1
|
Durer ZA, İnce Hİ, Düvenci ZŞ, Timuçin E, Gräwert T, Orun O, Kan B, Sayers Z. Insights into the solution structure of the actin-binding tail domain of metavinculin by small angle X-ray scattering and molecular dynamics simulations. Int J Biol Macromol 2025:144376. [PMID: 40409637 DOI: 10.1016/j.ijbiomac.2025.144376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/07/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Vinculin is a ubiquitously expressed focal adhesion protein that plays an important role in cell-matrix and cell-to-cell junctions. Metavinculin, a muscle-specific splice variant of vinculin, contains a 68-amino acid disordered insert region in its actin binding tail domain (MVt). Mutations in this insert are linked to cardiomyopathies. This study investigates the solution structures and structural ensembles of wild-type (WT) and two mutant MVts, ΔLeu954 and R975W, which have been associated with cardiomyopathies, using small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. SAXS analyses revealed subtle differences in the estimated maximum dimensions and corroborated the elongated shape of the MVts. Quantitative comparisons of SAXS profiles indicated similarity between the WT and ΔLeu954, whereas R975W exhibited differences in the small-angle region. MD simulations demonstrated reduced conformational flexibility and greater packing of the insert in WT compared to mutants. Notably, a salt-bridge observed between R975 and D928 in a WT simulation provides a structural basis for the destabilization caused by the R975W mutation. These findings provide insights into the structure and dynamics of WT and mutant MVt, reflecting the promise of SAXS combined with MD simulations to elucidate the structural properties of proteins with structural disorder.
Collapse
Affiliation(s)
- Zeynep Aslıhan Durer
- School of Medicine, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Faculty of Pharmacy, Department of Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| | - Hande İpek İnce
- Institute of Health Sciences, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - Zeynep Şevval Düvenci
- Institute of Health Sciences, Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Emel Timuçin
- Institute of Health Sciences, Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; School of Medicine, Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Tobias Gräwert
- European Molecular Biology Laboratory - Hamburg Unit, Biological Small Angle Scattering Group, Hamburg, Germany
| | - Oya Orun
- Institute of Health Sciences, Department of Biophysics, Marmara University, Istanbul, Turkey; School of Medicine, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - Beki Kan
- School of Medicine, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Zehra Sayers
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, İstanbul, Turkey
| |
Collapse
|
2
|
Khan MAI, Chirasani VR, Sarker M, McCormick L, Campbell SL. Molecular basis for differential PIP2-mediated association between Vinculin and its splice isoform Metavinculin. J Biol Chem 2025:110232. [PMID: 40378952 DOI: 10.1016/j.jbc.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/28/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025] Open
Abstract
Vinculin (Vcn) and its splice variant metavinculin (MVcn) are cell adhesion proteins that regulate cell morphology, adhesion and motility. They function as scaffold proteins that anchor membrane receptors to filamentous actin (F-actin) at focal adhesions (FA) and cell-cell junctions. MVcn bears an extra 68 amino acid insert in the tail domain and is selectively expressed in cardiac and smooth muscle cells at sub-stoichiometric levels relative to Vcn. Mutations in the MVcn tail domain (MVt) promote cardiomyopathy, yet how these mutations alter ligand interactions to promote defects in force transduction and reduced blood flow is unclear. One difference between Vcn and MVcn lies in the ability to reorganize F-actin, with MVcn negatively regulating Vcn-mediated F-actin bundling. Vcn associates with phosphatidylinositol 4,5-bisphosphate (PIP2) through its tail domain (Vt) to drive recruitment, activation and FA turnover. However, it remains unclear whether MVcn specifically associates with PIP2-containing membranes and how such interactions might influence its functional interplay with Vcn in tissues where both isoforms coexist. To evaluate the interaction of MVt and MVt cardiomyopathy mutants with PIP2-membranes in comparison with Vt, we conducted mutagenesis, phospholipid-association assays and computational modeling. We found that MVt shows reduced association for PIP2-containing liposomes relative to Vt due to sequence differences within the insert region. Moreover, mutations in MVt that promote cardiomyopathies do not affect PIP2-dependent lipid association. These findings suggest that MVcn differs from Vcn in driving PIP2-mediated membrane association and sheds light on the coordinate role of Vcn and MVcn in membrane association as well as MVcn cardiomyopathy defects.
