1
|
Chen YK, Gahtani RM, Al Shahrani M, Hani U, Alshabrmi FM, Alam S, Almohaimeed HM, Basabrain AA, Shahab M, Xie MZ. Identification of potential inhibitors targeting Ebola virus VP35 protein: a computational strategy. J Biomol Struct Dyn 2025; 43:2877-2889. [PMID: 38124513 DOI: 10.1080/07391102.2023.2294384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Ebola virus (EBOV) poses a severe threat as a highly infectious pathogen, causing devastating hemorrhagic fever in both humans and animals. The EBOV virus VP35 protein plays a crucial role in viral replication and exhibits the ability to suppress the host interferon cascade, leading to immune system depletion. As a potential drug target, VP35 protein inhibition holds promise for combating EBOV. To discover new drug candidates, we employed a computer-aided drug design approach, focusing on compounds capable of inhibiting VP35 protein replication. In this connection, a pharmacophore model was generated using molecular interactions between the VP35 protein and its inhibitor. ZINC and Cambridge database were screened using validated pharmacophore model. Further the compounds were filtered based on Lipinski's rule of five and subjected to MD simulation and relative binding free energy calculation. Six compounds manifest a significant docking score and strong binding interaction towards VP35 protein. MD simulations further confirmed the remarkable stability of these six complexes. Relative binding free energy calculations also showed significant ΔG value in the range of -132.3 and -49.3 kcal/mol. This study paves the way for further optimization of these compounds as potential inhibitors of VP35, facilitating subsequent experimental in vitro studies.
Collapse
Affiliation(s)
- Yan-Kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Zhuhai, China
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha,Saudia Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Sarfaraz Alam
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Meng-Zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Khan A, Sayaf AM, Mohammad A, Alshabrmi FM, Benameur T, Wei DQ, Yeoh KK, Agouni A. Discovery of anti-Ebola virus multi-target inhibitors from traditional Chinese medicine database using molecular screening, biophysical investigation, and binding free energy calculations. J Infect Public Health 2025; 18:102636. [PMID: 39798213 DOI: 10.1016/j.jiph.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
INTRODUCTION Ebola virus (EBOV) is a highly lethal RNA virus that causes severe hemorrhagic fever in humans and non-human primates. The lack of effective treatment or vaccine for this pathogen poses a serious threat to a global pandemic. Therefore, it is imperative to explore new drugs and therapies to combat this life-threatening infection. MATERIALS AND METHODS In this study, we employed in silico methods to assess the inhibitory activity of natural products from traditional Chinese medicine (TCM) against four EBOV proteins that are crucial for viral replication and assembly: VP40, VP35, VP30, and VP24. We performed molecular docking of TCM compounds with the EBOV proteins and screened them based on their docking scores, binding free energies, and pharmacokinetic properties. RESULTS Our results pinpointed eight TCM compounds (TCM1797, TCM2872, TCM250, TCM2837, TCM2644, TCM4697, TCM2322, and TCM277) that exhibited superior efficacy in inhibiting all the EBOV proteins compared to the controls. These compounds interacted with key residues of the EBOV proteins through various types of bonds, such as hydrogen bonds, salt bridges, and π-π interactions, forming stable complexes that could disrupt the function of the EBOV proteins. These compounds were found to possess known antiviral activity, acceptable pharmacokinetic properties, and human usage history, which make them promising candidates for anti-EBOV drug development. Moreover, the molecular simulation analysis confirmed the binding stability, structural compactness, and residue flexibility properties of these compounds. Furthermore, the binding free energy results revealed that VP30-TCM2644, VP30-TCM4697, VP35-TCM2837, VP24-TCM250, and VP24-TCM277 complexes exhibit significant binding free energy values compared to the control ligands. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) results revealed the trajectories' motion and conformational energy states. CONCLUSIONS Our findings provide valuable insights into the molecular mechanisms driving the efficacy of TCM drugs against EBOV and suggest novel approaches for the development of anti-EBOV therapies.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Division of Bioinformatics, Department of Biomedical Sciences, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | | | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahad M Alshabrmi
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Mallimadugula UL, Cruz MA, Vithani N, Zimmerman MI, Bowman GR. Opening and closing of a cryptic pocket in VP35 toggles it between two different RNA-binding modes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609218. [PMID: 39229186 PMCID: PMC11370563 DOI: 10.1101/2024.08.22.609218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cryptic pockets are of growing interest as potential drug targets, particularly to control protein-nucleic acid interactions that often occur via flat surfaces. However, it remains unclear whether cryptic pockets contribute to protein function or if they are merely happenstantial features that can easily be evolved away to achieve drug resistance. Here, we explore whether a cryptic pocket in the Interferon Inhibitory Domain (IID) of viral protein 35 (VP35) of Zaire ebolavirus aids its ability to bind double-stranded RNA (dsRNA). We use simulations and experiments to study the relationship between cryptic pocket opening and dsRNA binding of the IIDs of two other filoviruses, Reston and Marburg. These homologs have nearly identical structures but block different interferon pathways due to different affinities for blunt ends and backbone of the dsRNA. Simulations and thiol-labeling experiments demonstrate that the homologs have varying probabilities of pocket opening. Subsequent dsRNA-binding assays suggest that closed conformations preferentially bind dsRNA blunt ends while open conformations prefer binding the backbone. Point mutations that modulate pocket opening proteins further confirm this preference. These results demonstrate the open cryptic pocket has a function, suggesting cryptic pockets are under selective pressure and may be difficult to evolve away to achieve drug resistance.
Collapse
|
4
|
Hayat M, Gao T, Cao Y, Rafiq M, Zhuo L, Li YZ. Identification of Prospective Ebola Virus VP35 and VP40 Protein Inhibitors from Myxobacterial Natural Products. Biomolecules 2024; 14:660. [PMID: 38927063 PMCID: PMC11201620 DOI: 10.3390/biom14060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The Ebola virus (EBOV) is a lethal pathogen causing hemorrhagic fever syndrome which remains a global health challenge. In the EBOV, two multifunctional proteins, VP35 and VP40, have significant roles in replication, virion assembly, and budding from the cell and have been identified as druggable targets. In this study, we employed in silico methods comprising molecular docking, molecular dynamic simulations, and pharmacological properties to identify prospective drugs for inhibiting VP35 and VP40 proteins from the myxobacterial bioactive natural product repertoire. Cystobactamid 934-2, Cystobactamid 919-1, and Cittilin A bound firmly to VP35. Meanwhile, 2-Hydroxysorangiadenosine, Enhypyrazinone B, and Sorangiadenosine showed strong binding to the matrix protein VP40. Molecular dynamic simulations revealed that, among these compounds, Cystobactamid 919-1 and 2-Hydroxysorangiadenosine had stable interactions with their respective targets. Similarly, molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations indicated close-fitting receptor binding with VP35 or VP40. These two compounds also exhibited good pharmacological properties. In conclusion, we identified Cystobactamid 919-1 and 2-Hydroxysorangiadenosine as potential ligands for EBOV that target VP35 and VP40 proteins. These findings signify an essential step in vitro and in vivo to validate their potential for EBOV inhibition.
Collapse
Affiliation(s)
- Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (M.H.); (T.G.); (Y.C.); (Y.-Z.L.)
| | - Tian Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (M.H.); (T.G.); (Y.C.); (Y.-Z.L.)
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (M.H.); (T.G.); (Y.C.); (Y.-Z.L.)
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (M.H.); (T.G.); (Y.C.); (Y.-Z.L.)
