1
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
2
|
Xu Q, Guo M, Yu F. β-Barrel Assembly Machinery (BAM) Complex as Novel Antibacterial Drug Target. Molecules 2023; 28:molecules28093758. [PMID: 37175168 PMCID: PMC10180388 DOI: 10.3390/molecules28093758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is closely related to the pathogenicity and drug resistance of bacteria. Outer membrane proteins (OMPs) are a class of proteins with important biological functions on the outer membrane. The β-barrel assembly machinery (BAM) complex plays a key role in OMP biogenesis, which ensures that the OMP is inserted into the outer membrane in a correct folding manner and performs nutrient uptake, antibiotic resistance, cell adhesion, cell signaling, and maintenance of membrane stability and other functions. The BAM complex is highly conserved among Gram-negative bacteria. The abnormality of the BAM complex will lead to the obstruction of OMP folding, affect the function of the outer membrane, and eventually lead to bacterial death. In view of the important role of the BAM complex in OMP biogenesis, the BAM complex has become an attractive target for the development of new antibacterial drugs against Gram-negative bacteria. Here, we summarize the structure and function of the BAM complex and review the latest research progress of antibacterial drugs targeting BAM in order to provide a new perspective for the development of antibiotics.
Collapse
Affiliation(s)
- Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Min Guo
- Allergy Clinic, Zibo Central Hospital, Zibo 255000, China
| | - Feiyuan Yu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Xiang S, Pinto C, Baldus M. Divide and Conquer: A Tailored Solid‐state NMR Approach to Study Large Membrane Protein Complexes. Angew Chem Int Ed Engl 2022; 61:e202203319. [PMID: 35712982 PMCID: PMC9540533 DOI: 10.1002/anie.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Membrane proteins are known to exert many essential biological functions by forming complexes in cell membranes. An example refers to the β‐barrel assembly machinery (BAM), a 200 kDa pentameric complex containing BAM proteins A–E that catalyzes the essential process of protein insertion into the outer membrane of gram‐negative bacteria. While progress has been made in capturing three‐dimensional structural snapshots of the BAM complex, the role of the lipoprotein BamC in the complex assembly in functional lipid bilayers has remained unclear. We have devised a component‐selective preparation scheme to directly study BamC as part of the entire BAM complex in lipid bilayers. Combination with proton‐detected solid‐state NMR methods allowed us to probe the structure, dynamics, and supramolecular topology of full‐length BamC embedded in the entire complex in lipid bilayers. Our approach may help decipher how individual proteins contribute to the dynamic formation and functioning of membrane protein complexes in membranes.
Collapse
Affiliation(s)
- ShengQi Xiang
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
- MOE Key Lab for Cellular Dynamics School of Life Sciences University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui China
| | - Cecilia Pinto
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
- Current address: Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology Van der Maasweg 9 2629 H. Z. Delft The Netherlands
| | - Marc Baldus
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
4
|
Xiang S, Pinto C, Baldus M. Divide and Conquer: A Tailored Solid‐state NMR Approach to Study Large Membrane Protein Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- ShengQi Xiang
- University of Science and Technology of China, Anhui, MOE Key lab for Cellular Dynamics CHINA
| | - Cecilia Pinto
- Delft University of Technology: Technische Universiteit Delft Department of Bionanoscience NETHERLANDS
| | - Marc Baldus
- Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 Utrecht NETHERLANDS
| |
Collapse
|
5
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Wu R, Stephenson R, Gichaba A, Noinaj N. The big BAM theory: An open and closed case? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183062. [PMID: 31520605 DOI: 10.1016/j.bbamem.2019.183062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
The β-barrel assembly machinery (BAM) is responsible for the biogenesis of outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria. These OMPs have a membrane-embedded domain consisting of a β-barrel fold which can vary from 8 to 36 β-strands, with each serving a diverse role in the cell such as nutrient uptake and virulence. BAM was first identified nearly two decades ago, but only recently has the molecular structure of the full complex been reported. Together with many years of functional characterization, we have a significantly clearer depiction of BAM's structure, the intra-complex interactions, conformational changes that BAM may undergo during OMP biogenesis, and the role chaperones may play. But still, despite advances over the past two decades, the mechanism for BAM-mediated OMP biogenesis remains elusive. Over the years, several theories have been proposed that have varying degrees of support from the literature, but none has of yet been conclusive enough to be widely accepted as the sole mechanism. We will present a brief history of BAM, the recent work on the structures of BAM, and a critical analysis of the current theories for how it may function.
