1
|
Walter LJ, Quoika PK, Zacharias M. Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations. J Chem Inf Model 2024; 64:3465-3476. [PMID: 38602938 PMCID: PMC11040733 DOI: 10.1021/acs.jcim.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapid increase in the number of solved multiprotein assemblies. However, the assembly process of large complexes from their components is much less well-studied. We introduce a rapid computational structure-based (SB) model, GoCa, that allows to follow the assembly process of large multiprotein complexes based on a known native structure. Beyond existing SB Go̅-type models, it distinguishes between intra- and intersubunit interactions, allowing us to include coupled folding and binding. It accounts automatically for the permutation of identical subunits in a complex and allows the definition of multiple minima (native) structures in the case of proteins that undergo global transitions during assembly. The model is successfully tested on several multiprotein complexes. The source code of the GoCa program including a tutorial is publicly available on Github: https://github.com/ZachariasLab/GoCa. We also provide a web source that allows users to quickly generate the necessary input files for a GoCa simulation: https://goca.t38webservices.nat.tum.de.
Collapse
Affiliation(s)
- Luis J. Walter
- Center for Functional Protein
Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| | - Patrick K. Quoika
- Center for Functional Protein
Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| | - Martin Zacharias
- Center for Functional Protein
Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| |
Collapse
|
2
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Malagrinò F, Diop A, Pagano L, Nardella C, Toto A, Gianni S. Unveiling induced folding of intrinsically disordered proteins - Protein engineering, frustration and emerging themes. Curr Opin Struct Biol 2021; 72:153-160. [PMID: 34902817 DOI: 10.1016/j.sbi.2021.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
Intrinsically disordered proteins (IDPs) can be generally described as a class of proteins that lack a well-defined ordered structure in isolation at physiological conditions. Upon binding to their physiological ligands, IDPs typically undergo a disorder-to-order transition, which may or may not lead to the complete folding of the IDP. In this short review, we focus on some of the key findings pertaining to the mechanisms of such induced folding. In particular, first we describe the general features of the reaction; then, we discuss some of the most remarkable findings obtained from applying protein engineering in synergy with kinetic studies to induced folding; and finally, we offer a critical view on some of the emerging themes when considering the structural heterogeneity of IDPs vis-à-vis to their inherent frustration.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Awa Diop
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Caterina Nardella
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy.
| |
Collapse
|
4
|
Jensen TMT, Bartling CRO, Karlsson OA, Åberg E, Haugaard-Kedström LM, Strømgaard K, Jemth P. Molecular Details of a Coupled Binding and Folding Reaction between the Amyloid Precursor Protein and a Folded Domain. ACS Chem Biol 2021; 16:1191-1200. [PMID: 34161732 PMCID: PMC8291497 DOI: 10.1021/acschembio.1c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Intrinsically disordered
regions in proteins often function as
binding motifs in protein–protein interactions. The mechanistic
aspects and molecular details of such coupled binding and folding
reactions, which involve formation of multiple noncovalent bonds,
have been broadly studied theoretically, but experimental data are
scarce. Here, using a combination of protein semisynthesis to incorporate
phosphorylated amino acids, backbone amide-to-ester modifications,
side chain substitutions, and binding kinetics, we examined the interaction
between the intrinsically disordered motif of amyloid precursor protein
(APP) and the phosphotyrosine binding (PTB) domain of Mint2. We show
that the interaction is regulated by a self-inhibitory segment of
the PTB domain previously termed ARM. The helical ARM linker decreases
the association rate constant 30-fold through a fast pre-equilibrium
between an open and a closed state. Extensive side chain substitutions
combined with kinetic experiments demonstrate that the rate-limiting
transition state for the binding reaction is governed by native and
non-native hydrophobic interactions and hydrogen bonds. Hydrophobic
interactions were found to be particularly important during crossing
of the transition state barrier. Furthermore, linear free energy relationships
show that the overall coupled binding and folding reaction involves
cooperative formation of interactions with roughly 30% native contacts
formed at the transition state. Our data support an emerging picture
of coupled binding and folding reactions following overall chemical
principles similar to those of folding of globular protein domains
but with greater malleability of ground and transition states.
