1
|
Golan N, Parizat A, Tabachnikov O, Barnea E, Olsen WP, Otzen DE, Landau M. Resilience and charge-dependent fibrillation of functional amyloid: Interactions of Pseudomonas biofilm-associated FapB and FapC amyloids. J Biol Chem 2025; 301:108096. [PMID: 39706277 PMCID: PMC11787515 DOI: 10.1016/j.jbc.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
FapC and FapB are biofilm-associated amyloids involved in the virulence of Pseudomonas and other bacteria. We herein demonstrate their exceptional thermal and chemical resilience, suggesting that their biofilm structures might withstand standard sterilization, thereby contributing to the persistence of Pseudomonas aeruginosa infections. Our findings also underscore the impact of environmental factors on functional amyloid in Pseudomonas (Fap) proteins, suggesting that orthologs in different Pseudomonas strains adapt to specific environments and roles. Challenging previous assumptions about a simple nucleation role for FapB in promoting FapC aggregation, the study shows a significant influence of FapC on FapB aggregation. The interaction between these FapB and FapC is intricate: FapB stabilizes FapC fibrils, while FapC slows down FapB fibrillation but can still serve as a cross-seeding template. This complex interplay is the key to understanding their roles in bacterial biofilms. Furthermore, the study highlights distinct differences between Fap and Escherichia coli's CsgA (curli) amyloid, where CsgB assumes a simple unidirectional role in nucleating CsgA fibrillation, emphasizing the importance of a comprehensive understanding of various amyloid systems. This knowledge is vital for developing effective intervention strategies against bacterial infections and leveraging the unique properties of these amyloids in technological applications such as novel bionanomaterials or protective coatings.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amit Parizat
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Orly Tabachnikov
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - William P Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany; European Molecular Biology Laboratory (EMBL), Hamburg, Germany.
| |
Collapse
|
2
|
Quiñones-Vico MI, Andrades-Amate M, Fernández-González A, Ubago-Rodríguez A, Moll K, Norrby-Teglund A, Svensson M, Gutiérrez-Fernández J, Arias-Santiago S. Antibiotic biocompatibility assay and anti-biofilm strategies for Pseudomonas aeruginosa infection in bioengineered artificial skin substitutes. J Antimicrob Chemother 2024; 79:3313-3322. [PMID: 39412231 DOI: 10.1093/jac/dkae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
OBJECTIVES Bioengineered artificial skin substitutes (BASS) are an advanced therapy for treating extensively burned patients. Pseudomonas aeruginosa (P. aeruginosa) infections represent a major challenge in these patients as formation of biofilms impede wound healing and perpetuate a chronic inflammatory state. Here we assessed antibiotics (alone or in combination) with respect to cytotoxicity, as well as antimicrobial efficacy in P. aeruginosa biofilm formed on infection of BASS. METHODS Cell viability, structure and functionality were evaluated using microscopy and trans-epidermal water loss analyses, respectively. BASS were established and infected for 24 h to allow P. aeruginosa biofilm formation, after which two antimicrobial approaches, treatment and prevention, were tested. In the latter, antibiotics were added to BASS before infection. The antimicrobial effect was determined using real-time calorimetry. RESULTS In dose-response experiments, 1.25 mg/mL amikacin, 0.02 mg/mL ciprofloxacin, 0.051 mg/mL colistin, 1 mg/mL meropenem and colistin in combination with either amikacin, ciprofloxacin and meropenem did not affect BASS' viability, structure and functionality. All antibiotics, except colistin, showed effective antimicrobial activity at these non-cytotoxic concentrations. For concentrations below the highest non-cytotoxic ones, successive treatments resulted in higher bacterial metabolic rates. Only the combinations managed to eradicate the infection with repeated treatments. With respect to prevention of infection, all antibiotics at the highest non-cytotoxic concentrations and the combinations were effective. This preventive capacity was maintained for at least 5 days. CONCLUSION The findings highlight the potential for developing BASS with antimicrobial properties that can prevent infections during wound healing in burn patients.
Collapse
Affiliation(s)
- María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
- Medicine Department, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Marta Andrades-Amate
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
- Medicine Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
3
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Tao S, Zhang S, Wei K, Maniura-Weber K, Li Z, Ren Q. An Injectable Living Hydrogel with Embedded Probiotics as a Novel Strategy for Combating Multifaceted Pathogen Wound Infections. Adv Healthc Mater 2024; 13:e2400921. [PMID: 38923269 DOI: 10.1002/adhm.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Wound infections pose a significant challenge in healthcare, and traditional antibiotic treatments often result in the development of resistant pathogens. Addressing this gap, ProGel is introduced, a living hydrogel created by entrapping probiotic Lactobacillus plantarum as a therapeutic component within a gelatin matrix. With a double-syringe system, ProGel can be easily mixed and applied, conforming swiftly to any wound shape and forming hydrogel in situ. It also demonstrates robust mechanical and self-healing properties owing to the Schiff-base bonds. ProGel sustains more than 80% viability of the entrapped L. plantarum while restricting their escape from the hydrogel. After a week of storage, more than 70% viability of the entrapped L. plantarum is preserved. Importantly, ProGel exhibits broad-spectrum antimicrobial efficacy against pathogens commonly associated with wound infections, i.e., Pseudomonas aeruginosa (7Log reduction), Staphylococcus aureus (3-7Log reduction), and Candida albicans (40-70% reduction). Moreover, its cytocompatibility is affirmed through coculture with human dermal fibroblasts. The effectiveness of ProGel is further highlighted in more clinically relevant tests on human skin wound models infected with P. aeruginosa and S. aureus, where it successfully prevents the biofilm formation of these pathogens. This study showcases an injectable living hydrogel system for the management of complex wound infections.
