1
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 PMCID: PMC12015986 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
2
|
Hamel L, Comeau M, Tardif R, Poirier‐Gravel F, Paré M, Lavoie P, Goulet M, Michaud D, D'Aoust M. Heterologous expression of influenza haemagglutinin leads to early and transient activation of the unfolded protein response in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1146-1163. [PMID: 38038125 PMCID: PMC11022800 DOI: 10.1111/pbi.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress. After 6 days of expression, we recently reported that influenza haemagglutinin H5 induces accumulation of UPR proteins. Since up-regulation of corresponding UPR genes was not detected at this time, accumulation of UPR proteins was hypothesized to be independent of transcriptional induction, or associated with early but transient UPR gene up-regulation. Using time course sampling, we here show that H5 expression does result in early and transient activation of the UPR, as inferred from unconventional splicing of NbbZIP60 transcripts and induction of UPR genes with varied functions. Transient nature of H5-induced UPR suggests that this response was sufficient to cope with ER stress provoked by expression of the secreted protein, as opposed to an antibody that triggered stronger and more sustained UPR activation. As up-regulation of defence genes responding to H5 expression was detected after the peak of UPR activation and correlated with high increase in H5 protein accumulation, we hypothesize that these immune responses, rather than the UPR, were responsible for onset of the necrotic symptoms on H5-expressing leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marie‐Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Département de phytologieUniversité LavalQuébecQuebecCanada
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Département de phytologieUniversité LavalQuébecQuebecCanada
| | | |
Collapse
|
3
|
Alao JP, Obaseki I, Amankwah YS, Nguyen Q, Sugoor M, Unruh E, Popoola HO, Tehver R, Kravats AN. Insight into the Nucleotide Based Modulation of the Grp94 Molecular Chaperone Using Multiscale Dynamics. J Phys Chem B 2023; 127:5389-5409. [PMID: 37294929 PMCID: PMC10292203 DOI: 10.1021/acs.jpcb.3c00260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/17/2023] [Indexed: 06/11/2023]
Abstract
Grp94, an ER-localized molecular chaperone, is required for the folding and activation of many membrane and secretory proteins. Client activation by Grp94 is mediated by nucleotide and conformational changes. In this work, we aim to understand how microscopic changes from nucleotide hydrolysis can potentiate large-scale conformational changes of Grp94. We performed all-atom molecular dynamics simulations on the ATP-hydrolysis competent state of the Grp94 dimer in four different nucleotide bound states. We found that Grp94 was the most rigid when ATP was bound. ATP hydrolysis or nucleotide removal enhanced mobility of the N-terminal domain and ATP lid, resulting in suppression of interdomain communication. In an asymmetric conformation with one hydrolyzed nucleotide, we identified a more compact state, similar to experimental observations. We also identified a potential regulatory role of the flexible linker, as it formed electrostatic interactions with the Grp94 M-domain helix near the region where BiP is known to bind. These studies were complemented with normal-mode analysis of an elastic network model to investigate Grp94's large-scale conformational changes. SPM analysis identified residues that are important in signaling conformational change, many of which have known functional relevance in ATP coordination and catalysis, client binding, and BiP binding. Our findings suggest that ATP hydrolysis in Grp94 alters allosteric wiring and facilitates conformational changes.
Collapse
Affiliation(s)
- John Paul Alao
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Ikponwmosa Obaseki
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yaa Sarfowah Amankwah
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Quinn Nguyen
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Meghana Sugoor
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Erin Unruh
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | | | - Riina Tehver
- Department
of Physics, Denison University, Granville, Ohio 43023, United States
| | - Andrea N. Kravats
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
4
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
5
|
Rothan HA, Zhong Y, Sanborn MA, Teoh TC, Ruan J, Yusof R, Hang J, Henderson MJ, Fang S. Small molecule grp94 inhibitors block dengue and Zika virus replication. Antiviral Res 2019; 171:104590. [PMID: 31421166 DOI: 10.1016/j.antiviral.2019.104590] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Two major flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), cause severe health and economic burdens worldwide. Recently, genome-wide screenings have uncovered the importance of regulators of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway for flavivirus replication in host cells. Here we report the identification of the compound Bardoxolone methyl (CDDO-me) as a potent inhibitor of the Hrd1 ubiquitin ligase-mediated ERAD, which possesses a broad-spectrum activity against both DENV and ZIKV. Cellular thermal shift assay (CETSA) suggested that CDDO-me binds to grp94, a key component of the Hrd1 pathway, at a low nanomolar concentration, whereas interaction was not detected with its paralog Hsp90. CDDO-me and the grp94 inhibitor PU-WS13 substantially suppressed DENV2 replication and the cytopathic effects caused by DENV and ZIKV infection. The antiviral activities of both compounds were demonstrated for all four DENV serotypes and four ZIKV strains in multiple human cell lines. This study defines grp94 as a crucial host factor for flavivirus replication and identified CDDO-me as a potent small molecule inhibitor of flavivirus infection. Inhibition of grp94 may contribute to the antiviral activity of CDDO-me. Further investigation of grp94 inhibitors may lead to a new class of broad-spectrum anti-flaviviral medications.