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (M.H.); (T.G.); (Y.C.); (Y.-Z.L.)
| |
Collapse
|
5
|
Xie SZ, Yao K, Li B, Peng C, Yang XL, Shi ZL. Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses. Virol Sin 2024; 39:459-468. [PMID: 38782261 PMCID: PMC11279764 DOI: 10.1016/j.virs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Měnglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.
Collapse
Affiliation(s)
- Shi-Zhe Xie
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yao
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng Peng
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Zheng-Li Shi
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
6
|
Albiheyri R, Ahmad V, Khan MI, Alzahrani FA, Jamal QMS. Investigating the Antiviral Properties of Nyctanthes arbor-tristis Linn against the Ebola, SARS-CoV-2, Nipah, and Chikungunya Viruses: A Computational Simulation Study. Pharmaceuticals (Basel) 2024; 17:581. [PMID: 38794151 PMCID: PMC11124395 DOI: 10.3390/ph17050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the binding pattern of phytochemicals from Nyctanthes arbor-tristis Linn to Ebola virus VP35, SARS-CoV-2 protease, Nipah virus glycoprotein, and chikungunya virus. Results: Virtual screening and AutoDock analysis revealed that arborside-C, beta amyrin, and beta-sitosterol exhibited a substantial binding affinity for specific viral targets. The arborside-C and beta-sitosterol molecules were shown to have binding energies of -8.65 and -9.11 kcal/mol, respectively, when interacting with the major protease. Simultaneously, the medication remdesivir exhibited a control value of -6.18 kcal/mol. The measured affinity of phytochemicals for the other investigated targets was -7.52 for beta-amyrin against Ebola and -6.33 kcal/mol for nicotiflorin against Nipah virus targets. Additional molecular dynamics simulation (MDS) conducted on the molecules with significant antiviral potential, specifically the beta-amyrin-VP35 complex showing a stable RMSD pattern, yielded encouraging outcomes. Conclusions: Arborside-C, beta-sitosterol, beta-amyrin, and nicotiflorin could be established as excellent natural antiviral compounds derived from Nyctanthes arbor-tristis Linn. The virus-suppressing phytochemicals in this plant make it a compelling target for both in vitro and in vivo research in the future.
Collapse
Affiliation(s)
- Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia;
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Rodríguez-Salazar CA, van Tol S, Mailhot O, Gonzalez-Orozco M, Galdino GT, Warren AN, Teruel N, Behera P, Afreen KS, Zhang L, Juelich TL, Smith JK, Zylber MI, Freiberg AN, Najmanovich RJ, Giraldo MI, Rajsbaum R. Ebola virus VP35 interacts non-covalently with ubiquitin chains to promote viral replication. PLoS Biol 2024; 22:e3002544. [PMID: 38422166 PMCID: PMC10942258 DOI: 10.1371/journal.pbio.3002544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the cofactor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface, and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity. Treatment with the compounds reduced replication of infectious EBOV in cells and in vivo in a mouse model. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.
Collapse
Affiliation(s)
- Carlos A. Rodríguez-Salazar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Olivier Mailhot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gabriel T. Galdino
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Abbey N. Warren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - María Inés Zylber
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
8
|
Collados Rodríguez M, Maillard P, Journeaux A, Komarova AV, Najburg V, David RYS, Helynck O, Guo M, Zhong J, Baize S, Tangy F, Jacob Y, Munier-Lehmann H, Meurs EF. Novel Antiviral Molecules against Ebola Virus Infection. Int J Mol Sci 2023; 24:14791. [PMID: 37834238 PMCID: PMC10573436 DOI: 10.3390/ijms241914791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.
Collapse
Affiliation(s)
- Mila Collados Rodríguez
- School of Infection & Immunity (SII), College of Medical, Veterinary and Life Sciences (MVLS), Sir Michael Stoker Building, MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Alexandra Journeaux
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Anastassia V. Komarova
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France;
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Raul-Yusef Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Blizard Institute—Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Mingzhe Guo
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Sylvain Baize
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Yves Jacob
- Université Paris Cité, 75013 Paris, France;
- Unité Génétique Moléculaire des Virus à ARN, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Eliane F. Meurs
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| |
Collapse
|
9
|
Rodríguez-Salazar CA, van Tol S, Mailhot O, Galdino G, Teruel N, Zhang L, Warren AN, González-Orozco M, Freiberg AN, Najmanovich RJ, Giraldo MI, Rajsbaum R. Ebola Virus VP35 Interacts Non-Covalently with Ubiquitin Chains to Promote Viral Replication Creating New Therapeutic Opportunities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549057. [PMID: 37503276 PMCID: PMC10369991 DOI: 10.1101/2023.07.14.549057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the co-factor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity that correlated with reduced replication of infectious EBOV. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.
Collapse
Affiliation(s)
- Carlos A. Rodríguez-Salazar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia 630003, Colombia
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Olivier Mailhot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Gabriel Galdino
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Abbey N. Warren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey 07103
| | - María González-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - María I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey 07103
| |
Collapse
|
10
|
Inhibiting the transcription and replication of Ebola viruses by disrupting the nucleoprotein and VP30 protein interaction with small molecules. Acta Pharmacol Sin 2023:10.1038/s41401-023-01055-0. [PMID: 36759643 PMCID: PMC9909651 DOI: 10.1038/s41401-023-01055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Ebola virus (EBOV) causes hemorrhagic fever in humans with high morbidity and fatality. Although over 45 years have passed since the first EBOV outbreak, small molecule drugs are not yet available. Ebola viral protein VP30 is a unique RNA synthesis cofactor, and the VP30/NP interaction plays a critical role in initiating the transcription and propagation of EBOV. Here, we designed a high-throughput screening technique based on a competitive binding assay to bind VP30 between an NP-derived peptide and a chemical compound. By screening a library of 8004 compounds, we obtained two lead compounds, Embelin and Kobe2602. The binding of these compounds to the VP30-NP interface was validated by dose-dependent competitive binding assay, surface plasmon resonance, and thermal shift assay. Moreover, the compounds were confirmed to inhibit the transcription and replication of the Ebola genome by a minigenome assay. Similar results were obtained for their two respective analogs (8-gingerol and Kobe0065). Interestingly, these two structurally different molecules exhibit synergistic binding to the VP30/NP interface. The antiviral efficacy (EC50) increased from 1 μM by Kobe0065 alone to 351 nM when Kobe0065 and Embelin were combined in a 4:1 ratio. The synergistic anti-EBOV effect provides a strong incentive for further developing these lead compounds in future studies.
Collapse
|
11
|
Cruz MA, Frederick TE, Mallimadugula UL, Singh S, Vithani N, Zimmerman MI, Porter JR, Moeder KE, Amarasinghe GK, Bowman GR. A cryptic pocket in Ebola VP35 allosterically controls RNA binding. Nat Commun 2022; 13:2269. [PMID: 35477718 PMCID: PMC9046395 DOI: 10.1038/s41467-022-29927-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Protein-protein and protein-nucleic acid interactions are often considered difficult drug targets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could present opportunities for targeting these interactions, but identifying and exploiting these pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays multiple essential roles in Ebola's replication cycle but lacks pockets that present obvious utility for drug design. Using adaptive sampling simulations and machine learning algorithms, we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating the predicted allosteric network supports our model of allostery. Finally, covalent modifications that mimic drug binding allosterically disrupt dsRNA binding that is essential for immune evasion. Based on these results, we expect this pipeline will be applicable to other proteins.