Collapse
Affiliation(s)
- Mohammad Ashhar I Khan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; R. L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muzaddid Sarker
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura McCormick
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Zorn P, Calvo Sánchez J, Alakhras T, Schreier B, Gekle M, Hüttelmaier S, Köhn M. Rbfox1 controls alternative splicing of focal adhesion genes in cardiac muscle cells. J Mol Cell Biol 2024; 16:mjae003. [PMID: 38253401 PMCID: PMC11216089 DOI: 10.1093/jmcb/mjae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Alternative splicing is one of the major cellular processes that determine the tissue-specific expression of protein variants. However, it remains challenging to identify physiologically relevant and tissue-selective proteins that are generated by alternative splicing. Hence, we investigated the target spectrum of the splicing factor Rbfox1 in the cardiac muscle context in more detail. By using a combination of in silico target prediction and in-cell validation, we identified several focal adhesion proteins as alternative splicing targets of Rbfox1. We focused on the alternative splicing patterns of vinculin (metavinculin isoform) and paxillin (extended paxillin isoform) and identified both as potential Rbfox1 targets. Minigene analyses suggested that both isoforms are promoted by Rbfox1 due to binding in the introns. Focal adhesions play an important role in the cardiac muscle context, since they mainly influence cell shape, cytoskeletal organization, and cell-matrix association. Our data confirmed that depletion of Rbfox1 changed cardiomyoblast morphology, cytoskeletal organization, and multinuclearity after differentiation, which might be due to changes in alternative splicing of focal adhesion proteins. Hence, our results indicate that Rbfox1 promotes alternative splicing of focal adhesion genes in cardiac muscle cells, which might contribute to heart disease progression, where downregulation of Rbfox1 is frequently observed.
Collapse
Affiliation(s)
- Peter Zorn
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Tala Alakhras
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Medical Faculty, University of Halle–Wittenberg, 06112 Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Medical Faculty, University of Halle–Wittenberg, 06112 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Köhn
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Rangarajan ES, Izard T. The Cryogenic Electron Microscopy Structure of the Cell Adhesion Regulator Metavinculin Reveals an Isoform-Specific Kinked Helix in Its Cytoskeleton Binding Domain. Int J Mol Sci 2021; 22:E645. [PMID: 33440717 PMCID: PMC7827843 DOI: 10.3390/ijms22020645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vinculin and its heart-specific splice variant metavinculin are key regulators of cell adhesion processes. These membrane-bound cytoskeletal proteins regulate the cell shape by binding to several other proteins at cell-cell and cell-matrix junctions. Vinculin and metavinculin link integrin adhesion molecules to the filamentous actin network. Loss of both proteins prevents cell adhesion and cell spreading and reduces the formation of stress fibers, focal adhesions, or lamellipodia extensions. The binding of talin at cell-matrix junctions or of α-catenin at cell-cell junctions activates vinculin and metavinculin by releasing their autoinhibitory head-tail interaction. Once activated, vinculin and metavinculin bind F-actin via their five-helix bundle tail domains. Unlike vinculin, metavinculin has a 68-amino-acid insertion before the second α-helix of this five-helix F-actin-binding domain. Here, we present the full-length cryogenic electron microscopy structure of metavinculin that captures the dynamics of its individual domains and unveiled a hallmark structural feature, namely a kinked isoform-specific α-helix in its F-actin-binding domain. Our identified conformational landscape of metavinculin suggests a structural priming mechanism that is consistent with the cell adhesion functions of metavinculin in response to mechanical and cellular cues. Our findings expand our understanding of metavinculin function in the heart with implications for the etiologies of cardiomyopathies.
Collapse
Affiliation(s)
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA;
| |
Collapse
|
5
|
Kanoldt V, Kluger C, Barz C, Schweizer AL, Ramanujam D, Windgasse L, Engelhardt S, Chrostek-Grashoff A, Grashoff C. Metavinculin modulates force transduction in cell adhesion sites. Nat Commun 2020; 11:6403. [PMID: 33335089 PMCID: PMC7747745 DOI: 10.1038/s41467-020-20125-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Vinculin is a ubiquitously expressed protein, crucial for the regulation of force transduction in cells. Muscle cells express a vinculin splice-isoform called metavinculin, which has been associated with cardiomyopathies. However, the molecular function of metavinculin has remained unclear and its role for heart muscle disorders undefined. Here, we have employed a set of piconewton-sensitive tension sensors to probe metavinculin mechanics in cells. Our experiments reveal that metavinculin bears higher molecular forces but is less frequently engaged as compared to vinculin, leading to altered force propagation in cell adhesions. In addition, we have generated knockout mice to investigate the consequences of metavinculin loss in vivo. Unexpectedly, these animals display an unaltered tissue response in a cardiac hypertrophy model. Together, the data reveal that the transduction of cell adhesion forces is modulated by expression of metavinculin, yet its role for heart muscle function seems more subtle than previously thought.