Collapse
Affiliation(s)
- Runrun Wu
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Stephenson
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Gichaba
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
NMR structure determination of Ixolaris and factor X(a) interaction reveals a noncanonical mechanism of Kunitz inhibition. Blood 2019; 134:699-708. [PMID: 31133602 DOI: 10.1182/blood.2018889493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/05/2019] [Indexed: 11/20/2022] Open
Abstract
Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, with formation of a quaternary tissue factor (TF)/FVIIa/ FX(a)/Ixolaris inhibitory complex. Ixolaris blocks TF-induced coagulation and PAR2 signaling and prevents thrombosis, tumor growth, and immune activation. We present a high-resolution structure and dynamics of Ixolaris and describe the structural basis for recognition of FX. Ixolaris consists of 2 Kunitz domains (K1 and K2) in which K2 is strikingly dynamic and encompasses several residues involved in FX binding. This indicates that the backbone plasticity of K2 is critical for Ixolaris biological activity. Notably, a nuclear magnetic resonance-derived model reveals a mechanism for an electrostatically guided, high-affinity interaction between Ixolaris and FX heparin-binding (pro)exosite, resulting in an allosteric switch in the catalytic site. This is the first report revealing the structure-function relationship of an anticoagulant targeting a zymogen serving as a scaffold for TF inhibition.
Collapse
|
8
|
Hartmann JB, Zahn M, Burmann IM, Bibow S, Hiller S. Sequence-Specific Solution NMR Assignments of the β-Barrel Insertase BamA to Monitor Its Conformational Ensemble at the Atomic Level. J Am Chem Soc 2018; 140:11252-11260. [PMID: 30125090 DOI: 10.1021/jacs.8b03220] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-barrel outer membrane proteins (Omps) are key functional components of the outer membranes of Gram-negative bacteria, mitochondria, and plastids. In bacteria, their biogenesis requires the β-barrel-assembly machinery (Bam) with the central insertase BamA, but the exact translocation and insertion mechanism remains elusive. The BamA insertase features a loosely closed gating region between the first and last β-strand 16. Here, we describe ∼70% complete sequence-specific NMR resonance assignments of the transmembrane region of the BamA β-barrel in detergent micelles. On the basis of the assignments, NMR spectra show that the BamA barrel populates a conformational ensemble in slow exchange equilibrium, both in detergent micelles and lipid bilayer nanodiscs. Individual conformers can be selected from the ensemble by the introduction of a C-terminal strand extension, single-point mutations, or specific disulfide cross-linkings, and these modifications at the barrel seam are found to be allosterically coupled to sites at the entire barrel circumference. The resonance assignment provides a platform for mechanistic studies of BamA at atomic resolution, as well as for investigating interactions with potential antibiotic drugs and partner proteins.
Collapse
Affiliation(s)
| | - Michael Zahn
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | | | - Stefan Bibow
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Sebastian Hiller
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| |
Collapse
|
9
|
Gaalswyk K, Muniyat MI, MacCallum JL. The emerging role of physical modeling in the future of structure determination. Curr Opin Struct Biol 2018; 49:145-153. [DOI: 10.1016/j.sbi.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
10
|
Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Nat Commun 2018; 9:384. [PMID: 29374165 PMCID: PMC5786013 DOI: 10.1038/s41467-017-02592-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Automated methods for NMR structure determination of proteins are continuously becoming more robust. However, current methods addressing larger, more complex targets rely on analyzing 6-10 complementary spectra, suggesting the need for alternative approaches. Here, we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two 4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz where common NOEs between different spin systems supplement conventional through-bond connectivities to establish assignments of sidechain and backbone resonances at high levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are then used to guide automated assignment of long-range NOEs and structure refinement in autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate that the structures of proteins can be determined accurately and in an unsupervised manner in a matter of days.
Collapse
|
11
|
BamA β16C strand and periplasmic turns are critical for outer membrane protein insertion and assembly. Biochem J 2017; 474:3951-3961. [PMID: 28974626 DOI: 10.1042/bcj20170636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/17/2022]
Abstract
Outer membrane (OM) β-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli, the β-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a 'top hat'-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel β1C-β6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the β16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique β16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA β1C-β6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts.