Collapse
Affiliation(s)
- Matthew A Cruz
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Upasana L Mallimadugula
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sukrit Singh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Neha Vithani
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Justin R Porter
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Katelyn E Moeder
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Joksimović N, Petronijević J, Milović E, Janković N, Kosanić M, Petrović N. Antioxidant and Antimicrobial Potential, BSA and DNA Binding Properties of Some 3-Hydroxy-3-Pyrrolin-2-Ones Bearing Thenoyl Fragment. Med Chem 2022; 18:784-790. [DOI: 10.2174/1573406418666220304230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Background:
It is known that pyrrolidinone derivates belong to a class of biologically active compounds with broad spectrum of biological actions. Nowadays, many scientists are making effort in the discovery of the more effective way to eliminate reactive oxygen species (ROS) which cause oxidative stress or to eliminate the harmful microorganisms from the organism in humans. Therefore, pyrrolidinones seem to be great candidates for the investigations this field.
Methods:
The antimicrobial activity of tested compounds was estimated by the determination of the minimal inhibitory concentration by the broth micro-dilution method against four species of bacteria and five species of fungi. The antioxidant activity was evaluated by free radical scavenging and reducing power.
Results:
Among the tested compounds, P22 showed marked antibacterial activity on Staphylococcus aureus with a MIC value of 0.312 mg/mL. Maximum antifungal activity with MIC value 0.625 mg/mL was shown by P23 and P25 compounds against Trichophyton mentagrophytes. Tested samples showed a relatively strong scavenging activity on DPPH radical (IC50 ranged from 166.75-727.17 µg/mL). The strongest DPPH radical scavenging activity was shown by the P3 compound with an IC50 value of 166.75 µg/mL. Moreover, the tested compounds had effective reducing power. Compounds P3, P10, and P13 showed the highest reducing power than those from the other samples. Results of the interactions between DNA or BSA and P3 indicated that P3 had the affinity to displace EB from the EB-DNA complex through intercalation [Ksv = (1.4 ± 0.1) × 105 M-1], while Ka values obtained via titration of BSA with P23 or P25 [Ka = (6.2 ± 0.2) and (5.0 ± 0.2) × 105 M-1] indicate that the notable quantity of the drug can be transmitted to the cells.
Conclusion:
Achieved results indicate that our compounds are potential candidates for use as medicaments.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Emilija Milović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marijana Kosanić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Petrović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
13
|
Bhowmik R, Manaithiya A, Vyas B, Nath R, Rehman S, Roy S, Roy R. Identification of potential inhibitor against Ebola virus VP35: insight into virtual screening, pharmacoinformatics profiling, and molecular dynamic studies. Struct Chem 2022. [DOI: 10.1007/s11224-022-01899-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Corona A, Fanunza E, Salata C, Morwitzer MJ, Distinto S, Zinzula L, Sanna C, Frau A, Daino GL, Quartu M, Taglialatela-Scafati O, Rigano D, Reid S, Mirazimi A, Tramontano E. Cynarin blocks Ebola virus replication by counteracting VP35 inhibition of interferon-beta production. Antiviral Res 2022; 198:105251. [DOI: 10.1016/j.antiviral.2022.105251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
|
15
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Computational Study on Potential Novel Anti-Ebola Virus Protein VP35 Natural Compounds. Biomedicines 2021; 9:biomedicines9121796. [PMID: 34944612 PMCID: PMC8698941 DOI: 10.3390/biomedicines9121796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus (EBOV) is one of the most lethal pathogens that can infect humans. The Ebola viral protein VP35 (EBOV VP35) inhibits host IFN-α/β production by interfering with host immune responses to viral invasion and is thus considered as a plausible drug target. The aim of this study was to identify potential novel lead compounds against EBOV VP35 using computational techniques in drug discovery. The 3D structure of the EBOV VP35 with PDB ID: 3FKE was used for molecular docking studies. An integrated library of 7675 African natural product was pre-filtered using ADMET risk, with a threshold of 7 and, as a result, 1470 ligands were obtained for the downstream molecular docking using AutoDock Vina, after an energy minimization of the protein via GROMACS. Five known inhibitors, namely, amodiaquine, chloroquine, gossypetin, taxifolin and EGCG were used as standard control compounds for this study. The area under the curve (AUC) value, evaluating the docking protocol obtained from the receiver operating characteristic (ROC) curve, generated was 0.72, which was considered to be acceptable. The four identified potential lead compounds of NANPDB4048, NANPDB2412, ZINC000095486250 and NANPDB2476 had binding affinities of −8.2, −8.2, −8.1 and −8.0 kcal/mol, respectively, and were predicted to possess desirable antiviral activity including the inhibition of RNA synthesis and membrane permeability, with the probable activity (Pa) being greater than the probable inactivity (Pi) values. The predicted anti-EBOV inhibition efficiency values (IC50), found using a random forest classifier, ranged from 3.35 to 11.99 μM, while the Ki values ranged from 0.97 to 1.37 μM. The compounds NANPDB4048 and NANPDB2412 had the lowest binding energy of −8.2 kcal/mol, implying a higher binding affinity to EBOV VP35 which was greater than those of the known inhibitors. The compounds were predicted to possess a low toxicity risk and to possess reasonably good pharmacological profiles. Molecular dynamics (MD) simulations of the protein–ligand complexes, lasting 50 ns, and molecular mechanisms Poisson-Boltzmann surface area (MM-PBSA) calculations corroborated the binding affinities of the identified compounds and identified novel critical interacting residues. The antiviral potential of the molecules could be confirmed experimentally, while the scaffolds could be optimized for the design of future novel anti-EBOV chemotherapeutics.
Collapse
|
17
|
Functional Importance of Hydrophobic Patches on the Ebola Virus VP35 IFN-Inhibitory Domain. Viruses 2021; 13:v13112316. [PMID: 34835122 PMCID: PMC8618116 DOI: 10.3390/v13112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
Viral protein 35 (VP35) of Ebola virus (EBOV) is a multifunctional protein that mainly acts as a viral polymerase cofactor and an interferon antagonist. VP35 interacts with the viral nucleoprotein (NP) and double-stranded RNA for viral RNA transcription/replication and inhibition of type I interferon (IFN) production, respectively. The C-terminal portion of VP35, which is termed the IFN-inhibitory domain (IID), is important for both functions. To further identify critical regions in this domain, we analyzed the physical properties of the surface of VP35 IID, focusing on hydrophobic patches, which are expected to be functional sites that are involved in interactions with other molecules. Based on the known structural information of VP35 IID, three hydrophobic patches were identified on its surface and their biological importance was investigated using minigenome and IFN-β promoter-reporter assays. Site-directed mutagenesis revealed that some of the amino acid substitutions that were predicted to disrupt the hydrophobicity of the patches significantly decreased the efficiency of viral genome replication/transcription due to reduced interaction with NP, suggesting that the hydrophobic patches might be critical for the formation of a replication complex through the interaction with NP. It was also found that the hydrophobic patches were involved in the IFN-inhibitory function of VP35. These results highlight the importance of hydrophobic patches on the surface of EBOV VP35 IID and also indicate that patch analysis is useful for the identification of amino acid residues that directly contribute to protein functions.