Collapse
Affiliation(s)
- Siyuan Tao
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Sixuan Zhang
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Kongchang Wei
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, CH 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Zhihao Li
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| |
Collapse
|
5
|
Koshak AE, Elfaky MA, Abdallah HM, Albadawi DAI, Mohamed GA, Ibrahim SRM, Alzain AA, Khafagy ES, Rajab AAH, Hegazy WAH. Arctigenin from Burdock Root Exhibits Potent Antibacterial and Anti-Virulence Properties against Pseudomonas aeruginosa. J Microbiol Biotechnol 2024; 34:1642-1652. [PMID: 39049476 PMCID: PMC11380511 DOI: 10.4014/jmb.2403.03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024]
Abstract
Arctium lappa (Burdock) root is used in various culinary applications especially in Asian Cuisine. Arctigenin (ARC) is a polyphenolic compound abundant in the roots of the burdock plant from which it derives its name. The emergence of bacterial resistance is a growing global worry, specifically due to the declining availability of new antibiotics. Screening for the antibacterial candidates among the safe natural products is a promising approach. The present study was aimed to assess the antibacterial activity of ARC against Pseudomonas aeruginosa exploring its effect on the bacterial cell membrane. Furthermore, the anti-virulence activities and anti-quorum sensing (QS) activities of ARC were in vitro, in vivo and in silico assessed against P. aeruginosa. The current results showed the ARC antibacterial activity was owed to its disruption effect of the cell membrane. ARC at sub-MIC significantly decreased the formation of biofilm, motility, production of extracellular enzymes and in vivo protected mice against P. aeruginosa. These anti-virulence activities of ARC are owed to its interference with bacterial QS and its expression. Furthermore, ARC showed mild effect on mammalian erythrocytes, low probability to induce resistance and synergistically combined with antibiotics. In summary, the promising anti-virulence properties of ARC indicate its potential as an effective supplement to conventional antibiotics for treating severe P. aeruginosa infections.
Collapse
Affiliation(s)
- Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dina A I Albadawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| |
Collapse
|
6
|
Cordery C, Craddock J, Malý M, Basavaraja K, Webb JS, Walsh MA, Tews I. Control of phosphodiesterase activity in the regulator of biofilm dispersal RbdA from Pseudomonas aeruginosa. RSC Chem Biol 2024:d4cb00113c. [PMID: 39247681 PMCID: PMC11372557 DOI: 10.1039/d4cb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The switch between planktonic and biofilm lifestyle correlates with intracellular concentration of the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). While bacteria possess cyclase and phosphodiesterase enzymes to catalyse formation or hydrolysis of c-di-GMP, both enzymatic domains often occur in a single protein. It is tacitly assumed that one of the two enzymatic activities is dominant, and that additional domains and protein interactions enable responses to environmental conditions and control activity. Here we report the structure of the phosphodiesterase domain of the membrane protein RbdA (regulator of biofilm dispersal) in a dimeric, activated state and show that phosphodiesterase activity is controlled by the linked cyclase. The phosphodiesterase region around helices α5/α6 forms the dimer interface, providing a rationale for activation, as this region was seen in contact with the cyclase domain in an auto-inhibited structure previously described. Kinetic analysis supports this model, as the activity of the phosphodiesterase alone is lower when linked to the cyclase. Analysis of a computed model of the RbdA periplasmatic domain reveals an all-helical architecture with a large binding pocket that could accommodate putative ligands. Unravelling the regulatory circuits in multi-domain phosphodiesterases like RbdA is important to develop strategies to manipulate or disperse bacterial biofilms.
Collapse
Affiliation(s)
- Charlotte Cordery
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Jack Craddock
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| | - Martin Malý
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Kieran Basavaraja
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Jeremy S Webb
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
7
|
Quiñones-Vico MI, Ubago-Rodríguez A, Fernández-González A, Sanabria-de la Torre R, Sierra-Sánchez Á, Montero-Vilchez T, Sánchez-Díaz M, Arias JL, Arias-Santiago S. Antibiotic Nanoparticles-Loaded Wound Dressings Against Pseudomonas aeruginosa's Skin Infection: A Systematic Review. Int J Nanomedicine 2024; 19:7895-7926. [PMID: 39108405 PMCID: PMC11302427 DOI: 10.2147/ijn.s469724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/07/2024] [Indexed: 01/29/2025] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common nosocomial pathogen that can cause severe infections in critically ill patients. Due to its resistance to multiple drugs, it is challenging to treat, which can result in serious illness and death. Conventional treatments for infected wounds often involve the topical or systemic application of antibiotics, which can lead to systemic toxicity and the development of drug resistance. The combination of wound dressings that promote wound healing with nanoparticles (NPs) represents a revolutionary strategy for optimizing the safety and efficacy of antibiotics. This review assesses a systematic search to identify the latest approaches where the evaluation of wound dressings loaded with antibiotic NPs is conducted. The properties of NPs, the features of wound dressings, the antimicrobial activity and biocompatibility of the different strategies are analyzed. The results indicate that most research in this field is focused on dressings loaded with silver NPs (57.1%) or other inorganic materials (22.4%). Wound dressings loaded with polymeric NPs and carbon-based NPs represent 14.3% and 6.1% of the evaluated studies, respectively. Nevertheless, there are no clinical trials that have evaluated the efficacy of NPs-loaded wound dressings in patients. Further research is required to ensure the safety of these treatments and to translate the findings from the bench to the bedside.