Collapse
Affiliation(s)
- Thomas M. T. Jensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| | - Christian R. O. Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - O. Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| | - Emma Åberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| | - Linda M. Haugaard-Kedström
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
5
|
Karlsson E, Paissoni C, Erkelens AM, Tehranizadeh ZA, Sorgenfrei FA, Andersson E, Ye W, Camilloni C, Jemth P. Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins. J Biol Chem 2021; 295:17698-17712. [PMID: 33454008 PMCID: PMC7762952 DOI: 10.1074/jbc.ra120.015645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Amanda M Erkelens
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Zeinab A Tehranizadeh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frieda A Sorgenfrei
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Weihua Ye
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
The Conformational Plasticity Vista of PDZ Domains. Life (Basel) 2020; 10:life10080123. [PMID: 32726937 PMCID: PMC7460260 DOI: 10.3390/life10080123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 02/01/2023] Open
Abstract
The PDZ domain (PSD95-Discs large-ZO1) is a widespread modular domain present in the living organisms. A prevalent function in the PDZ family is to serve as scaffolding and adaptor proteins connecting multiple partners in signaling pathways. An explanation of the flexible functionality in this domain family, based just on a static perspective of the structure-activity relationship, might fall short. More dynamic and conformational aspects in the protein fold can be the reasons for such functionality. Folding studies indeed showed an ample and malleable folding landscape for PDZ domains where multiple intermediate states were experimentally detected. Allosteric phenomena that resemble energetic coupling between residues have also been found in PDZ domains. Additionally, several PDZ domains are modulated by post-translational modifications, which introduce conformational switches that affect binding. Altogether, the ability to connect diverse partners might arise from the intrinsic plasticity of the PDZ fold.
Collapse
|
7
|
Malagrinò F, Visconti L, Pagano L, Toto A, Troilo F, Gianni S. Understanding the Binding Induced Folding of Intrinsically Disordered Proteins by Protein Engineering: Caveats and Pitfalls. Int J Mol Sci 2020; 21:ijms21103484. [PMID: 32429036 PMCID: PMC7279032 DOI: 10.3390/ijms21103484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Many proteins lack a well-defined three-dimensional structure in isolation. These proteins, typically denoted as intrinsically disordered proteins (IDPs), may display a characteristic disorder-to-order transition when binding their physiological partner(s). From an experimental perspective, it is of great importance to establish the general grounds to understand how such folding processes may be explored. Here we discuss the caveats and the pitfalls arising when applying to IDPs one of the key techniques to characterize the folding of globular proteins, the Φ value analysis. This method is based on measurements of the free energy changes of transition and native states upon conservative, non-disrupting, mutations. On the basis of available data, we reinforce the validity of Φ value analysis in the study of IDPs and suggest future experiments to further validate this powerful experimental method.
Collapse
|
8
|
Toto A, Malagrinò F, Visconti L, Troilo F, Pagano L, Brunori M, Jemth P, Gianni S. Templated folding of intrinsically disordered proteins. J Biol Chem 2020; 295:6586-6593. [PMID: 32253236 DOI: 10.1074/jbc.rev120.012413] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed "templated folding," whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Livia Pagano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
9
|
Yang J, Gao M, Xiong J, Su Z, Huang Y. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci 2019; 28:1952-1965. [PMID: 31441158 PMCID: PMC6798136 DOI: 10.1002/pro.3718] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
The sequence-structure-function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well-defined three-dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Meng Gao
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Junwen Xiong
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Zhengding Su
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Yongqi Huang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
10
|
Munshi S, Subramanian S, Ramesh S, Golla H, Kalivarathan D, Kulkarni M, Campos LA, Sekhar A, Naganathan AN. Engineering Order and Cooperativity in a Disordered Protein. Biochemistry 2019; 58:2389-2397. [PMID: 31002232 DOI: 10.1021/acs.biochem.9b00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Structural disorder in proteins arises from a complex interplay between weak hydrophobicity and unfavorable electrostatic interactions. The extent to which the hydrophobic effect contributes to the unique and compact native state of proteins is, however, confounded by large compensation between multiple entropic and energetic terms. Here we show that protein structural order and cooperativity arise as emergent properties upon hydrophobic substitutions in a disordered system with non-intuitive effects on folding and function. Aided by sequence-structure analysis, equilibrium, and kinetic spectroscopic studies, we engineer two hydrophobic mutations in the disordered DNA-binding domain of CytR that act synergistically, but not in isolation, to promote structure, compactness, and stability. The double mutant, with properties of a fully ordered domain, exhibits weak cooperativity with a complex and rugged conformational landscape. The mutant, however, binds cognate DNA with an affinity only marginally higher than that of the wild type, though nontrivial differences are observed in the binding to noncognate DNA. Our work provides direct experimental evidence of the dominant role of non-additive hydrophobic effects in shaping the molecular evolution of order in disordered proteins and vice versa, which could be generalized to even folded proteins with implications for protein design and functional manipulation.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Samyuktha Ramesh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Hemashree Golla
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Divakar Kalivarathan
- Department of Biotechnology , National Institute of Technology Warangal , Warangal 506004 , India
| | - Madhurima Kulkarni
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - Luis A Campos