Collapse
Affiliation(s)
- Verena Kanoldt
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Carleen Kluger
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Christiane Barz
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Anna-Lena Schweizer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, 80802, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Lukas Windgasse
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, 80802, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Anna Chrostek-Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany.
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany.
| |
Collapse
|
6
|
Mei L, Espinosa de Los Reyes S, Reynolds MJ, Leicher R, Liu S, Alushin GM. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020; 9:62514. [PMID: 32969337 PMCID: PMC7588232 DOI: 10.7554/elife.62514] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton mediates mechanical coupling between cells and their tissue microenvironments. The architecture and composition of actin networks are modulated by force; however, it is unclear how interactions between actin filaments (F-actin) and associated proteins are mechanically regulated. Here we employ both optical trapping and biochemical reconstitution with myosin motor proteins to show single piconewton forces applied solely to F-actin enhance binding by the human version of the essential cell-cell adhesion protein αE-catenin but not its homolog vinculin. Cryo-electron microscopy structures of both proteins bound to F-actin reveal unique rearrangements that facilitate their flexible C-termini refolding to engage distinct interfaces. Truncating α-catenin’s C-terminus eliminates force-activated F-actin binding, and addition of this motif to vinculin confers force-activated binding, demonstrating that α-catenin’s C-terminus is a modular detector of F-actin tension. Our studies establish that piconewton force on F-actin can enhance partner binding, which we propose mechanically regulates cellular adhesion through α-catenin. All of the cells in our bodies rely on cues from their surrounding environment to alter their behavior. As well sending each other chemical signals, such as hormones, cells can also detect pressure and physical forces applied by the cells around them. These physical interactions are coordinated by a network of proteins called the cytoskeleton, which provide the internal scaffold that maintains a cell’s shape. However, it is not well understood how forces transmitted through the cytoskeleton are converted into mechanical signals that control cell behavior. The cytoskeleton is primarily made up protein filaments called actin, which are frequently under tension from external and internal forces that push and pull on the cell. Many proteins bind directly to actin, including adhesion proteins that allow the cell to ‘stick’ to its surroundings. One possibility is that when actin filaments feel tension, they convert this into a mechanical signal by altering how they bind to other proteins. To test this theory, Mei et al. isolated and studied an adhesion protein called α-catenin which is known to interact with actin. This revealed that when tiny forces – similar to the amount cells experience in the body – were applied to actin filaments, this caused α-catenin and actin to bind together more strongly. However, applying the same level of physical force did not alter how well actin bound to a similar adhesion protein called vinculin. Further experiments showed that this was due to differences in a small, flexible region found on both proteins. Manipulating this region revealed that it helps α-catenin attach to actin when a force is present, and was thus named a ‘force detector’. Proteins that bind to actin are essential in all animals, making it likely that force detectors are a common mechanism. Scientists can now use this discovery to identify and manipulate force detectors in other proteins across different cells and animals. This may help to develop drugs that target the mechanical signaling process, although this will require further understanding of how force detectors work at the molecular level.
Collapse
Affiliation(s)
- Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States
| | | | - Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| | - Rachel Leicher
- Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, United States.,Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, United States
| |
Collapse
|
7
|
Krokhotin A, Sarker M, Sevilla EA, Costantini LM, Griffith JD, Campbell SL, Dokholyan NV. Distinct Binding Modes of Vinculin Isoforms Underlie Their Functional Differences. Structure 2019; 27:1527-1536.e3. [PMID: 31422909 PMCID: PMC6774862 DOI: 10.1016/j.str.2019.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Vinculin and its splice isoform metavinculin play key roles in regulating cellular morphology, motility, and force transduction. Vinculin is distinct from metavinculin in its ability to bundle filamentous actin (F-actin). To elucidate the molecular basis for these differences, we employed computational and experimental approaches. Results from these analyses suggest that the C terminus of both vinculin and metavinculin form stable interactions with the F-actin surface. However, the metavinculin tail (MVt) domain contains a 68 amino acid insert, with helix 1 (H1) sequestered into a globular subdomain, which protrudes from the F-actin surface and prevents actin bundling by sterically occluding actin filaments. Consistent with our model, deletion and selective point mutations within the MVt H1 disrupt this protruding structure, and facilitate actin bundling similar to vinculin tail (Vt) domain.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Pathology, Genetics and Developmental Biology, Howard Hughes Medical Institute, Stanford Medical School, Palo Alto, CA 94305, USA
| | - Muzaddid Sarker
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ernesto Alva Sevilla
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey M Costantini
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jack D Griffith
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Pharmacology and Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
8
|
Lee HT, Sharek L, O’Brien ET, Urbina FL, Gupton SL, Superfine R, Burridge K, Campbell SL. Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. PLoS One 2019; 14:e0221962. [PMID: 31483833 PMCID: PMC6726196 DOI: 10.1371/journal.pone.0221962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