Collapse
|
12
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
13
|
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins (OMPs) is mediated by the β-barrel assembly machinery (BAM) complex. During the past decade, structural and functional studies have collectively contributed to advancing our understanding of the structure and function of the BAM complex; however, the exact mechanism that is involved remains elusive. In this Progress article, we discuss recent structural studies that have revealed that the accessory proteins may regulate essential unprecedented conformational changes in the core component BamA during function. We also detail the mechanistic insights that have been gained from structural data, mutagenesis studies and molecular dynamics simulations, and explore two emerging models for the BAM-mediated biogenesis of OMPs in bacteria.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Warner LR, Gatzeva-Topalova PZ, Doerner PA, Pardi A, Sousa MC. Flexibility in the Periplasmic Domain of BamA Is Important for Function. Structure 2016; 25:94-106. [PMID: 27989620 DOI: 10.1016/j.str.2016.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The β-barrel assembly machine (BAM) mediates the biogenesis of outer membrane proteins (OMPs) in Gram-negative bacteria. BamA, the central BAM subunit composed of a transmembrane β-barrel domain linked to five polypeptide transport-associated (POTRA) periplasmic domains, is thought to bind nascent OMPs and undergo conformational cycling to catalyze OMP folding and insertion. One model is that conformational flexibility between POTRA domains is part of this conformational cycling. Nuclear magnetic resonance (NMR) spectroscopy was used here to study the flexibility of the POTRA domains 1-5 in solution. NMR relaxation studies defined effective rotational correlational times and together with residual dipolar coupling data showed that POTRA1-2 is flexibly linked to POTRA3-5. Mutants of BamA that restrict flexibility between POTRA2 and POTRA3 by disulfide crosslinking displayed impaired function in vivo. Together these data strongly support a model in which conformational cycling of hinge motions between POTRA2 and POTRA3 in BamA is required for biological function.
Collapse
Affiliation(s)
- Lisa R Warner
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Petia Z Gatzeva-Topalova
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Pamela A Doerner
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Arthur Pardi
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| | - Marcelo C Sousa
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
15
|
Bakelar J, Buchanan SK, Noinaj N. Structural snapshots of the β-barrel assembly machinery. FEBS J 2016; 284:1778-1786. [PMID: 27862971 DOI: 10.1111/febs.13960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
The β-barrel assembly machinery (BAM) is a multicomponent complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria, with conserved systems in both mitochondria and chloroplasts. Given its importance in the integrity of the outer membrane and in the assembly of surface exposed virulence factors, BAM is an attractive therapeutic target against pathogenic bacteria, particularly multidrug-resistant strains. While the mechanism for how BAM functions remains elusive, previous structural studies have described each of the individual components of BAM, offering only a few clues to how the complex functions. Recently, a number of structures have been reported of complexes, including that of fully assembled BAM in differing conformational states. These studies have provided the molecular blueprint detailing the atomic interactions between the components and have revealed new details about BAM, which suggest a dynamic mechanism that may use conformational changes to assist in the biogenesis of new OMPs.
Collapse
Affiliation(s)
- Jeremy Bakelar
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Abstract
In order to relate the structural architecture of the BAM complex to its function in outer membrane protein assembly, the arrangement of each component within the complex is vital. This chapter explores the structure and topology of BamC, using a range of biochemical techniques to probe the topology and surface exposure.
Collapse
Affiliation(s)
- Chaille T Webb
- Department of Microbiology, Monash University, Building 77, 23 Innovation Walk, Clayton Campus, Melbourne, VIC, 3800, Australia.
| | - Trevor Lithgow
- Department of Microbiology, Monash University, Building 77, 23 Innovation Walk, Clayton Campus, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
17
|
Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, Dong C. Structural basis of outer membrane protein insertion by the BAM complex. Nature 2016; 531:64-9. [PMID: 26901871 DOI: 10.1038/nature17199] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP.
Collapse
Affiliation(s)
- Yinghong Gu
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Huanyu Li
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Haohao Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yi Zeng
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zhengyu Zhang
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Neil G Paterson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Zhongshan Wang
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, China.,Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yizheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Changjiang Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
18
|
Bergal HT, Hopkins AH, Metzner SI, Sousa MC. The Structure of a BamA-BamD Fusion Illuminates the Architecture of the β-Barrel Assembly Machine Core. Structure 2015; 24:243-51. [PMID: 26749448 DOI: 10.1016/j.str.2015.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022]
Abstract
The β-barrel assembly machine (BAM) mediates folding and insertion of integral β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Of the five BAM subunits, only BamA and BamD are essential for cell viability. Here we present the crystal structure of a fusion between BamA POTRA4-5 and BamD from Rhodothermus marinus. The POTRA5 domain binds BamD between its tetratricopeptide repeats 3 and 4. The interface structural elements are conserved in the Escherichia coli proteins, which allowed structure validation by mutagenesis and disulfide crosslinking in E. coli. Furthermore, the interface is consistent with previously reported mutations that impair BamA-BamD binding. The structure serves as a linchpin to generate a BAM model where POTRA domains and BamD form an elongated periplasmic ring adjacent to the membrane with a central cavity approximately 30 × 60 Å wide. We propose that nascent OMPs bind this periplasmic ring prior to insertion and folding by BAM.