Collapse
Affiliation(s)
- María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Medicine Department, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
| | - Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Trinidad Montero-Vilchez
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Manuel Sánchez-Díaz
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - José L Arias
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, 18071, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Medicine Department, School of Medicine, University of Granada, Granada, 18016, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| |
Collapse
|
8
|
Męcik M, Stefaniak K, Harnisz M, Korzeniewska E. Hospital and municipal wastewater as a source of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48813-48838. [PMID: 39052110 PMCID: PMC11310256 DOI: 10.1007/s11356-024-34436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The increase in the prevalence of carbapenem-resistant Gram-negative bacteria, in particular Acinetobacter baumannii (CRAB) and Pseudomonas aeruginosa (CRPA), poses a serious threat for public health worldwide. This article reviews the alarming data on the prevalence of infections caused by CRAB and CRPA pathogens and their presence in hospital and municipal wastewater, and it highlights the environmental impact of antibiotic resistance. The article describes the key role of antibiotic resistance genes (ARGs) in the acquisition of carbapenem resistance and sheds light on bacterial resistance mechanisms. The main emphasis was placed on the transfer of ARGs not only in the clinical setting, but also in the environment, including water, soil, and food. The aim of this review was to expand our understanding of the global health risks associated with CRAB and CRPA in hospital and municipal wastewater and to analyze the spread of these micropollutants in the environment. A review of the literature published in the last decade will direct research on carbapenem-resistant pathogens, support the implementation of effective preventive measures and interventions, and contribute to the development of improved strategies for managing this problem.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Kornelia Stefaniak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
9
|
Cecil RE, Yoder-Himes DR. Examining the influence of environmental factors on Acanthamoeba castellanii and Pseudomonas aeruginosa in co-culture. PLoS One 2024; 19:e0305973. [PMID: 38913685 PMCID: PMC11195979 DOI: 10.1371/journal.pone.0305973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Exploration of interspecies interactions between microorganisms can have taxonomic, ecological, evolutionary, or medical applications. To better explore interactions between microorganisms it is important to establish the ideal conditions that ensure survival of all species involved. In this study, we sought to identify the ideal biotic and abiotic factors that would result in high co-culture viability of two interkingdom species, Pseudomonas aeruginosa and Acanthamoeba castellanii, two soil dwelling microbes. There have been limited studies showing long-term interactions between these two organisms as co-culture can result in high mortality for one or both organisms suggesting a predator-predator interaction may exist between them. In this study, we identified biotic and abiotic conditions that resulted in a high viability for both organisms in long-term co-culture, including optimizing temperature, nutrient concentration, choice of bacterial strains, and the initial ratio of interacting partners. These two species represent ideal partners for studying microbial interactions because amoebae act similarly to mammalian immune cells in many respects, and this can allow researchers to study host-pathogen interactions in vitro. Therefore, long-term interaction studies between these microbes might reveal the evolutionary steps that occur in bacteria when subjected to intense predation, like what occurs when pathogens enter the human body. The culture conditions characterized here resulted in high viability for both organisms for at least 14-days in co-culture suggesting that long-term experimental studies between these species can be achieved using these culture conditions.
Collapse
Affiliation(s)
- Rhiannon E. Cecil
- Biology Department, University of Louisville, Louisville, Kentucky, United States of America
| | - Deborah R. Yoder-Himes
- Biology Department, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
10
|
Ma Z, Xiao H, Li H, Lu X, Yan J, Nie H, Yin Q. Prodigiosin as an Antibiofilm Agent against the Bacterial Biofilm-Associated Infection of Pseudomonas aeruginosa. Pathogens 2024; 13:145. [PMID: 38392883 PMCID: PMC10891946 DOI: 10.3390/pathogens13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudomonas aeruginosa is known to generate bacterial biofilms that increase antibiotic resistance. With the increase of multi-drug resistance in recent years, the formulation of a new therapeutic strategy has seemed urgent. Preliminary findings show that Prodigiosin (PG), derived from chromium-resistant Serratia marcescens, exhibited efficient anti-biofilm activity against Staphylococcus aureus. However, its anti-biofilm activity against P. aeruginosa remains largely unexplored. The anti-biofilm activity of PG against three clinical single drug-resistant P. aeruginosa was evaluated using crystal violet staining, and the viability of biofilms and planktonic cells were also assessed. A model of chronic lung infection was constructed to test the in vivo antibiofilm activity of PG. The results showed that PG inhibited biofilm formation and effectively inhibited the production of pyocyanin and extracellular polysaccharides in vitro, as well as moderated the expression of interleukins (IL-1β, IL-6, IL-10) and tumor necrosis factor (TNF-α) in vivo, which might be attributed to the downregulation of biofilm-related genes such as algA, pelA, and pslM. These findings suggest that PG could be a potential treatment for drug-resistant P aeruginosa and chronic biofilm infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, China
| |
Collapse
|
11
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LEP. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol 2024; 22:e3002205. [PMID: 38300958 PMCID: PMC10833521 DOI: 10.1371/journal.pbio.3002205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - William Cole Cornell
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jasmine A. Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
12
|
Guo Q, Cheng Y, Fan Z, Wu W, Wu Z, Zhang X. Zwitterion‐conjugated Topological Glycomimics for Dual‐Blocking Effects to Eradicate Biofilm Infection. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 01/06/2025]
Abstract