Vinculin (Vcn) is a ubiquitously expressed cytoskeletal protein that links transmembrane receptors to actin filaments, and plays a key role in regulating cell adhesion, motility, and force transmission. Metavinculin (MVcn) is a Vcn splice isoform that contains an additional exon encoding a 68-residue insert within the actin binding tail domain. MVcn is selectively expressed at sub-stoichiometic amounts relative to Vcn in smooth and cardiac muscle cells. Mutations in the MVcn insert are linked to various cardiomyopathies. In vitro analysis has previously shown that while both proteins can engage filamentous (F)-actin, only Vcn can promote F-actin bundling. Moreover, we and others have shown that MVcn can negatively regulate Vcn-mediated F-actin bundling in vitro. To investigate functional differences between MVcn and Vcn, we stably expressed either Vcn or MVcn in Vcn-null mouse embryonic fibroblasts. While both MVcn and Vcn were observed at FAs, MVcn-expressing cells had larger but fewer focal adhesions per cell compared to Vcn-expressing cells. MVcn-expressing cells migrated faster and exhibited greater persistence compared to Vcn-expressing cells, even though Vcn-containing FAs assembled and disassembled faster. Magnetic tweezer measurements on Vcn-expressing cells show a typical cell stiffening phenotype in response to externally applied force; however, this was absent in Vcn-null and MVcn-expressing cells. Our findings that MVcn expression leads to larger but fewer FAs per cell, in conjunction with the inability of MVcn to bundle F-actin in vitro and rescue the cell stiffening response, are consistent with our previous findings of actin bundling deficient Vcn variants, suggesting that deficient actin-bundling may account for some of the differences between Vcn and MVcn.
Collapse
Affiliation(s)
- Hyunna T. Lee
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lisa Sharek
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - E. Timothy O’Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fabio L. Urbina
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Keith Burridge
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sarker M, Lee HT, Mei L, Krokhotin A, de Los Reyes SE, Yen L, Costantini LM, Griffith J, Dokholyan NV, Alushin GM, Campbell SL. Cardiomyopathy Mutations in Metavinculin Disrupt Regulation of Vinculin-Induced F-Actin Assemblies. J Mol Biol 2019; 431:1604-1618. [PMID: 30844403 DOI: 10.1016/j.jmb.2019.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Debilitating heart conditions, notably dilated and hypertrophic cardiomyopathies (CMs), are associated with point mutations in metavinculin, a larger isoform of the essential cytoskeletal protein vinculin. Metavinculin is co-expressed with vinculin at sub-stoichiometric ratios in cardiac tissues. CM mutations in the metavinculin tail domain (MVt) occur within the extra 68-residue insert that differentiates it from the vinculin tail domain (Vt). Vt binds actin filaments (F-actin) and promotes vinculin dimerization to bundle F-actin into thick fibers. While MVt binds to F-actin in a similar manner to Vt, MVt is incapable of F-actin bundling and inhibits Vt-mediated F-actin bundling. We performed F-actin co-sedimentation and negative-stain EM experiments to dissect the coordinated roles of metavinculin and vinculin in actin fiber assembly and the effects of three known metavinculin CM mutations. These CM mutants were found to weakly induce the formation of disordered F-actin assemblies. Notably, they fail to inhibit Vt-mediated F-actin bundling and instead promote formation of large assemblies embedded with linear bundles. Computational models of MVt bound to F-actin suggest that MVt undergoes a conformational change licensing the formation of a protruding sub-domain incorporating the insert, which sterically prevents dimerization and bundling of F-actin by Vt. Sub-domain formation is destabilized by CM mutations, disrupting this inhibitory mechanism. These findings provide new mechanistic insights into the ability of metavinculin to tune actin organization by vinculin and suggest that dysregulation of this process by CM mutants could underlie their malfunction in disease.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hyunna T Lee
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Laura Yen
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10025, USA
| | - Lindsey M Costantini
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jack Griffith
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Ghosh S, Park J, Thomas M, Cruz E, Cardona O, Kang H, Jewett T. Biophysical characterization of actin bundles generated by the Chlamydia trachomatis Tarp effector. Biochem Biophys Res Commun 2018; 500:423-428. [PMID: 29660331 DOI: 10.1016/j.bbrc.2018.04.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis entry into host cells is mediated by pathogen-directed remodeling of the actin cytoskeleton. The chlamydial type III secreted effector, translocated actin recruiting phosphoprotein (Tarp), has been implicated in the recruitment of actin to the site of internalization. Tarp harbors G-actin binding and proline rich domains required for Tarp-mediated actin nucleation as well as unique F-actin binding domains implicated in the formation of actin bundles. Little is known about the mechanical properties of actin bundles generated by Tarp or the mechanism by which Tarp mediates actin bundle formation. In order to characterize the actin bundles and elucidate the role of different Tarp domains in the bundling process, purified Tarp effectors and Tarp truncation mutants were analyzed using Total Internal Reflection Fluorescence (TIRF) microscopy. Our data indicate that Tarp mediated actin bundling is independent of actin nucleation and the F-actin binding domains are sufficient to bundle actin filaments. Additionally, Tarp-mediated actin bundles demonstrate distinct bending stiffness compared to those crosslinked by the well characterized actin bundling proteins fascin and alpha-actinin, suggesting Tarp may employ a novel actin bundling strategy. The capacity of the Tarp effector to generate novel actin bundles likely contributes to chlamydia's efficient mechanism of entry into human cells.