Collapse
Affiliation(s)
- Hans Thor Bergal
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Alex Hunt Hopkins
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Sandra Ines Metzner
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Marcelo Carlos Sousa
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
19
|
O'Neil PK, Rollauer SE, Noinaj N, Buchanan SK. Fitting the Pieces of the β-Barrel Assembly Machinery Complex. Biochemistry 2015; 54:6303-11. [PMID: 26394220 PMCID: PMC4631317 DOI: 10.1021/acs.biochem.5b00852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Barrel membrane proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria; however, exactly how they are folded and inserted remains unknown. Over the past decade, both functional and structural studies have greatly contributed to addressing this elusive mechanism. It is known that a conserved core machinery is required for each organelle, though the overall composition varies significantly. The vast majority of studies that aimed to understand the biogenesis of β-barrel membrane proteins has been conducted in Gram-negative bacteria. Here, it is the task of a multicomponent complex known as the β-barrel assembly machinery (BAM) complex to fold and insert new β-barrel membrane proteins into the outer membrane. In this review, we will discuss recent discoveries with the goal of utilizing all reported structural and functional studies to piece together a current structural model for the fully assembled BAM complex.
Collapse
Affiliation(s)
- Patrick K O'Neil
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sarah E Rollauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
20
|
Lloyd NR, Wuttke DS. Less is more: structures of difficult targets with minimal constraints. Structure 2015; 22:1223-1224. [PMID: 25185825 DOI: 10.1016/j.str.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
By merging recent experimental and computational methodology advances, resolution-adapted structural recombination Rosetta has emerged as a powerful strategy for solving the structure of traditionally challenging targets. In this issue of Structure, Sgourakis and colleagues solve the structure of one such target, the immunoevasin protein m04, using this approach.
Collapse
Affiliation(s)
- Neil R Lloyd
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
21
|
Morgado L, Zeth K, Burmann BM, Maier T, Hiller S. Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2015; 61:333-45. [PMID: 25638436 DOI: 10.1007/s10858-015-9906-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/22/2015] [Indexed: 05/22/2023]
Abstract
The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC7PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy.
Collapse
|
22
|
Abstract
Outer membrane protein biogenesis is a fundamental and essential process in all Gram-negative bacteria. The key players conducting this process are organized in the β-barrel assembly machinery (BAM) complex. This complex has recently attracted a lot of attention due to its importance in cell wall generation, maintenance, and the fascinating yet partially unknown mechanism. The currently best studied example is the BAM complex from E. coli which comprises five proteins, BamA-BamE, two of which, BamA and BamD, are essential for cell survival. Four of the complex proteins, BamB-BamE, are lipoproteins and are attached to the outer membrane via N-terminal lipid anchors. Two of them, BamB and BamD, comprise protein folds known to mediate protein-protein interactions through WD40 and TPR domains, respectively. Structures of BamB to BamE have been determined using X-ray crystallography, NMR and SAXS techniques. Details on protein preparation, crystallization, data acquisition, and determination of structures are given here along with the brief summary of the currently available structural Bam protein repertoire.
Collapse
Affiliation(s)
- Kornelius Zeth
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
- Ikerbasque, Basque Foundation of Science, Maria Diaz de Haro 3, Floor 6, Bilbao, 48013, Spain.
| |
Collapse
|
23
|
Expression and Purification of the Individual Bam Components BamB-E. Methods Mol Biol 2015; 1329:179-88. [PMID: 26427685 DOI: 10.1007/978-1-4939-2871-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BamB, BamC, BamD, and BamE are lipoproteins that, along with the integral membrane protein BamA, form the β-barrel assembly machinery (BAM) complex in the outer-membrane of Gram-negative bacteria. Elucidating the roles that these lipoproteins play in the β-barrel assembly process requires both structural and functional studies that rely on milligram quantities of pure protein. Here, we describe a simple protocol for expressing individual BamB-BamE proteins in Escherichia coli and purifying them by nickel affinity and size-exclusion chromatography. This protocol yields pure proteins in amounts that are sufficient for crystallization trials, in vitro protein-protein interaction studies, NMR, and other biochemical experiments.