Collapse
|
18
|
Levine CB, Mire CE, Geisbert TW. Comparison of Zaire and Bundibugyo Ebolavirus Polymerase Complexes and Susceptibility to Antivirals through a Newly Developed Bundibugyo Minigenome System. J Virol 2021; 95:e0064321. [PMID: 34379503 PMCID: PMC8475504 DOI: 10.1128/jvi.00643-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Ebolavirus cause lethal disease in humans, with Zaire ebolavirus (EBOV) being the most pathogenic (up to 90% morality) and Bundibugyo ebolavirus (BDBV) the least pathogenic (∼37% mortality). Historically, there has been a lack of research on BDBV, and there is no means to study BDBV outside of a high-containment laboratory. Here, we describe a minigenome replication system to study BDBV transcription and compare the efficacy of small-molecule inhibitors between EBOV and BDBV. Using this system, we examined the ability of the polymerase complex proteins from EBOV and BDBV to interact and form a functional unit as well as the impact of the genomic untranslated ends, known to contain important signals for transcription (3'-untranslated region) and replication (5'-untranslated region). Various levels of compatibility were observed between proteins of the polymerase complex from each ebolavirus, resulting in differences in genome transcription efficiency. Most pronounced was the effect of the nucleoprotein and the 3'-untranslated region. These data suggest that there are intrinsic specificities in the polymerase complex and untranslated signaling regions that could offer insight regarding observed pathogenic differences. Further adding to the differences in the polymerase complexes, posttransfection/infection treatment with the compound remdesivir (GS-5734) showed a greater inhibitory effect against BDBV than EBOV. The delayed growth kinetics of BDBV and the greater susceptibility to polymerase inhibitors indicate that disruption of the polymerase complex is a viable target for therapeutics. IMPORTANCE Ebolavirus disease is a viral infection and is fatal in 25 to 90% of cases, depending on the viral species and the amount of supportive care available. Two species have caused outbreaks in the Democratic Republic of the Congo, Zaire ebolavirus (EBOV) and Bundibugyo ebolavirus (BDBV). Pathogenesis and clinical outcome differ between these two species, but there is still limited information regarding the viral mechanism for these differences. Previous studies suggested that BDBV replicates slower than EBOV, but it is unknown if this is due to differences in the polymerase complex and its role in transcription and replication. This study details the construction of a minigenome replication system that can be used in a biosafety level 2 laboratory. This system will be important for studying the polymerase complex of BDBV and comparing it with other filoviruses and can be used as a tool for screening inhibitors of viral growth.
Collapse
Affiliation(s)
- Corri B. Levine
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad E. Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
19
|
Joksimović N, Petronijević J, Milović E, Janković N, Baskić D, Popović S, Todorović D, Matić S, Vraneš M, Tot A. Synthesis, characterization, antitumor potential, BSA and DNA binding properties, and molecular docking study of some novel 3-hydroxy-3-pyrrolin-2-ones. Med Chem 2021; 18:337-352. [PMID: 34344294 DOI: 10.2174/1573406417666210803094127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/05/2020] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In order to make progress in discovering the new agents for cancer treatment with improved properties and considering the fact that 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, we tested series of eleven novels 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones for their antitumor potential. METHODS All novel compounds were characterized by spectral (IR, NMR, MS) and elemental analysis. All novel 3-hydroxy-3-pyrrolin-2-ones were screened for their cytotoxic activity on two cancer cell lines, SW480 and MDA-MB 231, and non-transformed fibroblasts (MRC-5). RESULTS Compounds B8, B9, and B10 showed high cytotoxicity on SW480 cells together with good selectivity towards MRC-5 cells. It is important to empathize that the degree of selectivity of B8 and B10 was high (SI = 5.54 and 12.09, respectively). Besides, we explored the mechanisms of cytotoxicity of novel derivatives, B8, B9, and B10. The assay showed that tested derivatives induce an apoptotic type of cell death in SW480 cells, with a minor percent of necrotic cells. Additionally, to better understand the suitability of the compounds for potential use as anticancer medicaments, we studied their interactions with biomacromolecules (DNA or BSA). The results indicated that the tested compounds have a great affinity to displace EB from the EB-DNA complex through intercalation. Also, DNA and BSA molecular docking study was performed to predict the binding mode and the interaction region of the compounds. CONCLUSION Achieved results indicate that our compounds have the potential to become candidates for use as medicaments.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| | - Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| | - Emilija Milović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Dejan Baskić
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac. Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac. Serbia
| | - Danijela Todorović
- University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Svetozara Markovića 69, 34000 Kragujevac. Serbia
| | - Sanja Matić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac. Serbia
| | - Milan Vraneš
- University of Novi Sad, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad. Serbia
| | - Aleksandar Tot
- University of Novi Sad, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad. Serbia
| |
Collapse
|
20
|
Kumar N, Sarma H, Sastry GN. Repurposing of approved drug molecules for viral infectious diseases: a molecular modelling approach. J Biomol Struct Dyn 2021; 40:8056-8072. [PMID: 33810775 DOI: 10.1080/07391102.2021.1905558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification of new viral drugs has become a task of paramount significance due to the frequent occurrence of viral infections and especially during the current pandemic. Despite the recent advancements, the development of antiviral drugs has not made parallel progress. Reduction of time frame and cost of the drug development process is the major advantage of drug repurposing. Therefore, in this study, a drug repurposing strategy using molecular modelling techniques, i.e. biological activity prediction, virtual screening, and molecular dynamics simulation was employed to find promising repurposing candidates for viral infectious diseases. The biological activities of non-redundant (4171) drug molecules were predicted using PASS analysis, and 1401 drug molecules were selected which showed antiviral activities in the analysis. These drug molecules were subjected to virtual screening against the selected non-structural viral proteins. A series of filters, i.e. top 10 drug molecules based on binding affinity, mean value of binding affinity, visual inspection of protein-drug complexes, and number of H-bond between protein and drug molecules were used to narrow down the drug molecules. Molecular dynamics simulation analysis was carried out to validate the intrinsic atomic interactions and binding conformations of protein-drug complexes. The binding free energies of drug molecules were assessed by employing MMPBSA analysis. Finally, nine drug molecules were prioritized, as promising repurposing candidates with the potential to inhibit the selected non-structural viral proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nandan Kumar
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - G Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
22
|
Miyake T, Farley CM, Neubauer BE, Beddow TP, Hoenen T, Engel DA. Ebola Virus Inclusion Body Formation and RNA Synthesis Are Controlled by a Novel Domain of Nucleoprotein Interacting with VP35. J Virol 2020; 94:e02100-19. [PMID: 32493824 PMCID: PMC7394894 DOI: 10.1128/jvi.02100-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ebola virus (EBOV) inclusion bodies (IBs) are cytoplasmic sites of nucleocapsid formation and RNA replication, housing key steps in the virus life cycle that warrant further investigation. During infection, IBs display dynamic properties regarding their size and location. The contents of IBs also must transition prior to further viral maturation, assembly, and release, implying additional steps in IB function. Interestingly, the expression of the viral nucleoprotein (NP) alone is sufficient for the generation of IBs, indicating that it plays an important role in IB formation during infection. In addition to NP, other components of the nucleocapsid localize to IBs, including VP35, VP24, VP30, and the RNA polymerase L. We previously defined and solved the crystal structure of the C-terminal domain of NP (NP-Ct), but its role in virus replication remained unclear. Here, we show that NP-Ct is necessary for IB formation when NP is expressed alone. Interestingly, we find that NP-Ct is also required for the production of infectious virus-like particles (VLPs), and that defective VLPs with NP-Ct deletions are significantly reduced in viral RNA content. Furthermore, coexpression of the nucleocapsid component VP35 overcomes deletion of NP-Ct in triggering IB formation, demonstrating a functional interaction between the two proteins. Of all the EBOV proteins, only VP35 is able to overcome the defect in IB formation caused by the deletion of NP-Ct. This effect is mediated by a novel protein-protein interaction between VP35 and NP that controls both regulation of IB formation and RNA replication itself and that is mediated by a newly identified functional domain of NP, the central domain.IMPORTANCE Inclusion bodies (IBs) are cytoplasmic sites of RNA synthesis for a variety of negative-sense RNA viruses, including Ebola virus. In addition to housing important steps in the viral life cycle, IBs protect new viral RNA from innate immune attack and contain specific host proteins whose function is under study. A key viral factor in Ebola virus IB formation is the nucleoprotein, NP, which also is important in RNA encapsidation and synthesis. In this study, we have identified two domains of NP that control inclusion body formation. One of these, the central domain (CD), interacts with viral protein VP35 to control both inclusion body formation and RNA synthesis. The other is the NP C-terminal domain (NP-Ct), whose function has not previously been reported. These findings contribute to a model in which NP and its interactions with VP35 link the establishment of IBs to the synthesis of viral RNA.
