1
|
Chechik M, Greive SJ, Antson AA, Jenkins HT. Structural basis for DNA recognition by a viral genome-packaging machine. Proc Natl Acad Sci U S A 2024; 121:e2406138121. [PMID: 39116131 PMCID: PMC11331095 DOI: 10.1073/pnas.2406138121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
DNA recognition is critical for assembly of double-stranded DNA viruses, particularly for the initiation of packaging the viral genome into the capsid. The key component that recognizes viral DNA is the small terminase protein. Despite prior studies, the molecular mechanism for DNA recognition remained elusive. Here, we address this question by identifying the minimal site in the bacteriophage HK97 genome specifically recognized by the small terminase and determining the structure of this complex by cryoEM. The circular small terminase employs an entirely unexpected mechanism in which DNA transits through the central tunnel, and sequence-specific recognition takes place as it emerges. This recognition stems from a substructure formed by the N- and C-terminal segments of two adjacent protomers which are unstructured when DNA is absent. Such interaction ensures continuous engagement of the small terminase with DNA, enabling it to slide along the DNA while simultaneously monitoring its sequence. This mechanism allows locating and instigating packaging initiation and termination precisely at the specific cos sequence.
Collapse
Affiliation(s)
- Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| | - Sandra J. Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| |
Collapse
|
2
|
Wang H, Zheng K, Wang M, Ma K, Ren L, Guo R, Ma L, Zhang H, Liu Y, Xiong Y, Wu M, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Liang Y. Shewanella phage encoding a putative anti-CRISPR-like gene represents a novel potential viral family. Microbiol Spectr 2024; 12:e0336723. [PMID: 38214523 PMCID: PMC10846135 DOI: 10.1128/spectrum.03367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.
Collapse
Affiliation(s)
- Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Lina Ma
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yao Xiong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Miaolan Wu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| |
Collapse
|
3
|
Prokhorov NS, Davis C, Maruthi K, Yang Q, Sherman M, Woodson M, White M, Miller LM, Jarrold M, Catalano C, Morais M. Biophysical and structural characterization of a multifunctional viral genome packaging motor. Nucleic Acids Res 2024; 52:831-843. [PMID: 38084901 PMCID: PMC10810279 DOI: 10.1093/nar/gkad1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024] Open
Abstract
The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.
Collapse
Affiliation(s)
- Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Christal R Davis
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kashyap Maruthi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Qin Yang
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Michael Woodson
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lohra M Miller
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Chechik M, Greive SJ, Antson AA, Jenkins HT. Structure of HK97 small terminase:DNA complex unveils a novel DNA binding mechanism by a circular protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549218. [PMID: 37503206 PMCID: PMC10370121 DOI: 10.1101/2023.07.17.549218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
DNA recognition is critical for assembly of double-stranded DNA viruses, in particular for the initiation of packaging the viral genome into the capsid. DNA packaging has been extensively studied for three archetypal bacteriophage systems: cos, pac and phi29. We identified the minimal site within the cos region of bacteriophage HK97 specifically recognised by the small terminase and determined a cryoEM structure for the small terminase:DNA complex. This nonameric circular protein utilizes a previously unknown mechanism of DNA binding. While DNA threads through the central tunnel, unexpectedly, DNA-recognition is generated at its exit by a substructure formed by the N- and C-terminal segments of two adjacent protomers of the terminase which are unstructured in the absence of DNA. Such interaction ensures continuous engagement of the small terminase with DNA, allowing sliding along DNA while simultaneously checking the DNA sequence. This mechanism allows locating and instigating packaging initiation and termination precisely at the cos site.