Collapse
|
24
|
TDP-43 N terminus encodes a novel ubiquitin-like fold and its unfolded form in equilibrium that can be shifted by binding to ssDNA. Proc Natl Acad Sci U S A 2014; 111:18619-24. [PMID: 25503365 DOI: 10.1073/pnas.1413994112] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transactivation response element (TAR) DNA-binding protein 43 (TDP-43) is the principal component of ubiquitinated inclusions characteristic of most forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia-frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), as well as an increasing spectrum of other neurodegenerative diseases. Previous structural and functional studies on TDP-43 have been mostly focused on its recognized domains. Very recently, however, its extreme N terminus was identified to be a double-edged sword indispensable for both physiology and proteinopathy, but thus far its structure remains unknown due to the severe aggregation. Here as facilitated by our previous discovery that protein aggregation can be significantly minimized by reducing salt concentrations, by circular dichroism and NMR spectroscopy we revealed that the TDP-43 N terminus encodes a well-folded structure in concentration-dependent equilibrium with its unfolded form. Despite previous failure in detecting any sequence homology to ubiquitin, the folded state was determined to adopt a novel ubiquitin-like fold by the CS-Rosetta program with NMR chemical shifts and 78 unambiguous long-range nuclear Overhauser effect (NOE) constraints. Remarkably, this ubiquitin-like fold could bind ssDNA, and the binding shifted the conformational equilibrium toward reducing the unfolded population. To the best of our knowledge, the TDP-43 N terminus represents the first ubiquitin-like fold capable of directly binding nucleic acid. Our results provide a molecular mechanism rationalizing the functional dichotomy of TDP-43 and might also shed light on the formation and dynamics of cellular ribonucleoprotein granules, which have been recently linked to ALS pathogenesis. As a consequence, one therapeutic strategy for TDP-43-causing diseases might be to stabilize its ubiquitin-like fold by ssDNA or designed molecules.
Collapse
|
25
|
Jansen KB, Baker SL, Sousa MC. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the β-barrel assembly machine. J Biol Chem 2014; 290:2126-36. [PMID: 25468906 DOI: 10.1074/jbc.m114.584524] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β-barrel assembly machinery (BAM) mediates folding and insertion of β-barrel outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria. BAM is a five-protein complex consisting of the β-barrel OMP BamA and lipoproteins BamB, -C, -D, and -E. High resolution structures of all the individual BAM subunits and a BamD-BamC complex have been determined. However, the overall complex architecture remains elusive. BamA is the central component of BAM and consists of a membrane-embedded β-barrel and a periplasmic domain with five polypeptide translocation-associated (POTRA) motifs thought to interact with the accessory lipoproteins. Here we report the crystal structure of a fusion between BamB and a POTRA3-5 fragment of BamA. Extended loops 13 and 17 protruding from one end of the BamB β-propeller contact the face of the POTRA3 β-sheet in BamA. The interface is stabilized by several hydrophobic contacts, a network of hydrogen bonds, and a cation-π interaction between BamA Tyr-255 and BamB Arg-195. Disruption of BamA-BamB binding by BamA Y255A and probing of the interface by disulfide bond cross-linking validate the physiological relevance of the observed interface. Furthermore, the structure is consistent with previously published mutagenesis studies. The periplasmic five-POTRA domain of BamA is flexible in solution due to hinge motions in the POTRA2-3 linker. Modeling BamB in complex with full-length BamA shows BamB binding at the POTRA2-3 hinge, suggesting a role in modulation of BamA flexibility and the conformational changes associated with OMP folding and insertion.
Collapse
Affiliation(s)
- Katarina Bartoš Jansen
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Susan Lynn Baker
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Marcelo Carlos Sousa
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
26
|
Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 2014; 22:1263-1273. [PMID: 25126960 DOI: 10.1016/j.str.2014.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022]
Abstract
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beat Vogeli
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Lange OF. Automatic NOESY assignment in CS-RASREC-Rosetta. JOURNAL OF BIOMOLECULAR NMR 2014; 59:147-159. [PMID: 24831340 DOI: 10.1007/s10858-014-9833-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
We have developed an approach for simultaneous structure calculation and automatic Nuclear Overhauser Effect (NOE) assignment to solve nuclear magnetic resonance (NMR) structures from unassigned NOESY data. The approach, autoNOE-Rosetta, integrates Resolution Adapted Structural RECombination (RASREC) Rosetta NMR calculations with algorithms for automatic NOE assignment. The method was applied to two proteins in the 15-20 kDa size range for which both, NMR and X-ray data, is available. The autoNOE-Rosetta calculations converge for both proteins and yield accurate structures with an RMSD of 1.9 Å to the X-ray reference structures. The method greatly expands the radius of convergence for automatic NOE assignment, and should be broadly useful for NMR structure determination.
