in order to find efficient drugs. Using rapid-mixing methods, we studied the transient kinetics of aminoglycoside phosphotransferase(3′)-IIIa. We show that an ADP-enzyme complex is the main steady state intermediate. This intermediate interacts strongly with kanamycin A to form an abortive complex that traps the enzyme in an inactive state. A good strategy to prevent the inactivation of aminoglycosides would be to develop uncompetitive inhibitors that interact with this key ADP-enzyme complex.
Collapse
Affiliation(s)
- Perrine Lallemand
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS, University Montpellier I & II, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Crystal structures of putative phosphoglycerate kinases from B. anthracis and C. jejuni. ACTA ACUST UNITED AC 2012; 13:15-26. [PMID: 22403005 DOI: 10.1007/s10969-012-9131-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Phosphoglycerate kinase (PGK) is indispensable during glycolysis for anaerobic glucose degradation and energy generation. Here we present comprehensive structure analysis of two putative PGKs from Bacillus anthracis str. Sterne and Campylobacter jejuni in the context of their structural homologs. They are the first PGKs from pathogenic bacteria reported in the Protein Data Bank. The crystal structure of PGK from Bacillus anthracis str. Sterne (BaPGK) has been determined at 1.68 Å while the structure of PGK from Campylobacter jejuni (CjPGK) has been determined at 2.14 Å resolution. The proteins' monomers are composed of two domains, each containing a Rossmann fold, hinged together by a helix which can be used to adjust the relative position between two domains. It is also shown that apo-forms of both BaPGK and CjPGK adopt open conformations as compared to the substrate and ATP bound forms of PGK from other species.
Collapse
|
16
|
Pellegrini E, Piano D, Bowler MW. Direct cryocooling of naked crystals: are cryoprotection agents always necessary? ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:902-6. [PMID: 21931222 DOI: 10.1107/s0907444911031210] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/10/2022]
Abstract
Over the last 20 years cryocrystallography has revolutionized the field of macromolecular crystallography, greatly reducing radiation damage and allowing the collection of complete data sets at synchrotron sources. However, in order to cool crystals to 100 K cryoprotective agents must usually be added to prevent the formation of crystalline ice, which disrupts the macromolecular crystal lattice and often results in a degradation of diffraction quality. This process can involve the extensive testing of solution compositions and soaking protocols to find suitable conditions that maintain diffraction quality. In this study, it is demonstrated that when some crystals of macromolecules are mounted in the complete absence of surrounding liquid no crystalline ice is formed and the diffraction resolution, merging R factors and mosaic spread values are comparable to those of crystals cryocooled in the presence of a cryoprotectant. This potentially removes one of the most onerous manual steps in the structure-solution pipeline and could alleviate some of the foreseen difficulties in the automation of crystal mounting.
Collapse
Affiliation(s)
- Erika Pellegrini
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | | | | |
Collapse
|