Collapse
Affiliation(s)
- Susmita Ghosh
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States
| | - Jinho Park
- NanoScience Technology Center, University of Central Florida, United States; Depatrment of Materials Science and Engineering, University of Central Florida, United States
| | - Mitchell Thomas
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States
| | - Edgar Cruz
- NanoScience Technology Center, University of Central Florida, United States
| | - Omar Cardona
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States
| | - Hyeran Kang
- NanoScience Technology Center, University of Central Florida, United States; Department of Physics, University of Central Florida, United States
| | - Travis Jewett
- Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, United States.
| |
Collapse
|
11
|
Izard T, Brown DT. Mechanisms and Functions of Vinculin Interactions with Phospholipids at Cell Adhesion Sites. J Biol Chem 2016; 291:2548-55. [PMID: 26728462 DOI: 10.1074/jbc.r115.686493] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cytoskeletal protein vinculin is a major regulator of cell adhesion and attaches to the cell surface by binding to specific phospholipids. Structural, biochemical, and biological studies provided much insight into how vinculin binds to membranes, what components it recognizes, and how lipid binding is regulated. Here we discuss the roles and mechanisms of phospholipids in regulating the structure and function of vinculin and of its muscle-specific metavinculin splice variant. A full appreciation of these processes is necessary for understanding how vinculin regulates cell motility, migration, and wound healing, and for understanding of its role in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Tina Izard
- From the Cell Adhesion Laboratory, Department of Cancer Biology and Department of Immunology and Microbial Sciences, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - David T Brown
- the Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
12
|
Kim LY, Thompson PM, Lee HT, Pershad M, Campbell SL, Alushin GM. The Structural Basis of Actin Organization by Vinculin and Metavinculin. J Mol Biol 2015; 428:10-25. [PMID: 26493222 DOI: 10.1016/j.jmb.2015.09.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022]
Abstract
Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Å-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies.
Collapse
Affiliation(s)
- Laura Y Kim
- Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter M Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hyunna T Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mihir Pershad
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory M Alushin
- Laboratory of Macromolecular Interactions, Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Coronin Enhances Actin Filament Severing by Recruiting Cofilin to Filament Sides and Altering F-Actin Conformation. J Mol Biol 2015; 427:3137-47. [PMID: 26299936 DOI: 10.1016/j.jmb.2015.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022]
Abstract
High rates of actin filament turnover are essential for many biological processes and require the activities of multiple actin-binding proteins working in concert. The mechanistic role of the actin filament severing protein cofilin is now firmly established; however, the contributions of other conserved disassembly-promoting factors including coronin have remained more obscure. Here, we have investigated the mechanism by which yeast coronin (Crn1) enhances F-actin turnover. Using multi-color total internal reflection fluorescence microscopy, we show that Crn1 enhances Cof1-mediated severing by accelerating Cof1 binding to actin filament sides. Further, using biochemical assays to interrogate F-actin conformation, we show that Crn1 alters longitudinal and lateral actin-actin contacts and restricts opening of the nucleotide-binding cleft in actin subunits. Moreover, Crn1 and Cof1 show opposite structural effects on F-actin yet synergize in promoting release of phalloidin from filaments, suggesting that Crn1/Cof1 co-decoration may increase local discontinuities in filament topology to enhance severing.
Collapse
|