AbstractP. aeruginosa, a leading nosocomial pathogen, commonly causes chronic biofilm infections in tissues and biomedical devices, including wound infections, osteomyelitis, and infective endocarditis, heavily threatening life. The dynamic lifecycle of these biofilms leads to persistent generation, making it challenging to prevent and disperse these biofilms effectively. Herein, a topological eight‐arm zwitterion‐conjugated glycomimetics (PCBAA‐b‐PLAMA)8 to address this challenge by exerting a dual‐blocking effect on P. aeruginosa biofilms is introduced. Initially, carboxybetaine acrylate (CBAA) and 2‐lactobionamidoethyl methacrylate (LAMA) are introduced to the topological bromine‐based initiator to prepare (PCBAA‐b‐PLAMA)8. This copolymer demonstrats remarkable efficiency in dispersing P. aeruginosa biofilms, approximately up to 99%. This high efficacy can be attributed to the multivalent and triaxial interactions between LAMA and CBAA groups, which enable the capture of P. aeruginosa cells and the biofilm matrix. Furthermore, (PCBAA‐b‐PLAMA)8 efficiently inhibit the expression of resistance genes related to biofilm formation and antibiotic efflux, including cdrA, lasB, mexE, and mexH, regaining bacterial cell sensitivity to antibiotics and further facilitating the natural dispersal of biofilms. This study provides a generic dual‐blocking strategy for the efficient eliminating of biofilms from biomedical devices.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
- The State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmaceutical Sciences Guizhou Medical University University Town Guian New District Guizhou 550025 China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education Department of Microbiology College of Life Sciences Nankai University Tianjin 300071 China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education Department of Microbiology College of Life Sciences Nankai University Tianjin 300071 China
| | - Zhongming Wu
- Department of Endocrinology Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Alotaibi HF, Alotaibi H, Darwish KM, Khafagy ES, Abu Lila AS, Ali MAM, Hegazy WAH, Alshawwa SZ. The Anti-Virulence Activities of the Antihypertensive Drug Propranolol in Light of Its Anti-Quorum Sensing Effects against Pseudomonas aeruginosa and Serratia marcescens. Biomedicines 2023; 11:3161. [PMID: 38137382 PMCID: PMC10741015 DOI: 10.3390/biomedicines11123161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the β-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.
Collapse
Affiliation(s)
- Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa Alotaibi
- Department of Family Medicine, Prince Sultan Military Medical City, Riyadh 12624, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
14
|
Magri M, Bouricha EM, Hakmi M, Jaoudi REL, Belyamani L, Ibrahimi A. In Silico Identification of Natural Food Compounds as Potential Quorum-Sensing Inhibitors Targeting the LasR Receptor of Pseudomonas aeruginosa. Bioinform Biol Insights 2023; 17:11779322231212755. [PMID: 38020496 PMCID: PMC10664429 DOI: 10.1177/11779322231212755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and is often associated with biofilm-mediated antibiotic resistance. The LasR protein is a key component of the quorum system in P. aeruginosa, allowing it to regulate its biofilm-induced pathogenicity. When the bacterial population reaches a sufficient density, the accumulation of N-(3-oxododecanoyl) acyl homoserine lactone (3O-C12-HSL) leads to the activation of the LasR receptor, which then acts as a transcriptional activator of target genes involved in biofilm formation and virulence, thereby increasing the bacteria's antibiotic resistance and enhancing its virulence. In this study, we performed a structure-based virtual screening of a natural food database of 10 997 compounds against the crystal structure of the ligand-binding domain of the LasR receptor (PDB ID: 3IX4). This allowed us to identify four molecules, namely ZINC000001580795, ZINC000014819517, ZINC000014708292, and ZINC000004098719, that exhibited a favorable binding mode and docking scores greater than -13 kcal/mol. Furthermore, the molecular dynamics simulation showed that these four molecules formed stable complexes with LasR during the 150-ns molecular dynamics (MD) simulation, indicating their potential for use as inhibitors of the LasR receptor in P. aeruginosa. However, further experimental validation is needed to confirm their activity.
Collapse
Affiliation(s)
- Meryam Magri
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - Rachid EL Jaoudi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
15
|
Fu Y, Deng Y, Zhang J, Chua SL, Khoo BL. Biofilms exacerbate atherogenesis through macrophage-induced inflammatory responses in a fibrous plaque microsystem model. Acta Biomater 2023; 168:333-345. [PMID: 37385520 DOI: 10.1016/j.actbio.2023.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Microbes have been implicated in atherosclerosis development and progression, but the impact of bacterial-based biofilms on fibrous plaque rupture remains poorly understood. RESULTS Here, we developed a comprehensive atherosclerotic model to reflect the progression of fibrous plaque under biofilm-induced inflammation (FP-I). High expressions of biofilm-specific biomarkers algD, pelA and pslB validated the presence of biofilms. Biofilm promotes the polarization of macrophages towards a pro-inflammatory (M1) phenotype, as demonstrated by an increase in M1 macrophage-specific marker CD80 expression in CD68+ macrophages. The increase in the number of intracellular lipid droplets (LDs) and foam cell percentage highlighted the potential role of biofilms on lipid synthesis or metabolic pathways in macrophage-derived foam cells. In addition, collagen I production by myofibroblasts associated with the fibrous cap was significantly reduced along with the promotion of apoptosis of myofibroblasts, indicating that biofilms affect the structural integrity of the fibrous cap and potentially undermine its strength. CONCLUSION We validated the unique role of biofilm-based inflammation in exacerbating fibrous plaque damage in the FP-I model, increasing fibrous plaque instability and risk of thrombosis. Our results lay the foundation for mechanistic studies of the role of biofilms in fibrous plaques, allowing the evaluation of preclinical combination strategies for drug therapy. STATEMENT OF SIGNIFICANCE A microsystem-based model was developed to reveal interactions in fibrous plaque during biofilm-induced inflammation (FP-I). Real-time assessment of biofilm formation and its role in fibrous plaque progression was achieved. The presence of biofilms enhanced the expression of pro-inflammatory (M1) specific marker CD80, lipid droplets, and foam cells and reduced anti-inflammatory (M2) specific marker CD206 expression. Fibrous plaque exposure to biofilm-based inflammation reduced collagen I expression and increased apoptosis marker Caspase-3 expression significantly. Overall, we demonstrate the unique role of biofilm-based inflammation in exacerbating fibrous plaque damage in the FP-I model, promoting fibrous plaque instability and enhanced thrombosis risk. Our findings lay the groundwork for mechanistic studies, facilitating the evaluation of preclinical drug combination strategies.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE)
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong
| | - Jing Zhang
- Department of Biomedical Engineering, City University of Hong Kong
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China; Shenzhen Key Laboratory of Food Biological Safety Control; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE); City University of Hong Kong - Futian Shenzhen Research Institute.