- National Biotechnology Center , Consejo Superior de Investigaciones Científicas , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
11
|
Mesrouze Y, Bokhovchuk F, Izaac A, Meyerhofer M, Zimmermann C, Fontana P, Schmelzle T, Erdmann D, Furet P, Kallen J, Chène P. Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface. Protein Sci 2019; 27:1810-1820. [PMID: 30058229 DOI: 10.1002/pro.3493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023]
Abstract
Many interactions between proteins are mediated by intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) do not adopt a stable three-dimensional structure in their unbound form, but they become more structured upon binding to their partners. In this communication, we study how a bound IDR adapts to mutations, preventing the formation of hydrogen bonds at the binding interface that needs a precise positioning of the interacting residues to be formed. We use as a model the YAP:TEAD interface, where one YAP (IDP) and two TEAD residues form hydrogen bonds via their side chain. Our study shows that the conformational flexibility of bound YAP and the reorganization of water molecules at the interface help to reduce the energetic constraints created by the loss of H-bonds at the interface. The residual flexibility/dynamic of bound IDRs and water might, therefore, be a key for the adaptation of IDPs to different interface landscapes and to mutations occurring at binding interfaces.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fedir Bokhovchuk
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Aude Izaac
- Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Zimmermann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrizia Fontana
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tobias Schmelzle
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joerg Kallen
- Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
12
|
Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr Opin Struct Biol 2018; 54:1-9. [PMID: 30268910 PMCID: PMC6420056 DOI: 10.1016/j.sbi.2018.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
A large body of work has gone into understanding the effect of mutations on protein structure and function. Conventional treatments have involved quantifying the change in stability, activity and relaxation rates of the mutants with respect to the wild-type protein. However, it is now becoming increasingly apparent that mutational perturbations consistently modulate the packing and dynamics of a significant fraction of protein residues, even those that are located >10–15 Å from the mutated site. Such long-range modulation of protein features can distinctly tune protein stability and the native conformational ensemble contributing to allosteric modulation of function. In this review, I summarize a series of experimental and computational observations that highlight the incredibly pliable nature of proteins and their response to mutational perturbations manifested via the intra-protein interaction network. I highlight how an intimate understanding of mutational effects could pave the way for integrating stability, folding, cooperativity and even allostery within a single physical framework.
Collapse
|
13
|
Lindström I, Dogan J. Native Hydrophobic Binding Interactions at the Transition State for Association between the TAZ1 Domain of CBP and the Disordered TAD-STAT2 Are Not a Requirement. Biochemistry 2017; 56:4145-4153. [PMID: 28707474 DOI: 10.1021/acs.biochem.7b00428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A significant fraction of the eukaryotic proteome consists of proteins that are either partially or completely disordered under native-like conditions. Intrinsically disordered proteins (IDPs) are common in protein-protein interactions and are involved in numerous cellular processes. Although many proteins have been identified as disordered, much less is known about the binding mechanisms of the coupled binding and folding reactions involving IDPs. Here we have analyzed the rate-limiting transition state for binding between the TAZ1 domain of CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2) by site-directed mutagenesis and kinetic experiments (Φ-value analysis) and found that the native protein-protein binding interface is not formed at the transition state for binding. Instead, native hydrophobic binding interactions form late, after the rate-limiting barrier has been crossed. The association rate constant in the absence of electrostatic enhancement was determined to be rather high. This is consistent with the Φ-value analysis, which showed that there are few or no obligatory native contacts. Also, linear free energy relationships clearly demonstrate that native interactions are cooperatively formed, a scenario that has usually been observed for proteins that fold according to the so-called nucleation-condensation mechanism. Thus, native hydrophobic binding interactions at the rate-limiting transition state for association between TAD-STAT2 and TAZ1 are not a requirement, which is generally in agreement with previous findings on other IDP systems and might be a common mechanism for IDPs.
Collapse
Affiliation(s)
- Ida Lindström
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| | - Jakob Dogan
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| |
Collapse
|
14
|
Toto A, Mattei A, Jemth P, Gianni S. Understanding the role of phosphorylation in the binding mechanism of a PDZ domain. Protein Eng Des Sel 2016; 30:1-5. [PMID: 27760803 DOI: 10.1093/protein/gzw055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/14/2022] Open
Abstract
The PDZ domain is one of the most common protein-protein interaction domains in mammalian species. While several studies have demonstrated the importance of phosphorylation in interactions involving PDZ domains, there is a paucity of detailed mechanistic data addressing how the PDZ interaction is affected by phosphorylation. Here, we address this question by equilibrium and kinetic binding experiments using PDZ2 from protein tyrosine phosphatase L1 and its interaction with a peptide from the natural ligand RIL. The results show that phosphorylation of a serine residue in the RIL peptide has dual and opposing effects: it increases both the association and dissociation rate constants, which leads to an overall weakening of binding. Furthermore, we performed binding experiments with a RIL peptide in which the serine was replaced by a glutamate, a commonly used method to mimic phosphorylation in proteins. Strikingly, both the affinity and the ionic strength dependence of the affinity differed markedly for the phosphoserine and glutamate peptides. These results show that, in this particular case, glutamate is a poor mimic of serine phosphorylation.