Collapse
Affiliation(s)
- Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Charlotte M Farley
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Benjamin E Neubauer
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Beddow
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Daniel A Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Lane TR, Massey C, Comer JE, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S. Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection. PLoS Negl Trop Dis 2019; 13:e0007890. [PMID: 31751347 PMCID: PMC6894882 DOI: 10.1371/journal.pntd.0007890] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Recent outbreaks of the Ebola virus (EBOV) have focused attention on the dire need for antivirals to treat these patients. We identified pyronaridine tetraphosphate as a potential candidate as it is an approved drug in the European Union which is currently used in combination with artesunate as a treatment for malaria (EC50 between 420 nM—1.14 μM against EBOV in HeLa cells). Range-finding studies in mice directed us to a single 75 mg/kg i.p. dose 1 hr after infection which resulted in 100% survival and statistically significantly reduced viremia at study day 3 from a lethal challenge with mouse-adapted EBOV (maEBOV). Further, an EBOV window study suggested we could dose pyronaridine 2 or 24 hrs post-exposure to result in similar efficacy. Analysis of cytokine and chemokine panels suggests that pyronaridine may act as an immunomodulator during an EBOV infection. Our studies with pyronaridine clearly demonstrate potential utility for its repurposing as an antiviral against EBOV and merits further study in larger animal models with the added benefit of already being used as a treatment against malaria. To date there is no approved drug for Ebola Virus infection. Our approach has been to assess drugs that are already approved for other uses in various countries. Using computational models, we have previously identified three such drugs and demonstrated their activity against the Ebola virus in vitro. We now report on the in vitro absorption, metabolism, distribution, excretion and pharmacokinetic properties of one of these molecules, namely the antimalarial pyronaridine. We justify efficacy testing in the mouse model of ebola infection. We also demonstrate that a single dose of this drug is 100% effective against the virus. This study provides important preclinical evaluation of this already approved drug and justifies its selection for larger animal efficacy studies.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
| | - Christopher Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Joel S. Freundlich
- Departments of Pharmacology, Physiology, and Neuroscience & Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University–New Jersey Medical School, NJ, United States of America
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | | | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mirza MU, Vanmeert M, Ali A, Iman K, Froeyen M, Idrees M. Perspectives towards antiviral drug discovery against Ebola virus. J Med Virol 2019; 91:2029-2048. [PMID: 30431654 PMCID: PMC7166701 DOI: 10.1002/jmv.25357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Ebola virus disease (EVD), caused by Ebola viruses, resulted in more than 11 500 deaths according to a recent 2018 WHO report. With mortality rates up to 90%, it is nowadays one of the most deadly infectious diseases. However, no Food and Drug Administration‐approved Ebola drugs or vaccines are available yet with the mainstay of therapy being supportive care. The high fatality rate and absence of effective treatment or vaccination make Ebola virus a category‐A biothreat pathogen. Fortunately, a series of investigational countermeasures have been developed to control and prevent this global threat. This review summarizes the recent therapeutic advances and ongoing research progress from research and development to clinical trials in the development of small‐molecule antiviral drugs, small‐interference RNA molecules, phosphorodiamidate morpholino oligomers, full‐length monoclonal antibodies, and vaccines. Moreover, difficulties are highlighted in the search for effective countermeasures against EVD with additional focus on the interplay between available in silico prediction methods and their evidenced potential in antiviral drug discovery.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Pakistan.,Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory (BIRL), Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Muhammad Idrees
- Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan.,Hazara University Mansehra, Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
25
|
Sulaiman KO, Kolapo TU, Onawole AT, Islam MA, Adegoke RO, Badmus SO. Molecular dynamics and combined docking studies for the identification of Zaire ebola virus inhibitors. J Biomol Struct Dyn 2018; 37:3029-3040. [PMID: 30058446 DOI: 10.1080/07391102.2018.1506362] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebola virus (EBOV) is a lethal human pathogen with a risk of global spread of its zoonotic infections, and Ebolavirus Zaire specifically has the highest fatality rate amongst other species. There is a need for continuous effort towards having therapies, as a single licensed treatment to neutralize the EBOV is yet to come into reality. This present study virtually screened the MCULE database containing almost 36 million compounds against the structure of a Zaire Ebola viral protein (VP) 35 and a consensus scoring of both MCULE and CLCDDW docking programs remarked five compounds as potential hits. These compounds, with binding energies ranging from -7.9 to -8.9 kcal/mol, were assessed for predictions of their physicochemical and bioactivity properties, as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The results of the 50 ns molecular dynamics simulations showed the presence of dynamic stability between ligand and protein complexes, and the structures remained significantly unchanged at the ligand-binding site throughout the simulation period. Both docking analysis and molecular dynamics simulation studies suggested strong binding affinity towards the receptor cavity and these selected compounds as potential inhibitors against the Zaire Ebola VP 35. With respect to inhibition constant values, bioavailability radar and other physicochemical properties, compound A (MCULE-1018045960-0-1) appeared to be the most promising hit compound. However, the ligand efficiency and ligand efficiency scale need improvement during optimization, and also validation via in vitro and in vivo studies are necessary to finally make a lead compound in treating Ebola virus diseases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kazeem O Sulaiman
- a Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| | - Temitope U Kolapo
- b Department of Veterinary Parasitology and Entomology , University of Ilorin , Ilorin , Nigeria.,c Department of Veterinary Microbiology , University of Saskatchewan , Saskatchewan , Canada
| | | | - Md Ataul Islam
- e Department of Chemical Pathology Faculty of Health Sciences , University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria , South Africa.,f School of Health Sciences , University of Kwazulu-Natal Westville Campus , Durban , South Africa
| | - Rukayat O Adegoke
- g Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Suaibu O Badmus
- g Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| |
Collapse
|
26
|
Basler CF, Krogan NJ, Leung DW, Amarasinghe GK. Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Res 2018; 162:90-100. [PMID: 30550800 DOI: 10.1016/j.antiviral.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 01/24/2023]
Abstract