| |
Collapse
|
16
|
Ruhal R, Ghosh M, Kumar V, Jain D. Mutation of putative glycosyl transferases PslC and PslI confers susceptibility to antibiotics and leads to drastic reduction in biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001392. [PMID: 37702709 PMCID: PMC10569066 DOI: 10.1099/mic.0.001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic, multidrug-resistant pathogen capable of adapting to numerous environmental conditions and causing fatal infections in immunocompromised patients. The predominant lifestyle of P. aeruginosa is in the form of biofilms, which are structured communities of bacteria encapsulated in a matrix containing exopolysaccharides, extracellular DNA (eDNA) and proteins. The matrix is impervious to antibiotics, rendering the bacteria tolerant to antimicrobials. P. aeruginosa also produces a plethora of virulence factors such as pyocyanin, rhamnolipids and lipopolysaccharides among others. In this study we present the molecular characterization of pslC and pslI genes, of the exopolysaccharide operon, that code for putative glycosyltransferases. PslC is a 303 amino acid containing putative GT2 glycosyltrasferase, whereas PslI is a 367 aa long protein, possibly functioning as a GT4 glycosyltransferase. Mutation in either of these two genes results in a significant reduction in biofilm biomass with concomitant decline in c-di-GMP levels in the bacterial cells. Moreover, mutation in pslC and pslI dramatically increased susceptibility of P. aeruginosa to tobramycin, colistin and ciprofloxacin. Additionally, these mutations also resulted in an increase in rhamnolipids and pyocyanin formation. We demonstrate that elevated rhamnolipids promote a swarming phenotype in the mutant strains. Together these results highlight the importance of PslC and PslI in the biogenesis of biofilms and their potential as targets for increased antibiotic susceptibility and biofilm inhibition.
Collapse
Affiliation(s)
- Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Vineet Kumar
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
17
|
Wang J, Liang K, Chen L, Su X, Liao D, Yu J, He J. Unveiling the stealthy tactics: mycoplasma's immune evasion strategies. Front Cell Infect Microbiol 2023; 13:1247182. [PMID: 37719671 PMCID: PMC10502178 DOI: 10.3389/fcimb.2023.1247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Mycoplasmas, the smallest known self-replicating organisms, possess a simple structure, lack a cell wall, and have limited metabolic pathways. They are responsible for causing acute or chronic infections in humans and animals, with a significant number of species exhibiting pathogenicity. Although the innate and adaptive immune responses can effectively combat this pathogen, mycoplasmas are capable of persisting in the host, indicating that the immune system fails to eliminate them completely. Recent studies have shed light on the intricate and sophisticated defense mechanisms developed by mycoplasmas during their long-term co-evolution with the host. These evasion strategies encompass various tactics, including invasion, biofilm formation, and modulation of immune responses, such as inhibition of immune cell activity, suppression of immune cell function, and resistance against immune molecules. Additionally, antigen variation and molecular mimicry are also crucial immune evasion strategies. This review comprehensively summarizes the evasion mechanisms employed by mycoplasmas, providing valuable insights into the pathogenesis of mycoplasma infections.
Collapse
Affiliation(s)
- Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Hastings CJ, Syed SS, Marques CNH. Subversion of the Complement System by Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0001823. [PMID: 37436150 PMCID: PMC10464199 DOI: 10.1128/jb.00018-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen heavily implicated in chronic diseases. Immunocompromised patients that become infected with P. aeruginosa usually are afflicted with a lifelong chronic infection, leading to worsened patient outcomes. The complement system is an integral piece of the first line of defense against invading microorganisms. Gram-negative bacteria are thought to be generally susceptible to attack from complement; however, P. aeruginosa can be an exception, with certain strains being serum resistant. Various molecular mechanisms have been described that confer P. aeruginosa unique resistance to numerous aspects of the complement response. In this review, we summarize the current published literature regarding the interactions of P. aeruginosa and complement, as well as the mechanisms used by P. aeruginosa to exploit various complement deficiencies and the strategies used to disrupt or hijack normal complement activities.