Collapse
Affiliation(s)
- Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Fondazione Cenci Bolognetti, Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Annalisa Mattei
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Fondazione Cenci Bolognetti, Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Fondazione Cenci Bolognetti, Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Karlsson OA, Sundell GN, Andersson E, Ivarsson Y, Jemth P. Improved affinity at the cost of decreased specificity: a recurring theme in PDZ-peptide interactions. Sci Rep 2016; 6:34269. [PMID: 27694853 PMCID: PMC5046105 DOI: 10.1038/srep34269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023] Open
Abstract
The E6 protein from human papillomavirus (HPV) plays an important role during productive infection and is a potential drug target. We have previously designed a high affinity bivalent protein binder for the E6 protein, a fusion between a helix from the E6 associated protein and PDZØ9, an engineered variant (L391F/K392M) of the second PDZ domain from synapse associated protein 97 (SAP97 PDZ2). How the substitutions improve the affinity of SAP97 PDZ2 for HPV E6 is not clear and it is not known to what extent they affect the specificity for cellular targets. Here, we explore the specificity of wild type SAP97 PDZ2 and PDZØ9 through proteomic peptide phage display. In addition, we employ a double mutant cycle of SAP97 PDZ2 in which the binding kinetics for nine identified potential cellular peptide ligands are measured and compared with those for the C-terminal E6 peptide. The results demonstrate that PDZØ9 has an increased affinity for all peptides, but at the cost of specificity. Furthermore, there is a peptide dependent coupling free energy between the side chains at positions 391 and 392. This corroborates our previous allosteric model for PDZ domains, involving sampling of intramolecular energetic pathways.
Collapse
Affiliation(s)
- O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Gustav N Sundell
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
16
|
Toto A, Pedersen SW, Karlsson OA, Moran GE, Andersson E, Chi CN, Strømgaard K, Gianni S, Jemth P. Ligand binding to the PDZ domains of postsynaptic density protein 95. Protein Eng Des Sel 2016; 29:169-75. [PMID: 26941280 DOI: 10.1093/protein/gzw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain.
Collapse
Affiliation(s)
- Angelo Toto
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy
| | - Søren W Pedersen
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Griffin E Moran
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| |
Collapse
|
17
|
Kitzig S, Thilemann M, Cordes T, Rück-Braun K. Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy. Chemphyschem 2016; 17:1252-63. [DOI: 10.1002/cphc.201501050] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- S. Kitzig
- Institut für Chemie; Technische Universität Berlin; Str. des 17. Juni 135 10623 Berlin Germany
| | - M. Thilemann
- Institut für Chemie; Technische Universität Berlin; Str. des 17. Juni 135 10623 Berlin Germany
| | - T. Cordes
- Molecular Microscopy Research Group; Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Karola Rück-Braun
- Institut für Chemie; Technische Universität Berlin; Str. des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
18
|
Gianni S, Dogan J, Jemth P. Coupled binding and folding of intrinsically disordered proteins: what can we learn from kinetics? Curr Opin Struct Biol 2016; 36:18-24. [DOI: 10.1016/j.sbi.2015.11.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022]
|
19
|
Kurcinski M, Kolinski A, Kmiecik S. Mechanism of Folding and Binding of an Intrinsically Disordered Protein As Revealed by ab Initio Simulations. J Chem Theory Comput 2015; 10:2224-31. [PMID: 26580746 DOI: 10.1021/ct500287c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A complex of the phosphorylated kinase-inducible domain (pKID) with its interacting domain (KIX) is a model system for studies of mechanisms by which intrinsically unfolded proteins perform their functions. These mechanisms are not fully understood. Using an efficient coarse-grained model, ab initio simulations were performed of the coupled folding and binding of the pKID to the KIX. The simulations start from an unbound, randomly positioned and disordered pKID structure. During the simulations the pKID chain and its position remain completely unrestricted, while the KIX backbone is limited to near-native fluctuations. Ab initio simulations of such large-scale conformational transitions, unaffected by any knowledge about the bound pKID structure, remain inaccessible to classical simulations. Our simulations recover an ensemble of transient encounter complexes in good agreement with experimental results. We find that a key folding and binding step is linked to the formation of weak native interactions between a preformed nativelike fragment of a pKID helix and KIX surface. Once that nucleus forms, the pKID chain may condense from a largely disordered encounter ensemble to a natively bound and ordered conformation. The observed mechanism is reminiscent of a nucleation-condensation model, a common scenario for folding of globular proteins.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Andrzej Kolinski
- Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Sebastian Kmiecik
- Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Pedersen SW, Pedersen SB, Anker L, Hultqvist G, Kristensen AS, Jemth P, Strømgaard K. Probing backbone hydrogen bonding in PDZ/ligand interactions by protein amide-to-ester mutations. Nat Commun 2015; 5:3215. [PMID: 24477114 DOI: 10.1038/ncomms4215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/07/2014] [Indexed: 01/30/2023] Open
Abstract
PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions.