Collapse
Affiliation(s)
- Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
5
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
6
|
Lokareddy RK, Hou CFD, Doll SG, Li F, Gillilan RE, Forti F, Horner DS, Briani F, Cingolani G. Terminase Subunits from the Pseudomonas-Phage E217. J Mol Biol 2022; 434:167799. [PMID: 36007626 PMCID: PMC10026623 DOI: 10.1016/j.jmb.2022.167799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas phages are increasingly important biomedicines for phage therapy, but little is known about how these viruses package DNA. This paper explores the terminase subunits from the Myoviridae E217, a Pseudomonas-phage used in an experimental cocktail to eradicate P. aeruginosa in vitro and in animal models. We identified the large (TerL) and small (TerS) terminase subunits in two genes ∼58 kbs away from each other in the E217 genome. TerL presents a classical two-domain architecture, consisting of an N-terminal ATPase and C-terminal nuclease domain arranged into a bean-shaped tertiary structure. A 2.05 Å crystal structure of the C-terminal domain revealed an RNase H-like fold with two magnesium ions in the nuclease active site. Mutations in TerL residues involved in magnesium coordination had a dominant-negative effect on phage growth. However, the two ions identified in the active site were too far from each other to promote two-metal-ion catalysis, suggesting a conformational change is required for nuclease activity. We also determined a 3.38 Å cryo-EM reconstruction of E217 TerS that revealed a ring-like decamer, departing from the most common nonameric quaternary structure observed thus far. E217 TerS contains both N-terminal helix-turn-helix motifs enriched in basic residues and a central channel lined with basic residues large enough to accommodate double-stranded DNA. Overexpression of TerS caused a more than a 4-fold reduction of E217 burst size, suggesting a catalytic amount of the protein is required for packaging. Together, these data expand the molecular repertoire of viral terminase subunits to Pseudomonas-phages used for phage therapy.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Steven G Doll
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
8
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
9
|
Niazi M, Florio TJ, Yang R, Lokareddy RK, Swanson NA, Gillilan RE, Cingolani G. Biophysical analysis of Pseudomonas-phage PaP3 small terminase suggests a mechanism for sequence-specific DNA-binding by lateral interdigitation. Nucleic Acids Res 2020; 48:11721-11736. [PMID: 33125059 PMCID: PMC7672466 DOI: 10.1093/nar/gkaa866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/19/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
The genome packaging motor of tailed bacteriophages and herpesviruses is a powerful nanomachine built by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal vertex of an empty precursor capsid (or procapsid) to power genome encapsidation. Terminase subunits have been studied in-depth, especially in classical bacteriophages that infect Escherichia coli or Salmonella, yet, less is known about the packaging motor of Pseudomonas-phages that have increasing biomedical relevance. Here, we investigated the small terminase subunit from three Podoviridae phages that infect Pseudomonas aeruginosa. We found TerS is polymorphic in solution but assembles into a nonamer in its high-affinity heparin-binding conformation. The atomic structure of Pseudomonas phage PaP3 TerS, the first complete structure for a TerS from a cos phage, reveals nine helix-turn-helix (HTH) motifs asymmetrically arranged around a β-stranded channel, too narrow to accommodate DNA. PaP3 TerS binds DNA in a sequence-specific manner in vitro. X-ray scattering and molecular modeling suggest TerS adopts an open conformation in solution, characterized by dynamic HTHs that move around an oligomerization core, generating discrete binding crevices for DNA. We propose a model for sequence-specific recognition of packaging initiation sites by lateral interdigitation of DNA.
Collapse
Affiliation(s)
- Marzia Niazi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Tyler J Florio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nicholas A Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Hayes JA, Hilbert BJ, Gaubitz C, Stone NP, Kelch BA. A thermophilic phage uses a small terminase protein with a fixed helix-turn-helix geometry. J Biol Chem 2020; 295:3783-3793. [PMID: 32014998 DOI: 10.1074/jbc.ra119.012224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/30/2020] [Indexed: 11/06/2022] Open
Abstract
Tailed bacteriophages use a DNA-packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component of this DNA-packaging machinery acts as a molecular matchmaker that recognizes both the viral genome and the main motor component, the large terminase (TerL). However, how TerS binds DNA and the TerL protein remains unclear. Here we identified gp83 of the thermophilic bacteriophage P74-26 as the TerS protein. We found that TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. A cryo-EM structure of TerSP76-26 revealed that it forms a ring with a wide central pore and radially arrayed helix-turn-helix domains. The structure further showed that these helix-turn-helix domains, which are thought to bind DNA by wrapping the double helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA-binding domain imposed strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacked the conserved C-terminal β-barrel domain used by other TerS proteins for binding TerL. This suggests that a well-ordered C-terminal β-barrel domain is not required for TerSP76-26 to carry out its matchmaking function. Our work highlights a thermophilic system for studying the role of small terminase proteins in viral maturation and presents the structure of TerSP76-26, revealing key differences between this thermophilic phage and its mesophilic counterparts.