Filoviruses, which include Ebola virus (EBOV) and Marburg virus, are negative-sense RNA viruses associated with sporadic outbreaks of severe viral hemorrhagic fever characterized by uncontrolled virus replication. The extreme virulence and emerging nature of these zoonotic pathogens make them a significant threat to human health. Replication of the filovirus genome and production of viral RNAs require the function of a complex of four viral proteins, the nucleoprotein (NP), viral protein 35 (VP35), viral protein 30 (VP30) and large protein (L). The latter performs the enzymatic activities required for production of viral RNAs and capping of viral mRNAs. Although it has been recognized that interactions between the virus-encoded components of the EBOV RNA polymerase complex are required for viral RNA synthesis reactions, specific molecular details have, until recently, been lacking. New efforts have combined structural biology and molecular virology to reveal in great detail the molecular basis for critical protein-protein interactions (PPIs) necessary for viral RNA synthesis. These efforts include recent studies that have identified a range of interacting host factors and in some instances demonstrated unique mechanisms by which they act. For a select number of these interactions, combined use of mutagenesis, over-expressing of peptides corresponding to PPI interfaces and identification of small molecules that disrupt PPIs have demonstrated the functional significance of virus-virus and virus-host PPIs and suggest several as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Cui Q, Cheng H, Xiong R, Zhang G, Du R, Anantpadma M, Davey RA, Rong L. Identification of Diaryl-Quinoline Compounds as Entry Inhibitors of Ebola Virus. Viruses 2018; 10:v10120678. [PMID: 30513600 PMCID: PMC6315506 DOI: 10.3390/v10120678] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally critical for the virus to attach and enter the host cells, and is a promising target for anti-Ebola virus drug development. In this study, using the recombinant HIV-1/Ebola pseudovirus platform we previously established, we evaluated a small molecule library containing various quinoline compounds for anti-Ebola virus entry inhibitors. Some of the quinoline compounds specifically inhibited the entry of the Ebola virus. Among them, compound SYL1712 was the most potent Ebola virus entry inhibitor with an IC50 of ~1 μM. The binding of SYL1712 to the vial glycoprotein was computationally modeled and was predicted to interact with specific residues of GP. We used the time of the addition assay to show that compound SYL1712 blocks Ebola GP-mediated entry. Finally, consistent with being an Ebola virus entry inhibitor, compound SYL1712 inhibited infectious Ebola virus replication in tissue culture under biosafety level 4 containment, with an IC50 of 2 μM. In conclusion, we identified several related molecules with a diaryl-quinoline scaffold as potential anti-EBOV entry inhibitors, which can be further optimized for anti-Ebola drug development.
Collapse
Affiliation(s)
- Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Rui Xiong
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Gang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
- Department of Microbiology, Boston University, National Emerging Infectious Diseases Laboratories, 401P, 620 Albany Street, Boston, MA 02118, USA.
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
- Department of Microbiology, Boston University, National Emerging Infectious Diseases Laboratories, 401P, 620 Albany Street, Boston, MA 02118, USA.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Daino GL, Frau A, Sanna C, Rigano D, Distinto S, Madau V, Esposito F, Fanunza E, Bianco G, Taglialatela-Scafati O, Zinzula L, Maccioni E, Corona A, Tramontano E. Identification of Myricetin as an Ebola Virus VP35-Double-Stranded RNA Interaction Inhibitor through a Novel Fluorescence-Based Assay. Biochemistry 2018; 57:6367-6378. [PMID: 30298725 DOI: 10.1021/acs.biochem.8b00892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ebola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.69). Taking advantage of such newly established methods, we screened a small library of Sardinian natural extracts, identifying Limonium morisianum as the most potent inhibitor extract. A bioguided fractionation led to the identification of myricetin as the component that can inhibit rVP35-dsRNA interaction with an IC50 value of 2.7 μM. Molecular docking studies showed that myricetin interacts with the highly conserved region of the VP35 RNA binding domain, laying the basis for further structural optimization of potent inhibitors of VP35-dsRNA interaction.
Collapse
Affiliation(s)
- Gian Luca Daino
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Cinzia Sanna
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples 80131 , Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Veronica Madau
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Elisa Fanunza
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Giulia Bianco
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples 80131 , Italy
| | - Luca Zinzula
- The Max-Planck Institute of Biochemistry , Department of Molecular Structural Biology , Martinsried 82152 , Germany
| | - Elias Maccioni
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Angela Corona
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy.,Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Monserrato 09042 , Italy
| |
Collapse
|
29
|
Rhyman L, Tursun M, Abdallah HH, Choong YS, Parlak C, Kharkar P, Ramasami P. Theoretical investigation of the derivatives of favipiravir (T-705) as potential drugs for Ebola virus. PHYSICAL SCIENCES REVIEWS 2018; 3. [DOI: 10.1515/psr-2017-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Density functional theory (DFT) method was used to compute the structural and vibrational parameters of favipiravir (T-705) in the gas phase. The functional used was B3LYP in conjuction with the 6–311++G(d,p) basis set. We also computed these parameters for unsubstituted T-705 and derivatives of T-705 by substituting fluorine by chlorine, bromine and the cyanide group. There is a good comparison between the computed and experimental parameters for T-705 and therefore, the predicted data should be reliable for the other compounds for which experimental data is not available. We extended our DFT study to include molecular docking involving the Ebola virus viral protein 35 (VP35). The docking results indicate that the T-705 and its chlorine and bromine analogues have comparable free energy of binding with VP35.
Graphical Abstract:
Collapse
|
30
|
Fanunza E, Frau A, Corona A, Tramontano E. Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018; 51:135-173. [PMID: 32287476 PMCID: PMC7112331 DOI: 10.1016/bs.armc.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
31
|
Insights into the homo-oligomerization properties of N-terminal coiled-coil domain of Ebola virus VP35 protein. Virus Res 2018; 247:61-70. [PMID: 29427597 DOI: 10.1016/j.virusres.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
The multifunctional Ebola virus (EBOV) VP35 protein is a key determinant of virulence. VP35 is essential for EBOV replication, is a component of the viral RNA polymerase and participates in nucleocapsid formation. Furthermore, VP35 contributes to EBOV evasion of the host innate immune response by suppressing RNA silencing and blocking RIG-I like receptors' pathways that lead to type I interferon (IFN) production. VP35 homo-oligomerization has been reported to be critical for its replicative function and to increase its IFN-antagonism properties. Moreover, homo-oligomerization is mediated by a predicted coiled-coil (CC) domain located within its N-terminal region. Here we report the homo-oligomerization profile of full-length recombinant EBOV VP35 (rVP35) assessed by size-exclusion chromatography and native polyacrylamide gel electrophoresis. Based on our biochemical results and in agreement with previous experimental observations, we have built an in silico 3D model of the so-far structurally unsolved EBOV VP35 CC domain and performed self-assembly homo-oligomerization simulations by means of molecular dynamics. Our model advances the understanding of how VP35 may associate in different homo-oligomeric species, a crucial process for EBOV replication and pathogenicity.
Collapse
|
32
|
Banerjee A, Pal A, Pal D, Mitra P. Ebolavirus interferon antagonists—protein interaction perspectives to combat pathogenesis. Brief Funct Genomics 2017; 17:392-401. [DOI: 10.1093/bfgp/elx034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Schuler J, Hudson ML, Schwartz D, Samudrala R. A Systematic Review of Computational Drug Discovery, Development, and Repurposing for Ebola Virus Disease Treatment. Molecules 2017; 22:E1777. [PMID: 29053626 PMCID: PMC6151658 DOI: 10.3390/molecules22101777] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022] Open
Abstract
Ebola virus disease (EVD) is a deadly global public health threat, with no currently approved treatments. Traditional drug discovery and development is too expensive and inefficient to react quickly to the threat. We review published research studies that utilize computational approaches to find or develop drugs that target the Ebola virus and synthesize its results. A variety of hypothesized and/or novel treatments are reported to have potential anti-Ebola activity. Approaches that utilize multi-targeting/polypharmacology have the most promise in treating EVD.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Diane Schwartz
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
34
|
Dilley KA, Voorhies AA, Luthra P, Puri V, Stockwell TB, Lorenzi H, Basler CF, Shabman RS. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing. PLoS One 2017. [PMID: 28636653 PMCID: PMC5479518 DOI: 10.1371/journal.pone.0178717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.