Collapse
Affiliation(s)
- Søren W Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stine B Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Anker
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Greta Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Unexpected Heterodivalent Recruitment of NOS1AP to nNOS Reveals Multiple Sites for Pharmacological Intervention in Neuronal Disease Models. J Neurosci 2015; 35:7349-64. [PMID: 25972165 DOI: 10.1523/jneurosci.0037-15.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protein NOS1AP/CAPON mediates signaling from a protein complex of NMDA receptor, PSD95 and nNOS. The only stroke trial for neuroprotectants that showed benefit to patients targeted this ternary complex. NOS1AP/nNOS interaction regulates small GTPases, iron transport, p38MAPK-linked excitotoxicity, and anxiety. Moreover, the nos1ap gene is linked to disorders from schizophrenia, post-traumatic stress disorder, and autism to cardiovascular disorders and breast cancer. Understanding protein interactions required for NOS1AP function, therefore, has broad implications for numerous diseases. Here we show that the interaction of NOS1AP with nNOS differs radically from the classical PDZ docking assumed to be responsible. The NOS1AP PDZ motif does not bind nNOS as measured by multiple methods. In contrast, full-length NOS1AP forms an unusually stable interaction with nNOS. We mapped the discrepancy between full-length and C-terminal PDZ motif to a novel internal region we call the ExF motif. The C-terminal PDZ motif, although neither sufficient nor necessary for binding, nevertheless promotes the stability of the complex. It therefore potentially affects signal transduction and suggests that functional interaction of nNOS with NOS1AP might be targetable at two distinct sites. We demonstrate that excitotoxic pathways can be regulated, in cortical neuron and organotypic hippocampal slice cultures from rat, either by the previously described PDZ ligand TAT-GESV or by the ExF motif-bearing region of NOS1AP, even when lacking the critical PDZ residues as long as the ExF motif is intact and not mutated. This previously unrecognized heterodivalent interaction of nNOS with NOS1AP may therefore provide distinct opportunities for pharmacological intervention in NOS1AP-dependent signaling and excitotoxicity.
Collapse
|
22
|
Dogan J, Jonasson J, Andersson E, Jemth P. Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains. Biochemistry 2015; 54:4741-50. [DOI: 10.1021/acs.biochem.5b00520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jakob Dogan
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Josefin Jonasson
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Eva Andersson
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Per Jemth
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
23
|
Karlsson OA, Ramirez J, Öberg D, Malmqvist T, Engström Å, Friberg M, Chi CN, Widersten M, Travé G, Nilsson MTI, Jemth P. Design of a PDZbody, a bivalent binder of the E6 protein from human papillomavirus. Sci Rep 2015; 5:9382. [PMID: 25797137 PMCID: PMC4369733 DOI: 10.1038/srep09382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/20/2015] [Indexed: 01/04/2023] Open
Abstract
Chronic infection by high risk human papillomavirus (HPV) strains may lead to cancer. Expression of the two viral oncoproteins E6 and E7 is largely responsible for immortalization of infected cells. The HPV E6 is a small (approximately 150 residues) two domain protein that interacts with a number of cellular proteins including the ubiquitin ligase E6-associated protein (E6AP) and several PDZ-domain containing proteins. Our aim was to design a high-affinity binder for HPV E6 by linking two of its cellular targets. First, we improved the affinity of the second PDZ domain from SAP97 for the C-terminus of HPV E6 from the high-risk strain HPV18 using phage display. Second, we added a helix from E6AP to the N-terminus of the optimized PDZ variant, creating a chimeric bivalent binder, denoted PDZbody. Full-length HPV E6 proteins are difficult to express and purify. Nevertheless, we could measure the affinity of the PDZbody for E6 from another high-risk strain, HPV16 (Kd = 65 nM). Finally, the PDZbody was used to co-immunoprecipitate E6 protein from HPV18-immortalized HeLa cells, confirming the interaction between PDZbody and HPV18 E6 in a cellular context.