Collapse
Affiliation(s)
- Cody James Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Shazrah Salim Syed
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Cláudia Nogueira Hora Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
19
|
Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol 2023; 23:161. [PMID: 37270502 DOI: 10.1186/s12866-023-02897-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Emergence of multi-drug resistant Pseudomonas aeruginosa, coupled with the pathogen's versatile virulence factors, lead to high morbidity and mortality rates. The current study investigated the potential association between the antibiotic resistance and the production of virulence factors among P. aeruginosa clinical isolates collected from Alexandria Main University Hospital in Egypt. We also evaluated the potential of the phenotypic detection of virulence factors to reflect virulence as detected by virulence genes presence. The role of alginate in the formation of biofilms and the effect of ambroxol, a mucolytic agent, on the inhibition of biofilm formation were investigated. RESULTS A multi-drug resistant phenotype was detected among 79.8% of the isolates. The most predominant virulence factor was biofilm formation (89.4%), while DNase was least detected (10.6%). Pigment production was significantly associated with ceftazidime susceptibility, phospholipase C production was significantly linked to sensitivity to cefepime, and DNase production was significantly associated with intermediate resistance to meropenem. Among the tested virulence genes, lasB and algD showed the highest prevalence rates (93.3% and 91.3%, respectively), while toxA and plcN were the least detected ones (46.2% and 53.8%, respectively). Significant association of toxA with ceftazidime susceptibility, exoS with ceftazidime and aztreonam susceptibility, and plcH with piperacillin-tazobactam susceptibility was observed. There was a significant correlation between alkaline protease production and the detection of algD, lasB, exoS, plcH and plcN; pigment production and the presence of algD, lasB, toxA and exoS; and gelatinase production and the existence of lasB, exoS and plcH. Ambroxol showed a high anti-biofilm activity (5% to 92%). Quantitative reverse transcriptase polymerase chain reaction showed that alginate was not an essential matrix component in P. aeruginosa biofilms. CONCLUSIONS High virulence coupled with the isolates' multi-drug resistance to commonly used antimicrobials would increase morbidity and mortality rates among P. aeruginosa infections. Ambroxol that displayed anti-biofilm action could be suggested as an alternative treatment option, yet in vivo studies are required to confirm these findings. We recommend active surveillance of antimicrobial resistance and virulence determinant prevalence for better understanding of coregulatory mechanisms.
Collapse
Affiliation(s)
- Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Marwa R El Shehawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Elsayed Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- College of Pharmacy, Arab Academy for Science, Technology and Maritime, Alamein Branch, Alamein, Egypt
| |
Collapse
|
20
|
Al-Momani H, Almasri M, Al Balawi D, Hamed S, Albiss BA, Aldabaibeh N, Ibrahim L, Albalawi H, Al Haj Mahmoud S, Khasawneh AI, Kilani M, Aldhafeeri M, Bani-Hani M, Wilcox M, Pearson J, Ward C. The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci Rep 2023; 13:8876. [PMID: 37264060 DOI: 10.1038/s41598-023-35919-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853). Ag NPs were biosynthesized using a seed extract of Peganum harmala as a reducing agent. Ag NPs were characterized by Ultraviolet-visible (UV-Vis) spectroscopy and scanning transmission electron microscopy (STEM). The effect of Ag NPs on biofilm formation and eradication was examined through micro-titer plate assays, and the minimal inhibitory (MIC) and minimum bactericidal (MBC) concentrations determined. In addition, real-time polymerase chain reactions (RT-PCR) were performed to examine the effects of Ag NPs on the expression of seven PA biofilm-encoding genes (LasR, LasI, LssB, rhIR, rhII, pqsA and pqsR). The biosynthesized Ag NPs were spherically-shaped with a mean diameter of 11 nm. The MIC for each PA strain was 15.6 µg/ml, while the MBC was 31.25 µg/ml. All PA strains exposed to Ag NPs at sub-inhibitory concentrations (0.22-7.5 µg/ml) showed significant inhibitory effects on growth and biofilm formation. Biomass and biofilm metabolism were reduced dependent on Ag NP concentration. The expression of the quorum-sensing genes of all strains were significantly reduced at an Ag NP concentration of 7.5 µg/ml. The results demonstrate the extensive in-vitro antibacterial and antibiofilm performance of Ag NPs and their potential in the treatment of PA infection. It is recommended that future studies examine the possible synergy between Ag NPs and antibiotics.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan.
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'A Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Nour Aldabaibeh
- Supervisor of Microbiology Laboratory, Laboratory Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa' Applied University, AL-Salt, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan
| | - Muna Kilani
- Department of Pediatrics, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Muneef Aldhafeeri
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Muayyad Bani-Hani
- Department of Plant Production and Protection, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Matthew Wilcox
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jeffrey Pearson
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
21
|
Papanikolopoulou A, Gargalianos-Kakolyris P, Stoupis A, Moussas N, Pangalis A, Theodoridou K, Chronopoulou G, Pantazis N, Kantzanou M, Maltezou HC, Tsakris A. Carbapenem-Resistant Pseudomonas aeruginosa Bacteremia, through a Six-Year Infection Control Program in a Hospital. Microorganisms 2023; 11:1315. [PMID: 37317288 DOI: 10.3390/microorganisms11051315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a life-threatening healthcare-associated infection affecting especially patients with immunosuppression and comorbidities. We investigated the association between the incidence of CRPA bacteremia, antibiotic consumption, and infection control measures in a hospital during 2013-2018. METHODS We prospectively recorded the incidence of CRPA bacteremia, antibiotic consumption, use of hand-hygiene solutions, and isolation rates of multidrug-resistant (MDR) carrier patients. FINDINGS The consumption of colistin, aminoglycosides, and third-generation cephalosporins decreased significantly in the total hospital and its divisions (p-value < 0.001 for all comparisons) while the consumption of carbapenems decreased significantly in the adults ICU (p-value = 0.025). In addition, the incidence of CRPA significantly decreased in the total hospital clinics and departments (p-values = 0.027 and 0.042, respectively) and in adults clinics and departments (p-values = 0.031 and 0.051, respectively), while in the adults ICU, the incidence remained unchanged. Increased isolation rates of MDR carrier patients, even two months before, significantly correlated with decreased incidence of CRPA bacteremia (IRR: 0.20, 95% CI: 0.05-0.73, p-value = 0.015) in the adults ICU. Interestingly, when the use of hand-hygiene solutions (alcohol and/or scrub) increased, the consumption of advanced, nonadvanced, and all antibiotics decreased significantly. CONCLUSION In our hospital, multimodal infection control interventions resulted in a significant reduction of CRPA bacteremia, mostly due to the reduction of all classes of antibiotics.