Collapse
Affiliation(s)
- Janelle A Hayes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Brendan J Hilbert
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Christl Gaubitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Nicholas P Stone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
11
|
Dixit AB, Ray K, Black LW. A viral small terminase subunit (TerS) twin ring pac synapsis DNA packaging model is supported by fluorescent fusion proteins. Virology 2019; 536:39-48. [PMID: 31400548 PMCID: PMC6760839 DOI: 10.1016/j.virol.2019.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/23/2022]
Abstract
A bacteriophage T4 DNA "synapsis model" proposes that the bacteriophage T4 terminase small subunit (TerS) apposes two pac site containing dsDNA homologs to gauge concatemer maturation adequate for packaging initiation. N-terminus, C-terminus, or both ends modified fusion Ter S proteins retain function. Replacements of the TerS gene in the T4 genome with fusion genes encoding larger (18-45 kDa) TerS-eGFP and TerS-mCherry fluorescent fusion proteins function without significant change in phenotype. Co-infection and co-expression by T4 phages encoding TerS-eGFP and TerS-mCherry shows in vivo FRET in infected bacteria comparable to that of the purified, denatured and then renatured, mixed fusion proteins in vitro. FRET of purified, denatured-renatured, mixed temperature sensitive and native TerS fusion proteins at low and high temperature in vitro shows that TerS ring-like oligomer formation is essential for function in vivo. Super-resolution STORM and PALM microscopy of intercalating dye YOYO-1 DNA and photoactivatable TerS-PAmCherry-C1 fusions support accumulation of TerS dimeric or multiple ring-like oligomer structures containing DNA and gp16-mCherry in vivo as well as in vitro to regulate pac site cutting.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lindsay W Black
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Weiditch SA, Seraphim TV, Houry WA, Kanelis V. Strategies for purification of the bacteriophage HK97 small and large terminase subunits that yield pure and homogeneous samples that are functional. Protein Expr Purif 2019; 160:45-55. [DOI: 10.1016/j.pep.2019.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
|
13
|
Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy. Viruses 2018; 10:v10020067. [PMID: 29414851 PMCID: PMC5850374 DOI: 10.3390/v10020067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.
Collapse
|
14
|
Gao S, Zhang L, Rao VB. Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4. Nucleic Acids Res 2016; 44:4425-39. [PMID: 26984529 PMCID: PMC4872099 DOI: 10.1093/nar/gkw184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo. On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging.
Collapse
Affiliation(s)
- Song Gao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Liang Zhang
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA
| |
Collapse
|
15
|
Abstract
During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase’s small subunit (TerS). The large terminase subunit (TerL) contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead’s portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.
Collapse
|
16
|
Greive SJ, Fung HKH, Chechik M, Jenkins HT, Weitzel SE, Aguiar PM, Brentnall AS, Glousieau M, Gladyshev GV, Potts JR, Antson AA. DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif. Nucleic Acids Res 2015; 44:776-89. [PMID: 26673721 PMCID: PMC4737164 DOI: 10.1093/nar/gkv1467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 11/14/2022] Open
Abstract
The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses.