Collapse
Affiliation(s)
- O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Juan Ramirez
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Daniel Öberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Tony Malmqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Åke Engström
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Maria Friberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Mikael Widersten
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Gilles Travé
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Mikael T I Nilsson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
24
|
Ramírez J, Recht R, Charbonnier S, Ennifar E, Atkinson RA, Travé G, Nominé Y, Kieffer B. Disorder-to-order transition of MAGI-1 PDZ1 C-terminal extension upon peptide binding: thermodynamic and dynamic insights. Biochemistry 2015; 54:1327-37. [PMID: 25590897 DOI: 10.1021/bi500845j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PDZ domains are highly abundant protein-protein interaction modules commonly found in multidomain scaffold proteins. The PDZ1 domain of MAGI-1, a protein present at cellular tight junctions that contains six PDZ domains, is targeted by the E6 oncoprotein of the high-risk human papilloma virus. Thermodynamic and dynamic studies using complementary isothermal titration calorimetry and nuclear magnetic resonance (NMR) (15)N heteronuclear relaxation measurements were conducted at different temperatures to decipher the molecular mechanism of this interaction. Binding of E6 peptides to the MAGI-1 PDZ1 domain is accompanied by an unusually large and negative change in heat capacity (ΔC(p)) that is attributed to a disorder-to-order transition of the C-terminal extension of the PDZ1 domain upon E6 binding. Analysis of temperature-dependent thermodynamic parameters and (15)N NMR relaxation data of a PDZ1 mutant in which this disorder-to-order transition was abolished allows the unusual thermodynamic signature of E6 binding to be correlated to local folding of the PDZ1 C-terminal extension. Comparison of the exchange contributions observed for wild-type and mutant proteins explains how variation in the solvent-exposed area may compensate for the loss of conformational entropy and further designates a distinct set of a few residues that mediate this local folding phenomena.
Collapse
Affiliation(s)
- Juan Ramírez
- Equipe Oncoprotéines, Ecole Supérieure de Biotechnologie de Strasbourg, Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg , Boulevard Sébastien Brandt, BP 10413, 67412 Illkirch cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
McCann JJ, Choi UB, Bowen ME. Reconstitution of multivalent PDZ domain binding to the scaffold protein PSD-95 reveals ternary-complex specificity of combinatorial inhibition. Structure 2014; 22:1458-66. [PMID: 25220472 DOI: 10.1016/j.str.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/01/2014] [Accepted: 08/09/2014] [Indexed: 01/07/2023]
Abstract
Multidomain scaffold proteins serve as hubs in the signal transduction network. By physically colocalizing sequential steps in a transduction pathway, scaffolds catalyze and direct incoming signals. Much is known about binary interactions with individual domains, but it is unknown whether "scaffolding activity" is predictable from pairwise affinities. Here, we characterized multivalent binding to PSD-95, a scaffold protein containing three PDZ domains connected in series by disordered linkers. We used single molecule fluorescence to watch soluble PSD-95 recruit diffusing proteins to a surface-attached receptor cytoplasmic domain. Different ternary complexes showed unique concentration dependence for scaffolding despite similar pairwise affinity. The concentration dependence of scaffolding activity was not predictable based on binary interactions. PSD-95 did not stabilize specific complexes, but rather increased the frequency of transient binding events. Our results suggest that PSD-95 maintains a loosely connected pleomorphic ensemble rather than forming a stereospecific complex containing all components.
Collapse
Affiliation(s)
- James J McCann
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ucheor B Choi
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mark E Bowen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
26
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
27
|
Dogan J, Gianni S, Jemth P. The binding mechanisms of intrinsically disordered proteins. Phys Chem Chem Phys 2013; 16:6323-31. [PMID: 24317797 DOI: 10.1039/c3cp54226b] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins are very common and instrumental for cellular signaling. Recently, a number of studies have investigated the kinetic binding mechanisms of IDPs and IDRs. These results allow us to draw conclusions about the energy landscape for the coupled binding and folding of disordered proteins. The association rate constants of IDPs cover a wide range (10(5)-10(9) M(-1) s(-1)) and are largely governed by long-range charge-charge interactions, similarly to interactions between well-folded proteins. Off-rate constants also differ significantly among IDPs (with half-lives of up to several minutes) but are usually around 0.1-1000 s(-1), allowing for rapid dissociation of complexes. Likewise, affinities span from pM to μM suggesting that the low-affinity high-specificity concept for IDPs is not straightforward. Overall, it appears that binding precedes global folding although secondary structure elements such as helices may form before the protein-protein interaction. Short IDPs bind in apparent two-state reactions whereas larger IDPs often display complex multi-step binding reactions. While the two extreme cases of two-step binding (conformational selection and induced fit) or their combination into a square mechanism is an attractive model in theory, it is too simplistic in practice. Experiment and simulation suggest a more complex energy landscape in which IDPs bind targets through a combination of conformational selection before binding (e.g., secondary structure formation) and induced fit after binding (global folding and formation of short-range intermolecular interactions).