Collapse
Affiliation(s)
- Amalia Papanikolopoulou
- Clinical Pharmacology Department, Athens Medical Center, 5-7 Distomou Str., 15125 Marousi, Greece
| | | | - Athina Stoupis
- Clinical Infectious Diseases Department, Athens Medical Center, 1 Delfon Str., 15125 Marousi, Greece
| | - Nikos Moussas
- Clinical Infectious Diseases Department, Athens Medical Center, 1 Delfon Str., 15125 Marousi, Greece
| | - Anastasia Pangalis
- Biopathology Department, Athens Medical Center, 5-7 Distomou Str., 15125 Marousi, Greece
| | - Kalliopi Theodoridou
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
- Department of Microbiology, Andreas Syggros Hospital for Skin and Venereal Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Genovefa Chronopoulou
- Biopathology Department, Athens Medical Center, 5-7 Distomou Str., 15125 Marousi, Greece
| | - Nikos Pantazis
- Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Maria Kantzanou
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Helena C Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, 3-5 Agrafon Str., 15123 Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| |
Collapse
|
22
|
Khayat MT, Abbas HA, Ibrahim TS, Elbaramawi SS, Khayyat AN, Alharbi M, Hegazy WAH, Yehia FAZA. Synergistic Benefits: Exploring the Anti-Virulence Effects of Metformin/Vildagliptin Antidiabetic Combination against Pseudomonas aeruginosa via Controlling Quorum Sensing Systems. Biomedicines 2023; 11:biomedicines11051442. [PMID: 37239113 DOI: 10.3390/biomedicines11051442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
23
|
Zina R, Cunha E, Serrano I, Silva E, Tavares L, Oliveira M. Nisin Z Potential for the Control of Diabetic Foot Infections Promoted by Pseudomonas aeruginosa Persisters. Antibiotics (Basel) 2023; 12:antibiotics12050794. [PMID: 37237697 DOI: 10.3390/antibiotics12050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus and a public health concern worldwide. The ability of P. aeruginosa to form biofilms is a key factor responsible for the chronicity of diabetic foot infections (DFIs) and frequently associated with the presence of persister cells. These are a subpopulation of phenotypic variants highly tolerant to antibiotics for which new therapeutic alternatives are urgently needed, such as those based on antimicrobial peptides. This study aimed to evaluate the inhibitory effect of nisin Z on P. aeruginosa DFI persisters. To induce the development of a persister state in both planktonic suspensions and biofilms, P. aeruginosa DFI isolates were exposed to carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ciprofloxacin, respectively. After RNA extraction from CCCP-induced persisters, transcriptome analysis was performed to evaluate the differential gene expression between the control, persisters, and persister cells exposed to nisin Z. Nisin Z presented a high inhibitory effect against P. aeruginosa persister cells but was unable to eradicate them when present in established biofilms. Transcriptome analysis revealed that persistence was associated with downregulation of genes related to metabolic processes, cell wall synthesis, and dysregulation of stress response and biofilm formation. After nisin Z treatment, some of the transcriptomic changes induced by persistence were reversed. In conclusion, nisin Z could be considered as a potential complementary therapy for treating P. aeruginosa DFI, but it should be applied as an early treatment or after wound debridement.
Collapse
Affiliation(s)
- Rafaela Zina
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Elisabete Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
24
|
Saraiva SM, Martín-Banderas L, Durán-Lobato M. Cannabinoid-Based Ocular Therapies and Formulations. Pharmaceutics 2023; 15:pharmaceutics15041077. [PMID: 37111563 PMCID: PMC10146987 DOI: 10.3390/pharmaceutics15041077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The interest in the pharmacological applications of cannabinoids is largely increasing in a wide range of medical areas. Recently, research on its potential role in eye conditions, many of which are chronic and/or disabling and in need of new alternative treatments, has intensified. However, due to cannabinoids’ unfavorable physicochemical properties and adverse systemic effects, along with ocular biological barriers to local drug administration, drug delivery systems are needed. Hence, this review focused on the following: (i) identifying eye disease conditions potentially subject to treatment with cannabinoids and their pharmacological role, with emphasis on glaucoma, uveitis, diabetic retinopathy, keratitis and the prevention of Pseudomonas aeruginosa infections; (ii) reviewing the physicochemical properties of formulations that must be controlled and/or optimized for successful ocular administration; (iii) analyzing works evaluating cannabinoid-based formulations for ocular administration, with emphasis on results and limitations; and (iv) identifying alternative cannabinoid-based formulations that could potentially be useful for ocular administration strategies. Finally, an overview of the current advances and limitations in the field, the technological challenges to overcome and the prospective further developments, is provided.
Collapse
Affiliation(s)
- Sofia M. Saraiva
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| | - Lucía Martín-Banderas
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBIS), Campus Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556754
| | - Matilde Durán-Lobato
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012 Sevilla, Spain;
| |
Collapse
|
25
|
Nesse LL, Osland AM, Vestby LK. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms 2023; 11:608. [PMID: 36985183 PMCID: PMC10059901 DOI: 10.3390/microorganisms11030608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Biofilms are bacterial aggregates embedded in a self-produced, protective matrix. The biofilm lifestyle offers resilience to external threats such as the immune system, antimicrobials, and other treatments. It is therefore not surprising that biofilms have been observed to be present in a number of bacterial infections. This review describes biofilm-associated bacterial infections in most body systems of husbandry animals, including fish, as well as in sport and companion animals. The biofilms have been observed in the auditory, cardiovascular, central nervous, digestive, integumentary, reproductive, respiratory, urinary, and visual system. A number of potential roles that biofilms can play in disease pathogenesis are also described. Biofilms can induce or regulate local inflammation. For some bacterial species, biofilms appear to facilitate intracellular invasion. Biofilms can also obstruct the healing process by acting as a physical barrier. The long-term protection of bacteria in biofilms can contribute to chronic subclinical infections, Furthermore, a biofilm already present may be used by other pathogens to avoid elimination by the immune system. This review shows the importance of acknowledging the role of biofilms in animal bacterial infections, as this influences both diagnostic procedures and treatment.