Collapse
Affiliation(s)
- Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Herman K H Fung
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK Department of Biology, University of York, York YO10 5DD, UK
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Stephen E Weitzel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Pedro M Aguiar
- Department of Chemistry, University of York, York YO10 5DD, UK
| | | | - Matthieu Glousieau
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Grigory V Gladyshev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russian Federation
| | | | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
17
|
Feiss M, Young Min J, Sultana S, Patel P, Sippy J. DNA Packaging Specificity of Bacteriophage N15 with an Excursion into the Genetics of a Cohesive End Mismatch. PLoS One 2015; 10:e0141934. [PMID: 26633301 PMCID: PMC4669245 DOI: 10.1371/journal.pone.0141934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/14/2015] [Indexed: 11/17/2022] Open
Abstract
During DNA replication by the λ-like bacteriophages, immature concatemeric DNA is produced by rolling circle replication. The concatemers are processed into mature chromosomes with cohesive ends, and packaged into prohead shells, during virion assembly. Cohesive ends are generated by the viral enzyme terminase, which introduces staggered nicks at cos, an approx. 200 bp-long sequence containing subsites cosQ, cosN and cosB. Interactions of cos subsites of immature concatemeric DNA with terminase orchestrate DNA processing and packaging. To initiate DNA packaging, terminase interacts with cosB and nicks cosN. The cohesive ends of N15 DNA differ from those of λ at 2/12 positions. Genetic experiments show that phages with chromosomes containing mismatched cohesive ends are functional. In at least some infections, the cohesive end mismatch persists through cyclization and replication, so that progeny phages of both allelic types are produced in the infected cell. N15 possesses an asymmetric packaging specificity: N15 DNA is not packaged by phages λ or 21, but surprisingly, N15-specific terminase packages λ DNA. Implications for genetic interactions among λ-like bacteriophages are discussed.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Jea Young Min
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Sawsan Sultana
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Priyal Patel
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Jean Sippy
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| |
Collapse
|
18
|
Zhao H, Lin Z, Lynn AY, Varnado B, Beutler JA, Murelli RP, Le Grice SFJ, Tang L. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism. Nucleic Acids Res 2015; 43:11003-16. [PMID: 26450964 PMCID: PMC4678813 DOI: 10.1093/nar/gkv1018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 01/10/2023] Open
Abstract
Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Zihan Lin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Anna Y Lynn
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Brittany Varnado
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - John A Beutler
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
19
|
Abstract
Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead's portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL's N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage ϕ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064;
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|
20
|
McNulty R, Lokareddy RK, Roy A, Yang Y, Lander GC, Heck AJR, Johnson JE, Cingolani G. Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22. J Mol Biol 2015; 427:3285-3299. [PMID: 26301600 DOI: 10.1016/j.jmb.2015.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022]
Abstract
Packaging of viral genomes inside empty procapsids is driven by a powerful ATP-hydrolyzing motor, formed in many double-stranded DNA viruses by a complex of a small terminase (S-terminase) subunit and a large terminase (L-terminase) subunit, transiently docked at the portal vertex during genome packaging. Despite recent progress in elucidating the structure of individual terminase subunits and their domains, little is known about the architecture of an assembled terminase complex. Here, we describe a bacterial co-expression system that yields milligram quantities of the S-terminase:L-terminase complex of the Salmonella phage P22. In vivo assembled terminase complex was affinity-purified and stabilized by addition of non-hydrolyzable ATP, which binds specifically to the ATPase domain of L-terminase. Mapping studies revealed that the N-terminus of L-terminase ATPase domain (residues 1-58) contains a minimal S-terminase binding domain sufficient for stoichiometric association with residues 140-162 of S-terminase, the L-terminase binding domain. Hydrodynamic analysis by analytical ultracentrifugation sedimentation velocity and native mass spectrometry revealed that the purified terminase complex consists predominantly of one copy of the nonameric S-terminase bound to two equivalents of L-terminase (1S-terminase:2L-terminase). Direct visualization of this molecular assembly in negative-stained micrographs yielded a three-dimensional asymmetric reconstruction that resembles a "nutcracker" with two L-terminase protomers projecting from the C-termini of an S-terminase ring. This is the first direct visualization of a purified viral terminase complex analyzed in the absence of DNA and procapsid.