Collapse
Affiliation(s)
- Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| | | | | |
Collapse
|
28
|
Dogan J, Mu X, Engström Å, Jemth P. The transition state structure for coupled binding and folding of disordered protein domains. Sci Rep 2013; 3:2076. [PMID: 23799450 PMCID: PMC3691887 DOI: 10.1038/srep02076] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
Intrinsically disordered proteins are abundant in the eukaryotic proteome, and they are implicated in a range of different diseases. However, there is a paucity of experimental data on molecular details of the coupled binding and folding of such proteins. Two interacting and relatively well studied disordered protein domains are the activation domain from the p160 transcriptional co-activator ACTR and the nuclear co-activator binding domain (NCBD) of CREB binding protein. We have analyzed the transition state for their coupled binding and folding by protein engineering and kinetic experiments (Φ-value analysis) and found that it involves weak native interactions between the N-terminal helices of ACTR and NCBD, but is otherwise "disordered-like". Most native hydrophobic interactions in the interface between the two domains form later, after the rate-limiting barrier for association. Linear free energy relationships suggest a cooperative formation of native interactions, reminiscent of the nucleation-condensation mechanism in protein folding.
Collapse
Affiliation(s)
- Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
29
|
Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein. Proc Natl Acad Sci U S A 2013; 110:E3743-52. [PMID: 24043820 DOI: 10.1073/pnas.1308381110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous relatively short regions within intrinsically disordered proteins (IDPs) serve as molecular recognition elements (MoREs). They fold into ordered structures upon binding to their partner molecules. Currently, there is still a lack of in-depth understanding of how coupled binding and folding occurs in MoREs. Here, we quantified the unbound ensembles of the α-MoRE within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein. We developed a multiscaled approach by combining a physics-based and an atomic hybrid model to decipher the mechanism by which the α-MoRE interacts with the X domain of the measles virus phosphoprotein. Our multiscaled approach led to remarkable qualitative and quantitative agreements between the theoretical predictions and experimental results (e.g., chemical shifts). We found that the free α-MoRE rapidly interconverts between multiple discrete partially helical conformations and the unfolded state, in accordance with the experimental observations. We quantified the underlying global folding-binding landscape. This leads to a synergistic mechanism in which the recognition event proceeds via (minor) conformational selection, followed by (major) induced folding. We also provided evidence that the α-MoRE is a compact molten globule-like IDP and behaves as a downhill folder in the induced folding process. We further provided a theoretical explanation for the inherent connections between "downhill folding," "molten globule," and "intrinsic disorder" in IDP-related systems. Particularly, we proposed that binding and unbinding of IDPs proceed in a stepwise way through a "kinetic divide-and-conquer" strategy that confers them high specificity without high affinity.
Collapse
|
30
|
Eildal JNN, Hultqvist G, Balle T, Stuhr-Hansen N, Padrah S, Gianni S, Strømgaard K, Jemth P. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations. J Am Chem Soc 2013; 135:12998-3007. [PMID: 23705582 DOI: 10.1021/ja402875h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the most frequent protein-protein interaction modules in mammalian cells is the postsynaptic density 95/discs large/zonula occludens 1 (PDZ) domain, involved in scaffolding and signaling and emerging as an important drug target for several diseases. Like many other protein-protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1)). This decrease in affinity was mainly due to an increase in the dissociation rate constant, but a significant decrease in the association rate constant was found for some amide-to-ester mutations suggesting that native hydrogen bonds have begun to form in the transition state of the binding reaction. This study provides a general framework for studying the role of backbone hydrogen bonds in protein-peptide interactions and for the first time specifically addresses these for PDZ domain-peptide interactions.
Collapse
Affiliation(s)
- Jonas N N Eildal
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rogers J, Steward A, Clarke J. Folding and binding of an intrinsically disordered protein: fast, but not 'diffusion-limited'. J Am Chem Soc 2013; 135:1415-22. [PMID: 23301700 PMCID: PMC3776562 DOI: 10.1021/ja309527h] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Indexed: 12/13/2022]
Abstract
Coupled folding and binding of intrinsically disordered proteins (IDPs) is prevalent in biology. As the first step toward understanding the mechanism of binding, it is important to know if a reaction is 'diffusion-limited' as, if this speed limit is reached, the association must proceed through an induced fit mechanism. Here, we use a model system where the 'BH3 region' of PUMA, an IDP, forms a single, contiguous α-helix upon binding the folded protein Mcl-1. Using stopped-flow techniques, we systematically compare the rate constant for association (k(+)) under a number of solvent conditions and temperatures. We show that our system is not 'diffusion-limited', despite having a k(+) in the often-quoted 'diffusion-limited' regime (10(5)-10(6) M(-1) s(-1) at high ionic strength) and displaying an inverse dependence on solvent viscosity. These standard tests, developed for folded protein-protein interactions, are not appropriate for reactions where one protein is disordered.