Collapse
Affiliation(s)
- Hussin A Rothan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mark A Sanborn
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Teow Chong Teoh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Peng X, Emiliani F, Smallwood PM, Rattner A, Lei H, Sabbagh MF, Nathans J. Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions. eLife 2018; 7:40982. [PMID: 30345971 PMCID: PMC6197854 DOI: 10.7554/elife.40982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023] Open
Abstract
Defining protein-protein interactions (PPIs) is central to the biological sciences. Here, we present a novel platform - Affinity Capture of Polyribosomes followed by RNA sequencing (ACAPseq) - for identifying PPIs. ACAPseq harnesses the power of massively parallel RNA sequencing (RNAseq) to quantify the enrichment of polyribosomes based on the affinity of their associated nascent polypeptides for an immobilized protein 'bait'. This method was developed and tested using neonatal mouse brain polyribosomes and a variety of extracellular domains as baits. Of 92 baits tested, 25 identified one or more binding partners that appear to be biologically relevant; additional candidate partners remain to be validated. ACAPseq can detect binding to targets that are present at less than 1 part in 100,000 in the starting polyribosome preparation. One of the observed PPIs was analyzed in detail, revealing the mode of homophilic binding for Protocadherin-9 (PCDH9), a non-clustered Protocadherin family member.
Collapse
Affiliation(s)
- Xi Peng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Francesco Emiliani
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hong Lei
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Trusch F, Loebach L, Wawra S, Durward E, Wuensch A, Iberahim NA, de Bruijn I, MacKenzie K, Willems A, Toloczko A, Diéguez-Uribeondo J, Rasmussen T, Schrader T, Bayer P, Secombes CJ, van West P. Cell entry of a host-targeting protein of oomycetes requires gp96. Nat Commun 2018; 9:2347. [PMID: 29904064 PMCID: PMC6002402 DOI: 10.1038/s41467-018-04796-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2018] [Indexed: 12/02/2022] Open
Abstract
The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.
Collapse
Grants
- BB/E007120/1 Biotechnology and Biological Sciences Research Council
- BB/G012075/1 Biotechnology and Biological Sciences Research Council
- Biotechnology and Biological Sciences Research Council (BBSRC)
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Our work is supported by the [European Community's] Seventh Framework Programme [FP7/2007-2013] under grant agreement no [238550] (LL, JDU, CJS, PvW); BBSRC [BBE007120/1, BB/J018333/1 and BB/G012075/1] (FT, IdB, CJS, SW, PvW); Newton Global partnership Award [BB/N005058/1] (FT, PvW), the University of Aberdeen (ADT, TR, CJS, PvW) and Deutsche Forschungsgemeinschaft [CRC1093] (PB, TS). We would like to acknowledge the Ministry of Higher Education Malaysia for funding INA. We would like to thank Brian Haas for his bioinformatics support. We would like to acknowledge Neil Gow and Johannes van den Boom for critical reading of the manuscript. We would like to acknowledge Svetlana Rezinciuc for technical help with pH-studies.