Collapse
Affiliation(s)
- Reginald McNulty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ravi Kumar Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA
| | - Ankoor Roy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA
| | - Yang Yang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
Feiss M, Geyer H, Klingberg F, Moreno N, Forystek A, Maluf NK, Sippy J. Novel DNA packaging recognition in the unusual bacteriophage N15. Virology 2015; 482:260-8. [PMID: 25956737 PMCID: PMC4461450 DOI: 10.1016/j.virol.2015.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ). A bioinformatic study of N15-like phages indicates that cosB(N15) also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-λ. The DNA binding domain of TerS-N15 is a dimer.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Henriette Geyer
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany; Division of Viral Infections, Robert Koch Institute, Berlin, Germany.
| | - Franco Klingberg
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany.
| | - Norma Moreno
- Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States.; Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States..
| | - Amanda Forystek
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Room # 2911 JPP, Dept. of Psychiatry, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa, 52242.
| | - Nasib Karl Maluf
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Alliance Protein Laboratories, Inc. 6042 Cornerstone Court West, Suite ASan Diego, CA 92121, USA..
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA phages. BACTERIOPHAGE 2014; 4:e28281. [PMID: 24616838 DOI: 10.4161/bact.28281] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
Abstract
The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| | - Michael G Rossmann
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| |
Collapse
|
23
|
Abstract
Bacteriophage T4 is the most well-studied member of Myoviridae, the most complex family of tailed phages. T4 assembly is divided into three independent pathways: the head, the tail and the long tail fibers. The prolate head encapsidates a 172 kbp concatemeric dsDNA genome. The 925 Å-long tail is surrounded by the contractile sheath and ends with a hexagonal baseplate. Six long tail fibers are attached to the baseplate's periphery and are the host cell's recognition sensors. The sheath and the baseplate undergo large conformational changes during infection. X-ray crystallography and cryo-electron microscopy have provided structural information on protein-protein and protein-nucleic acid interactions that regulate conformational changes during assembly and infection of Escherichia coli cells.
Collapse
Affiliation(s)
- Moh Lan Yap
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| |
Collapse
|
24
|
Daudén MI, Martín-Benito J, Sánchez-Ferrero JC, Pulido-Cid M, Valpuesta JM, Carrascosa JL. Large terminase conformational change induced by connector binding in bacteriophage T7. J Biol Chem 2013; 288:16998-17007. [PMID: 23632014 DOI: 10.1074/jbc.m112.448951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bacteriophage morphogenesis DNA is translocated into a preformed prohead by the complex formed by the portal protein, or connector, plus the terminase, which are located at an especial prohead vertex. The terminase is a powerful motor that converts ATP hydrolysis into mechanical movement of the DNA. Here, we have determined the structure of the T7 large terminase by electron microscopy. The five terminase subunits assemble in a toroid that encloses a channel wide enough to accommodate dsDNA. The structure of the complete connector-terminase complex is also reported, revealing the coupling between the terminase and the connector forming a continuous channel. The structure of the terminase assembled into the complex showed a different conformation when compared with the isolated terminase pentamer. To understand in molecular terms the terminase morphological change, we generated the terminase atomic model based on the crystallographic structure of its phage T4 counterpart. The docking of the threaded model in both terminase conformations showed that the transition between the two states can be achieved by rigid body subunit rotation in the pentameric assembly. The existence of two terminase conformations and its possible relation to the sequential DNA translocation may shed light into the molecular bases of the packaging mechanism of bacteriophage T7.
Collapse
Affiliation(s)
- María I Daudén
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | - Juan C Sánchez-Ferrero
- Computational Systems Biology Group, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Mar Pulido-Cid
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | | |
Collapse
|
25
|
Leavitt JC, Gilcrease EB, Wilson K, Casjens SR. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor. Virology 2013; 440:117-33. [PMID: 23562538 DOI: 10.1016/j.virol.2013.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Abstract
Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2kbp region. Our in vivo studies show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful.
Collapse
Affiliation(s)
- Justin C Leavitt
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|