Collapse
Affiliation(s)
- Joseph
M. Rogers
- Department of Chemistry, University of
Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Annette Steward
- Department of Chemistry, University of
Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Jane Clarke
- Department of Chemistry, University of
Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
32
|
Shammas S, Rogers J, Hill S, Clarke J. Slow, reversible, coupled folding and binding of the spectrin tetramerization domain. Biophys J 2012; 103:2203-14. [PMID: 23200054 PMCID: PMC3512043 DOI: 10.1016/j.bpj.2012.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) are significantly unstructured under physiological conditions. A number of these IDPs have been shown to undergo coupled folding and binding reactions whereby they can gain structure upon association with an appropriate partner protein. In general, these systems display weaker binding affinities than do systems with association between completely structured domains, with micromolar K(d) values appearing typical. One such system is the association between α- and β-spectrin, where two partially structured, incomplete domains associate to form a fully structured, three-helix bundle, the spectrin tetramerization domain. Here, we use this model system to demonstrate a method for fitting association and dissociation kinetic traces where, using typical biophysical concentrations, the association reactions are expected to be highly reversible. We elucidate the unusually slow, two-state kinetics of spectrin assembly in solution. The advantages of studying kinetics in this regime include the potential for gaining equilibrium constants as well as rate constants, and for performing experiments with low protein concentrations. We suggest that this approach would be particularly appropriate for high-throughput mutational analysis of two-state reversible binding processes.
Collapse
Affiliation(s)
| | | | | | - J. Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Chi CN, Bach A, Strømgaard K, Gianni S, Jemth P. Ligand binding by PDZ domains. Biofactors 2012; 38:338-48. [PMID: 22674855 DOI: 10.1002/biof.1031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/03/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.
Collapse
Affiliation(s)
- Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
34
|
Dogan J, Schmidt T, Mu X, Engström Å, Jemth P. Fast association and slow transitions in the interaction between two intrinsically disordered protein domains. J Biol Chem 2012; 287:34316-24. [PMID: 22915588 DOI: 10.1074/jbc.m112.399436] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins that contain long disordered regions are prevalent in the proteome and frequently associated with diseases. However, the mechanisms by which such intrinsically disordered proteins (IDPs) recognize their targets are not well understood. Here, we report the first experimental investigation of the interaction kinetics of the nuclear co-activator binding domain of CREB-binding protein and the activation domain from the p160 transcriptional co-activator for thyroid hormone and retinoid receptors. Both protein domains are intrinsically disordered in the free state and synergistically fold upon binding each other. Using the stopped-flow technique, we found that the binding reaction is fast, with an association rate constant of 3 × 10(7) m(-1) s(-1) at 277 K. Mutation of a conserved buried intermolecular salt bridge showed that electrostatics govern the rapid association. Furthermore, upon mutation of the salt bridge or at high salt concentration, an additional kinetic phase was detected (∼20 and ∼40 s(-1), respectively, at 277 K), suggesting that the salt bridge may steer formation of the productive bimolecular complex in an intramolecular step. Finally, we directly measured slow kinetics for the IDP domains (∼1 s(-1) at 277 K) related to conformational transitions upon binding. Together, the experiments demonstrate that the interaction involves several steps and accumulation of intermediate states. Our data are consistent with an induced fit mechanism, in agreement with previous simulations. We propose that the slow transitions may be a consequence of the multipartner interactions of IDPs.
Collapse
Affiliation(s)
- Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Chen J. Towards the physical basis of how intrinsic disorder mediates protein function. Arch Biochem Biophys 2012; 524:123-31. [PMID: 22579883 DOI: 10.1016/j.abb.2012.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 02/06/2023]
Abstract
Intrinsically disordered proteins (IDPs) are an important class of functional proteins that is highly prevalent in biology and has broad association with human diseases. In contrast to structured proteins, free IDPs exist as heterogeneous and dynamical conformational ensembles under physiological conditions. Many concepts have been discussed on how such intrinsic disorder may provide crucial functional advantages, particularly in cellular signaling and regulation. Establishing the physical basis of these proposed phenomena requires not only detailed characterization of the disordered conformational ensembles, but also mechanistic understanding of the roles of various ensemble properties in IDP interaction and regulation. Here, we review the experimental and computational approaches that may be integrated to address many important challenges of establishing a "structural" basis of IDP function, and discuss some of the key emerging ideas on how the conformational ensembles of IDPs may mediate function, especially in coupled binding and folding interactions.
Collapse
Affiliation(s)
- Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
36
|
Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett 2012; 586:2638-47. [PMID: 22576124 PMCID: PMC7094393 DOI: 10.1016/j.febslet.2012.04.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022]
Abstract
The PDZ domain is a protein-protein interacting module that plays an important role in the organization of signaling complexes. The recognition of short intrinsically disordered C-terminal peptide motifs is the archetypical PDZ function, but the functional repertoire of this versatile module also includes recognition of internal peptide sequences, dimerization and phospholipid binding. The PDZ function can be tuned by various means such as allosteric effects, changes of physiological buffer conditions and phosphorylation of PDZ domains and/or ligands, which poses PDZ domains as dynamic regulators of cell signaling. This review is focused on the plasticity of the PDZ interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|