Collapse
Affiliation(s)
- Kari A. Dilley
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (RSS); (KAD)
| | - Alexander A. Voorhies
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Priya Luthra
- Center for Microbial Pathogenesis, Georgia State University, Atlanta, Georgia, United States of America
| | - Vinita Puri
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Timothy B. Stockwell
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Hernan Lorenzi
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Georgia State University, Atlanta, Georgia, United States of America
| | - Reed S. Shabman
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (RSS); (KAD)
| |
Collapse
|
35
|
Zhang YJ, Ding JN, Zhong H, Han JG. Exploration micromechanism of VP35 IID interaction and recognition dsRNA: A molecular dynamics simulation. Proteins 2017; 85:1008-1023. [PMID: 28205249 DOI: 10.1002/prot.25269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/22/2017] [Accepted: 02/05/2017] [Indexed: 01/25/2023]
Abstract
Multifunctional viral protein (VP35) encoded by the highly pathogenic Ebola viruses (EBOVs) can antagonize host double-stranded RNA (dsRNA) sensors and immune response because of the simultaneous recognition of dsRNA backbone and blunt ends. Mutation of select hydrophobic conserved basic residues within the VP35 inhibitory domain (IID) abrogates its dsRNA-binding activity, and impairs VP35-mediated interferon (IFN) antagonism. Herein the detailed binding mechanism between dsRNA and WT, single mutant, and double mutant were investigated by all-atom molecular dynamics (MD) simulation and binding energy calculation. R312A/R322A double mutations results in a completely different binding site and orientation upon the structure analyses. The calculated binding free energy results reveal that R312A, R322A, and K339A single mutations decrease the binding free energies by 17.82, 13.18, and 13.68 kcal mol-1 , respectively. The binding energy decomposition indicates that the strong binding affinity of the key residues is mainly due to the contributions of electrostatic interactions in the gas phase, where come from the positively charged side chain and the negatively charged dsRNA backbone. R312A, R322A, and K339A single mutations have no significant effect on VP35 IID conformation, but the mutations influence the contributions of electrostatic interactions in the gas phase. The calculated results reveal that end-cap residues which mainly contribute VDW interactions can recognize and capture dsRNA blunt ends, and the central basic residues (R312, R322, and K339) which mainly contribute favorable electrostatic interactions with dsRNA backbone can fix dsRNA binding site and orientation. Proteins 2017; 85:1008-1023. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan-Jun Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jing-Na Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Hui Zhong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Ju-Guang Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| |
Collapse
|
36
|
Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res 2017; 141:48-61. [PMID: 28192094 DOI: 10.1016/j.antiviral.2017.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Filoviruses are important pathogens that cause severe and often fatal hemorrhagic fever in humans, for which no approved vaccines and antiviral treatments are yet available. In an earlier article (Martin et al., Antiviral Research, 2016), we reviewed the role of the filovirus surface glycoprotein in replication and as a target for drugs and vaccines. In this review, we focus on recent findings on the filovirus replication machinery and how they could be used for the identification of new therapeutic targets and the development of new antiviral compounds. First, we summarize the recent structural and functional advances on the molecules involved in filovirus replication/transcription cycle, particularly the NP, VP30, VP35 proteins, and the "large" protein L, which harbors the RNA-dependent RNA polymerase (RdRp) and mRNA capping activities. These proteins are essential for viral mRNA synthesis and genome replication, and consequently they constitute attractive targets for drug design. We then describe how these insights into filovirus replication mechanisms and the structure/function characterization of the involved proteins have led to the development of new and innovative antiviral strategies that may help reduce the filovirus disease case fatality rate through post-exposure or prophylactic treatments.
Collapse
|
37
|
Zhang YJ, Ding JN, Zhong H, Sun CP, Han JG. Molecular dynamics exploration of the binding mechanism and properties of single-walled carbon nanotube to WT and mutant VP35 FBP region of Ebola virus. J Biol Phys 2017; 43:149-165. [PMID: 28110448 DOI: 10.1007/s10867-016-9440-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022] Open
Abstract
VP35 of Ebola viruses (EBOVs) is an attractive potential target because of its multifunction. All-atom molecular dynamics (MD) simulations and Molecular Mechanics Generalized Born surface area (MM/GBSA) energy calculations are performed to investigate the single-walled carbon nanotube (SWCNT) as an inhibitor in wild-type (WT) VP35 as well as in three primary mutants (K248A, I295A, and K248A/I295A) through docking the SWCNT in the first basic patch (FBP) of VP35. The SWCNTs of all the four systems effectively bind to the FBP. Interestingly, the sites and orientations of the SWCNT binding to the I295A mutant and K248A/I295A double mutants change significantly to accommodate the variation of the VP35 conformation. Moreover, the VDW can provide the major forces for affinity binding in all four systems.
Collapse
Affiliation(s)
- Yan-Jun Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China
| | - Jing-Na Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China
| | - Hui Zhong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China
| | - Chang-Ping Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.,Department of Physics, Linyi University, Shandong, 276000, People's Republic of China
| | - Ju-Guang Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.
| |
Collapse
|
38
|
Dapiaggi F, Pieraccini S, Potenza D, Vasile F, Macut H, Pellegrino S, Aliverti A, Sironi M. Computer aided design and NMR characterization of an oligopeptide targeting the Ebola virus VP24 protein. NEW J CHEM 2017. [DOI: 10.1039/c6nj04014d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nona-peptide RS, designed on the basis of computational studies, is able to interact with Ebola VP24 and potentially inhibit its interaction with KPNA.
Collapse
Affiliation(s)
| | - Stefano Pieraccini
- Dipartimento di Chimica
- Università degli Studi di Milano
- Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| | | | - Francesca Vasile
- Dipartimento di Chimica
- Università degli Studi di Milano
- Milano
- Italy
| | - Helena Macut
- DISFARM-Dipartimento di Scienze Farmaceutiche
- Sezione Chimica Generale e Organica “A. Marchesini”
- Milano
- Italy
| | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche
- Sezione Chimica Generale e Organica “A. Marchesini”
- Milano
- Italy
| | | | - Maurizio Sironi
- Dipartimento di Chimica
- Università degli Studi di Milano
- Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| |
Collapse
|
39
|
Ren JX, Zhang RT, Zhang H, Cao XS, Liu LK, Xie Y. Identification of novel VP35 inhibitors: Virtual screening driven new scaffolds. Biomed Pharmacother 2016; 84:199-207. [DOI: 10.1016/j.biopha.2016.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/24/2016] [Accepted: 09/11/2016] [Indexed: 11/28/2022] Open
|
40
|
Balmith M, Faya M, Soliman MES. Ebola virus: A gap in drug design and discovery - experimental and computational perspective. Chem Biol Drug Des 2016; 89:297-308. [PMID: 27637475 DOI: 10.1111/cbdd.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus.