Collapse
Affiliation(s)
- Oliver F Lange
- Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany,
| |
Collapse
|
28
|
Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. Lateral opening and exit pore formation are required for BamA function. Structure 2014; 22:1055-62. [PMID: 24980798 DOI: 10.1016/j.str.2014.05.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
The outer membrane of Gram-negative bacteria is replete with a host of β-barrel outer membrane proteins (OMPs). Despite serving a variety of essential functions, including immune response evasion, the exact mechanism of OMP folding and membrane insertion remains largely unclear. The β-barrel assembly machinery complex is required for OMP biogenesis. Crystal structures and molecular dynamics (MD) simulations of the central and essential component, BamA, suggest a mechanism involving lateral opening of its barrel domain. MD simulations reported here reveal an additional feature of BamA: a substrate exit pore positioned above the lateral opening site. Disulfide crosslinks that prevent lateral opening and exit pore formation result in a loss of BamA function, which can be fully rescued by the reductant tris(2-carboxyethyl)phosphine. These data provide strong evidence that lateral opening and exit pore formation are required for BamA function.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam J Kuszak
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Curtis Balusek
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Akimoto M, Zhang Z, Boulton S, Selvaratnam R, VanSchouwen B, Gloyd M, Accili EA, Lange OF, Melacini G. A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP. J Biol Chem 2014; 289:22205-20. [PMID: 24878962 DOI: 10.1074/jbc.m114.572164] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or "tetrameric" C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.
Collapse
Affiliation(s)
- Madoka Akimoto
- From the Departments of Chemistry and Chemical Biology and
| | - Zaiyong Zhang
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stephen Boulton
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | | | | - Melanie Gloyd
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Eric A Accili
- the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and
| | - Oliver F Lange
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Giuseppe Melacini
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada,
| |
Collapse
|
30
|
Lee AR, Kim HE, Lee YM, Jeong M, Choi KH, Park JW, Choi YG, Ahn HC, Choi BS, Lee JH. NMR dynamics study of the Z-DNA binding domain of human ADAR1 bound to various DNA duplexes. Biochem Biophys Res Commun 2012; 428:137-41. [PMID: 23079620 DOI: 10.1016/j.bbrc.2012.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
The Z-DNA binding domain of human ADAR1 (Zα(ADAR1)) preferentially binds Z-DNA rather than B-DNA with high binding affinity. Here, we have carried out chemical shift perturbation and backbone dynamics studies of Zα(ADAR1) in the free form and in complex with three DNA duplexes, d(CGCGCG)(2), d(CACGTG)(2), and d(CGTACG)(2). This study reveals that Zα(ADAR1) initially binds to d(CGCGCG)(2) through the distinct conformation, especially in the unusually flexible β1-loop-α2 region, from the d(CGCGCG)(2)-(Zα(ADAR1))(2) complex. This study also suggests that Zα(ADAR1) exhibits a distinct conformational change during the B-Z transition of non-CG-repeat DNA duplexes with low binding affinities compared to the CG-repeat DNA duplex.
Collapse
Affiliation(s)
- Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongnam 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci U S A 2012; 109:10873-8. [PMID: 22733734 DOI: 10.1073/pnas.1203013109] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed an approach for determining NMR structures of proteins over 20 kDa that utilizes sparse distance restraints obtained using transverse relaxation optimized spectroscopy experiments on perdeuterated samples to guide RASREC Rosetta NMR structure calculations. The method was tested on 11 proteins ranging from 15 to 40 kDa, seven of which were previously unsolved. The RASREC Rosetta models were in good agreement with models obtained using traditional NMR methods with larger restraint sets. In five cases X-ray structures were determined or were available, allowing comparison of the accuracy of the Rosetta models and conventional NMR models. In all five cases, the Rosetta models were more similar to the X-ray structures over both the backbone and side-chain conformations than the "best effort" structures determined by conventional methods. The incorporation of sparse distance restraints into RASREC Rosetta allows routine determination of high-quality solution NMR structures for proteins up to 40 kDa, and should be broadly useful in structural biology.