Collapse
Affiliation(s)
- Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Lars Loebach
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Stephan Wawra
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Botanical Institute, Genetical Institute, University of Cologne, Cologne, 50674, Germany
| | - Elaine Durward
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Andreas Wuensch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Nurul Aqilah Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Irene de Bruijn
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Netherlands Institute for Ecology (NIOO), Wageningen, 6708 PB, Netherlands
| | - Kevin MacKenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Ariane Willems
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Aleksandra Toloczko
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Tim Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Thomas Schrader
- Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, 45117, Germany
| | - Chris J Secombes
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
8
|
Ward BK, Rea SL, Magno AL, Pedersen B, Brown SJ, Mullin S, Arulpragasam A, Ingley E, Conigrave AD, Ratajczak T. The endoplasmic reticulum-associated protein, OS-9, behaves as a lectin in targeting the immature calcium-sensing receptor. J Cell Physiol 2017; 233:38-56. [PMID: 28419469 DOI: 10.1002/jcp.25957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Abstract
The mechanisms responsible for the processing and quality control of the calcium-sensing receptor (CaSR) in the endoplasmic reticulum (ER) are largely unknown. In a yeast two-hybrid screen of the CaSR C-terminal tail (residues 865-1078), we identified osteosarcoma-9 (OS-9) protein as a binding partner. OS-9 is an ER-resident lectin that targets misfolded glycoproteins to the ER-associated degradation (ERAD) pathway through recognition of specific N-glycans by its mannose-6-phosphate receptor homology (MRH) domain. We show by confocal microscopy that the CaSR and OS-9 co-localize in the ER in COS-1 cells. In immunoprecipitation studies with co-expressed OS-9 and CaSR, OS-9 specifically bound the immature form of wild-type CaSR in the ER. OS-9 also bound the immature forms of a CaSR C-terminal deletion mutant and a C677A mutant that remains trapped in the ER, although binding to neither mutant was favored over wild-type receptor. OS-9 binding to immature CaSR required the MRH domain of OS-9 indicating that OS-9 acts as a lectin most likely to target misfolded CaSR to ERAD. Our results also identify two distinct binding interactions between OS-9 and the CaSR, one involving both C-terminal domains of the two proteins and the other involving both N-terminal domains. This suggests the possibility of more than one functional interaction between OS-9 and the CaSR. When we investigated the functional consequences of altered OS-9 expression, neither knockdown nor overexpression of OS-9 was found to have a significant effect on CaSR cell surface expression or CaSR-mediated ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sarah L Rea
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Aaron L Magno
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Bernadette Pedersen
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Shelby Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Ajanthy Arulpragasam
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Thomas Ratajczak
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Hu T, Xie N, Qin C, Wang J, You Y. Glucose-regulated protein 94 is a novel glioma biomarker and promotes the aggressiveness of glioma via Wnt/β-catenin signaling pathway. Tumour Biol 2015; 36:9357-64. [PMID: 26108996 DOI: 10.1007/s13277-015-3635-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022] Open
Abstract
Malignant glioma is the most common type of primary brain tumor and represents one of the most aggressive and lethal human cancer types. Glioma recurrence is a common event; however, the relevant molecular mechanisms in this setting are not well-understood. In this study, we investigated glucose-regulated protein 94 (GRP94) expressions in human glioma and aimed to determine the roles of GRP94 expression affects cell proliferation, invasion, and regulatory signaling in human glioma U87 cells. Our results showed that GRP94 was overexpressed at both mRNA and protein levels in high-grade glioblastoma as compared with normal brain tissues. High GRP94 levels also predict shorter overall survival of glioma patients. RNAi-mediated silencing of GRP94 suppressed cellular proliferation, colony formation ability in glioma cells. Depletion of GRP94 also inhibited cell migration and invasion ability in glioma cell. Furthermore, gene microarray analysis revealed that GRP94 depletion caused the dysregulation of critical pathway, Wnt/β-catenin signaling pathway. We next demonstrated GRP94 regulates Wnt/β-catenin signaling pathway to promote the proliferation of glioblastoma cells. Conclusion, our findings establish GRP94 as progression markers and druggable targets in glioblastoma, relating their oncogenic effects to activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Tieyi Hu
- Department of Neurology, Dazu District People's Hospital, Chongqing, 402360, China
| | - Niqi Xie
- Department of Clinical Laboratory, Dazu District People's Hospital, #1 affiliated #138 longgangxi Rd, longgang street Dazu District, Chongqing, 402360, China.
| | - Chuan Qin
- Department of Neurosurgery, Dazu District People's Hospital, Chongqing, 402360, China
| | - Jiasheng Wang
- Department of Intensive Care Unit, Dazu District People's Hospital, Chongqing, 402360, China
| | - Yi You
- Department of Prevention and Health Care, Dazu District People's Hospital, Chongqing, 402360, China
| |
Collapse
|
10
|
Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum. Molecules 2015; 20:2475-91. [PMID: 25647580 PMCID: PMC6272264 DOI: 10.3390/molecules20022475] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/04/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023] Open
Abstract
In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.
Collapse
|
11
|
Hsp90 interaction with clients. Trends Biochem Sci 2015; 40:117-25. [PMID: 25579468 DOI: 10.1016/j.tibs.2014.12.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/02/2023]
Abstract
The conserved Hsp90 chaperone is an ATP-controlled machine that assists the folding and controls the stability of select proteins. Emerging data explain how Hsp90 achieves client specificity and its role in the cellular chaperone cascade. Interestingly, Hsp90 has an extended substrate binding interface that crosses domain boundaries, exhibiting specificity for proteins with hydrophobic residues spread over a large area regardless of whether they are disordered, partly folded, or even folded. This specificity principle ensures that clients preferentially bind to Hsp70 early on in the folding path, but downstream folding intermediates bind Hsp90. Discussed here, the emerging model is that the Hsp90 ATPase does not modulate client affinity but instead controls substrate influx from Hsp70.
Collapse
|
12
|
The Hsp90 ensemble: coordinated Hsp90–cochaperone complexes regulate diverse cellular processes. Nat Struct Mol Biol 2014; 21:1017-21. [DOI: 10.1038/nsmb.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|