Collapse
Affiliation(s)
- Marissa Balmith
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mbuso Faya
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
41
|
Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40. Int J Mol Sci 2016; 17:ijms17111748. [PMID: 27792169 PMCID: PMC5133775 DOI: 10.3390/ijms17111748] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.
Collapse
|
42
|
Glanzer JG, Byrne BM, McCoy AM, James BJ, Frank JD, Oakley GG. In silico and in vitro methods to identify ebola virus VP35-dsRNA inhibitors. Bioorg Med Chem 2016; 24:5388-5392. [PMID: 27642076 DOI: 10.1016/j.bmc.2016.08.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022]
Abstract
Ebola virus continues to be problematic as sporadic outbreaks in Africa continue to arise, and as terrorist organizations have considered the virus for bioterrorism use. Several proteins within the virus have been targeted for antiviral chemotherapy, including VP35, a dsRNA binding protein that promotes viral replication, protects dsRNA from degradation, and prevents detection of the viral genome by immune complexes. To augment the scope of our antiviral research, we have now employed molecular modeling techniques to enrich the population of compounds for further testing in vitro. In the initial docking of a static VP35 structure with an 80,000 compound library, 40 compounds were selected, of which four compounds inhibited VP35 with IC50 <200μM, with the best compounds having an IC50 of 20μM. By superimposing 26 VP35 structures, we determined four aspartic acid residues were highly flexible and the docking was repeated under flexible parameters. Of 14 compounds chosen for testing, five compounds inhibited VP35 with IC50 <200μM and one compound with an IC50 of 4μM. These studies demonstrate the value of docking in silico for enriching compounds for testing in vitro, and specifically using multiple structures as a guide for detecting flexibility and provide a foundation for further development of small molecule inhibitors directed towards VP35.
Collapse
Affiliation(s)
- Jason G Glanzer
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States
| | - Brendan M Byrne
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States
| | - Aaron M McCoy
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States
| | - Ben J James
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States
| | - Joshua D Frank
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States
| | - Greg G Oakley
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
43
|
Hodak H. Down to the Molecular Mechanisms of Host–Pathogen Interactions. J Mol Biol 2016; 428:3353-4. [DOI: 10.1016/j.jmb.2016.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Dapiaggi F, Pieraccini S, Sironi M. In silico study of VP35 inhibitors: from computational alanine scanning to essential dynamics. MOLECULAR BIOSYSTEMS 2016; 11:2152-7. [PMID: 26118819 DOI: 10.1039/c5mb00348b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years the Ebola virus has spread through several countries in Africa, highlighting the need to develop new treatments for this disease and boosting a new research effort on this subject. The Ebola virus Viral Protein 35 (VP35) carries out multiple functions necessary for virus replication and infection, in particular interfering with (IFN)-α/β signaling. Recently, VP35 has been crystallized in complex with small organic molecules able to inhibit its interaction with viral nucleoproteins, thus reducing Ebola infections of cultured cells. In this work, starting from these structures, we carry out a computational study aimed at investigating the energetic and dynamical aspects of the interaction between VP35 and its ligands at the atomic level. Molecular dynamics simulations, computational alanine scanning, root mean square fluctuations bootstrap analysis and essential dynamics analysis were performed. Our results expand the experimental ones obtained in previous works, adding information about the interactions landscape with the identification of a set of new hot-spots residues exerting a critical function in the protein-ligand interaction. Moreover we characterized the dynamics of the complexes, showing that the presence of ligands modifies the overall protein dynamics as well as the behavior of particular protein segments.
Collapse
Affiliation(s)
- F Dapiaggi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| | | | | |
Collapse
|
45
|
Setlur AS, Naik SY, Skariyachan S. Herbal Lead as Ideal Bioactive Compounds Against Probable Drug Targets of Ebola Virus in Comparison with Known Chemical Analogue: A Computational Drug Discovery Perspective. Interdiscip Sci 2016; 9:254-277. [DOI: 10.1007/s12539-016-0149-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
|
46
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2016; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA
- Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA
- Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
47
|
Kharkar PS, Ramasami P, Choong YS, Rhyman L, Warrier S. Discovery of anti-Ebola drugs: a computational drug repositioning case study. RSC Adv 2016; 6:26329-26340. [DOI: 10.1039/c6ra01704e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Computational drug repositioning has complemented and guided the experimental drug repositioning assignments in the recent past.
Collapse
Affiliation(s)
- Prashant S. Kharkar
- SPP School of Pharmacy and Technology Management
- SVKM's NMIMS
- Mumbai-400 056
- India
| | - Ponnadurai Ramasami
- Computational Chemistry Group
- Department of Chemistry
- Faculty of Science
- University of Mauritius
- Réduit 80837
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM)
- Universiti Sains Malaysia
- Malaysia
| | - Lydia Rhyman
- Computational Chemistry Group
- Department of Chemistry
- Faculty of Science
- University of Mauritius
- Réduit 80837
| | - Sona Warrier
- SPP School of Pharmacy and Technology Management
- SVKM's NMIMS
- Mumbai-400 056
- India
| |
Collapse
|
48
|
Zhang YJ, Ding JN, Feng TT, Han JG. Exploring interaction mechanisms of the inhibitor binding to the VP35 IID region of Ebola virus by all atom molecular dynamics simulation method. Proteins 2015; 83:2263-78. [DOI: 10.1002/prot.24945] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/26/2015] [Accepted: 10/11/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Yan-Jun Zhang
- National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei 230029 People's Republic of China
| | - Jing-Na Ding
- National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei 230029 People's Republic of China
- Anqing Medical College; b) 1588 Jixian North Rd Anqing 246052 People's Republic of China
| | - Ting-Ting Feng
- National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei 230029 People's Republic of China
| | - Ju-Guang Han
- National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei 230029 People's Republic of China
| |
Collapse
|
49
|
Dahlin JL, Nissink JWM, Francis S, Strasser JM, John K, Zhang Z, Walters MA. Post-HTS case report and structural alert: Promiscuous 4-aroyl-1,5-disubstituted-3-hydroxy-2H-pyrrol-2-one actives verified by ALARM NMR. Bioorg Med Chem Lett 2015; 25:4740-4752. [PMID: 26318992 PMCID: PMC6002837 DOI: 10.1016/j.bmcl.2015.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 12/19/2022]
Abstract
Despite its wide use, not every high-throughput screen (HTS) yields chemical matter suitable for drug development campaigns, and seldom are 'go/no-go' decisions in drug discovery described in detail. This case report describes the follow-up of a 4-aroyl-1,5-disubstituted-3-hydroxy-2H-pyrrol-2-one active from a cell-free HTS to identify small-molecule inhibitors of Rtt109-catalyzed histone acetylation. While this compound and structural analogs inhibited Rtt109-catalyzed histone acetylation in vitro, further work on this series was halted after several risk mitigation strategies were performed. Compounds with this chemotype had a poor structure-activity relationship, exhibited poor selectivity among other histone acetyltransferases, and tested positive in a β-lactamase counter-screen for chemical aggregates. Furthermore, ALARM NMR demonstrated compounds with this chemotype grossly perturbed the conformation of the La protein. In retrospect, this chemotype was flagged as a 'frequent hitter' in an analysis of a large corporate screening deck, yet similar compounds have been published as screening actives or chemical probes versus unrelated biological targets. This report-including the decision-making process behind the 'no-go' decision-should be informative for groups engaged in post-HTS triage and highlight the importance of considering physicochemical properties in early drug discovery.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Subhashree Francis
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Kristen John
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA.
| |
Collapse
|
50
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/23/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA.,Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA.,Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|