Collapse
|
32
|
Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC. J Mol Biol 2012; 422:545-55. [PMID: 22683355 DOI: 10.1016/j.jmb.2012.05.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 05/09/2012] [Accepted: 05/30/2012] [Indexed: 11/21/2022]
Abstract
The β-barrel assembly machinery (BAM) complex drives the assembly of β-barrel proteins into the outer membrane of gram-negative bacteria. It is composed of five subunits: BamA, BamB, BamC, BamD, and BamE. We find that the BAM complex isolated from the outer membrane of Escherichia coli consists of a core complex of BamA:B:C:D:E and, in addition, a BamA:B module and a BamC:D module. In the absence of BamC, these modules are destabilized, resulting in increased protease susceptibility of BamD and BamB. While the N-terminus of BamC carries a highly conserved region crucial for stable interaction with BamD, immunofluorescence, immunoprecipitation, and protease-sensitivity assays show that the C-terminal domain of BamC, composed of two helix-grip motifs, is exposed on the surface of E. coli. This unexpected topology of a bacterial lipoprotein is reminiscent of the analogous protein subunits from the mitochondrial β-barrel insertion machinery, the SAM complex. The modular arrangement and topological features provide new insight into the architecture of the BAM complex, towards a better understanding of the mechanism driving β-barrel membrane protein assembly.
Collapse
|
33
|
Kim KH, Aulakh S, Paetzel M. The bacterial outer membrane β-barrel assembly machinery. Protein Sci 2012; 21:751-68. [PMID: 22549918 DOI: 10.1002/pro.2069] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/20/2012] [Indexed: 12/31/2022]
Abstract
β-Barrel proteins found in the outer membrane of Gram-negative bacteria serve a variety of cellular functions. Proper folding and assembly of these proteins are essential for the viability of bacteria and can also play an important role in virulence. The β-barrel assembly machinery (BAM) complex, which is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, has been the focus of many recent studies. This review summarizes the significant progress that has been made toward understanding the structure and function of the bacterial BAM complex.
Collapse
Affiliation(s)
- Kelly H Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
34
|
Anwari K, Webb CT, Poggio S, Perry AJ, Belousoff M, Celik N, Ramm G, Lovering A, Sockett RE, Smit J, Jacobs-Wagner C, Lithgow T. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Mol Microbiol 2012; 84:832-44. [PMID: 22524202 PMCID: PMC3359395 DOI: 10.1111/j.1365-2958.2012.08059.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The β-barrel assembly machine (BAM) complex is an essential feature of all bacteria with an outer membrane. The core subunit of the BAM complex is BamA and, in Escherichia coli, four lipoprotein subunits: BamB, BamC, BamD and BamE, also function in the BAM complex. Hidden Markov model analysis was used to comprehensively assess the distribution of subunits of the BAM lipoproteins across all subclasses of proteobacteria. A patchwork distribution was detected which is readily reconciled with the evolution of the α-, β-, γ-, δ- and ε-proteobacteria. Our findings lead to a proposal that the ancestral BAM complex was composed of two subunits: BamA and BamD, and that BamB, BamC and BamE evolved later in a distinct sequence of events. Furthermore, in some lineages novel lipoproteins have evolved instead of the lipoproteins found in E. coli. As an example of this concept, we show that no known species of α-proteobacteria has a homologue of BamC. However, purification of the BAM complex from the model α-proteobacterium Caulobacter crescentus identified a novel subunit we refer to as BamF, which has a conserved sequence motif related to sequences found in BamC. BamF and BamD can be eluted from the BAM complex under similar conditions, mirroring the BamC:D module seen in the BAM complex of γ-proteobacteria such as E. coli.
Collapse
Affiliation(s)
- Khatira Anwari
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim KH, Aulakh S, Tan W, Paetzel M. Crystallographic analysis of the C-terminal domain of the Escherichia coli lipoprotein BamC. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1350-8. [PMID: 22102230 DOI: 10.1107/s174430911103363x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/18/2011] [Indexed: 11/10/2022]
Abstract
In Gram-negative bacteria, the BAM complex catalyzes the essential process of assembling outer membrane proteins. The BAM complex in Escherichia coli consists of five proteins: one β-barrel membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD and BamE. Here, the crystal structure of the C-terminal domain of E. coli BamC (BamC(C): Ala224-Ser343) refined to 1.5 Å resolution in space group H3 is reported. BamC(C) consists of a six-stranded antiparallel β-sheet, three α-helices and one 3(10)-helix. Sequence and surface analysis reveals that most of the conserved residues within BamC(C) are localized to form a continuous negatively charged groove that is involved in a major crystalline lattice contact in which a helix from a neighbouring BamC(C) binds against this surface. This interaction is topologically and architecturally similar to those seen in the substrate-binding grooves of other proteins with BamC-like folds. Taken together, these results suggest that an identified surface on the C-terminal domain of BamC may serve as an important protein-binding surface for interaction with other BAM-complex components or substrates.
Collapse
Affiliation(s)
- Kelly H Kim
- Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | | | | | | |
Collapse
|
36
|
Kim KH, Aulakh S, Paetzel M. Crystal structure of β-barrel assembly machinery BamCD protein complex. J Biol Chem 2011; 286:39116-21. [PMID: 21937441 DOI: 10.1074/jbc.m111.298166] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β-barrel assembly machinery (BAM) complex of Escherichia coli is a multiprotein machine that catalyzes the essential process of assembling outer membrane proteins. The BAM complex consists of five proteins: one membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Here, we report the first crystal structure of a Bam lipoprotein complex: the essential lipoprotein BamD in complex with the N-terminal half of BamC (BamC(UN) (Asp(28)-Ala(217)), a 73-residue-long unstructured region followed by the N-terminal domain). The BamCD complex is stabilized predominantly by various hydrogen bonds and salt bridges formed between BamD and the N-terminal unstructured region of BamC. Sequence and molecular surface analyses revealed that many of the conserved residues in both proteins are found at the BamC-BamD interface. A series of truncation mutagenesis and analytical gel filtration chromatography experiments confirmed that the unstructured region of BamC is essential for stabilizing the BamCD complex structure. The unstructured N terminus of BamC interacts with the proposed substrate-binding pocket of BamD, suggesting that this region of BamC may play a regulatory role in outer membrane protein biogenesis.
Collapse
Affiliation(s)
- Kelly H Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
37
|
Ricci DP, Silhavy TJ. The Bam machine: a molecular cooper. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1067-84. [PMID: 21893027 DOI: 10.1016/j.bbamem.2011.08.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022]
Abstract
The bacterial outer membrane (OM) is an exceptional biological structure with a unique composition that contributes significantly to the resiliency of Gram-negative bacteria. Since all OM components are synthesized in the cytosol, the cell must efficiently transport OM-specific lipids and proteins across the cell envelope and stably integrate them into a growing membrane. In this review, we discuss the challenges associated with these processes and detail the elegant solutions that cells have evolved to address the topological problem of OM biogenesis. Special attention will be paid to the Bam machine, a highly conserved multiprotein complex that facilitates OM β-barrel folding. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
38
|
Hagan CL, Kahne D. The reconstituted Escherichia coli Bam complex catalyzes multiple rounds of β-barrel assembly. Biochemistry 2011; 50:7444-6. [PMID: 21823654 DOI: 10.1021/bi2010784] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Barrel proteins are folded and inserted into the outer membranes of Escherichia coli by the Bam complex. The Bam complex has been purified and functionally reconstituted in vitro. We report conditions for reconstitution that increase the folding yield 10-fold and allow us to monitor the time course of folding directly. We use these conditions to analyze the effect of a mutation in the Bam complex and to demonstrate the ability of the reconstituted complex to catalyze more than one round of substrate assembly.
Collapse
Affiliation(s)
- Christine L Hagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
39
|
The fimbrial usher FimD follows the SurA-BamB pathway for its assembly in the outer membrane of Escherichia coli. J Bacteriol 2011; 193:5222-30. [PMID: 21784935 DOI: 10.1128/jb.05585-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fimbrial ushers are the largest β-barrel outer membrane proteins (OMPs) known to date, which function in the polymerization of fimbriae and their translocation to the bacterial surface. Folding and assembly of these complex OMPs are not characterized. Here, we investigate the role of periplasmic chaperones (SurA, Skp, DegP, and FkpA) and individual components of the β-barrel assembly machinery (BAM) complex (BamA, BamB, BamC, and BamE) in the folding of the Escherichia coli FimD usher. The FimD level is dramatically reduced (∼30-fold) in a surA null mutant, but a strong cell envelope stress is constitutively activated with upregulation of DegP (∼10-fold). To demonstrate a direct role of SurA, FimD folding was analyzed in a conditional surA mutant in which SurA expression was controlled. In this strain, FimD is depleted from bacteria in parallel to SurA without significant upregulation of DegP. Interestingly, the dependency on SurA is higher for FimD than for other OMPs. We also demonstrate that a functional BAM complex is needed for folding of FimD. In addition, FimD levels were strongly reduced (∼5-fold) in a mutant lacking the accessory lipoprotein BamB. The critical role of BamB for FimD folding was confirmed by complementation and BamB depletion experiments. Similar to SurA dependency, FimD showed a stronger dependency on BamB than OMPs. On the other hand, folding of FimD was only marginally affected in bamC and bamE mutants. Collectively, our results indicate that FimD usher follows the SurA-BamB pathway for its assembly. The preferential use of this pathway for the folding of OMPs with large β-barrels is discussed.
Collapse
|