Collapse
Affiliation(s)
- Live L. Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Ane Mohr Osland
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Lene K. Vestby
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| |
Collapse
|
26
|
Pottier M, Gravey F, Castagnet S, Auzou M, Langlois B, Guérin F, Giard JC, Léon A, Le Hello S. A 10-year microbiological study of Pseudomonas aeruginosa strains revealed the circulation of populations resistant to both carbapenems and quaternary ammonium compounds. Sci Rep 2023; 13:2639. [PMID: 36788252 PMCID: PMC9929048 DOI: 10.1038/s41598-023-29590-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections. For this study, the susceptibility profiles to antipseudomonal antibiotics and a quaternary ammonium compound, didecyldimethylammonium chloride (DDAC), widely used as a disinfectant, were established for 180 selected human and environmental hospital strains isolated between 2011 and 2020. Furthermore, a genomic study determined resistome and clonal putative relatedness for 77 of them. During the ten-year study period, it was estimated that 9.5% of patients' strains were resistant to carbapenems, 11.9% were multidrug-resistant (MDR), and 0.7% were extensively drug-resistant (XDR). Decreased susceptibility (DS) to DDAC was observed for 28.0% of strains, a phenotype significantly associated with MDR/XDR profiles and from hospital environmental samples (p < 0.0001). According to genomic analyses, the P. aeruginosa population unsusceptible to carbapenems and/or to DDAC was diverse but mainly belonged to top ten high-risk clones described worldwide by del Barrio-Tofiño et al. The carbapenem resistance appeared mainly due to the production of the VIM-2 carbapenemase (39.3%) and DS to DDAC mediated by MexAB-OprM pump efflux overexpression. This study highlights the diversity of MDR/XDR populations of P. aeruginosa which are unsusceptible to compounds that are widely used in medicine and hospital disinfection and are probably distributed in hospitals worldwide.
Collapse
Affiliation(s)
- Marine Pottier
- Research Department, LABÉO, 14053, Caen, France.,UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - François Gravey
- UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France.,Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France
| | - Sophie Castagnet
- Research Department, LABÉO, 14053, Caen, France.,UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - Michel Auzou
- Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France
| | - Bénédicte Langlois
- Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France
| | - François Guérin
- Laboratoire de Bactériologie et Hygiène Hospitalière, CHU de Rennes, 2 Rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Jean-Christophe Giard
- UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - Albertine Léon
- Research Department, LABÉO, 14053, Caen, France.,UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France
| | - Simon Le Hello
- UNICAEN, Univ Rouen Normandie, INSERM DYNAMICURE UMR 1311, CHU Caen, department of microbiology, Normandie Univ, 14000, Caen, France. .,Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France. .,Service d'Hygiène Hospitalière, CHU de Caen, Avenue de la Côte de Nacre, 14033, Caen Cedex, France.
| |
Collapse
|
27
|
Sankar S, Ganesh PS, Subramaniam S, Shankar EM, Yuwanati M, Govindasamy R, Thiruvengadam M. Host cell responses against the pseudomonal biofilm: A continued tale of host-pathogen interactions. Microb Pathog 2023; 174:105940. [PMID: 36513294 DOI: 10.1016/j.micpath.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In biofilm formation, pathogens within the bacterial community coordinate a cell-cell communication system called quorum sensing (QS). This is achieved through various signalling pathways that regulate bacterial virulence and host immune response. Here, we reviewed the host responses, key clinical implications, and novel therapeutic approaches against the biofilms of P. aeruginosa. Given the high degree of intrinsic antibiotic resistance and biofilm formation by the pathogen, the ensuing treatment complications could result in high morbidity and mortality rates worldwide. Notwithstanding the availability of intervention strategies, there remains a paucity of effective therapeutic options to control biofilmogenesis. This review discusses the basic understanding of QS-associated virulence factors and several key therapeutic interventions to foil the biofilm menace of P. aeruginosa.
Collapse
Affiliation(s)
- Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Suganya Subramaniam
- Department of Biotechnology, MMES Women's Arts and Science College, Melvisharam, 632 509, Tamil Nadu, India
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, Tamil Nadu, India
| | - Monal Yuwanati
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
28
|
Marji SM, Bayan MF, Jaradat A. Facile Fabrication of Methyl Gallate Encapsulated Folate ZIF-L Nanoframeworks as a pH Responsive Drug Delivery System for Anti-Biofilm and Anticancer Therapy. Biomimetics (Basel) 2022; 7:biomimetics7040242. [PMID: 36546942 PMCID: PMC9775553 DOI: 10.3390/biomimetics7040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Zeolitic imidazole frameworks are emerging materials and have been considered an efficient platform for biomedical applications. The present study highlights the simple fabrication of methyl gallate encapsulated folate-ZIF-L nanoframeworks (MG@Folate ZIF-L) by a simple synthesis. The nanoframeworks were characterized by different sophisticated instruments. In addition, the drug-releasing mechanism was evidenced by in vitro releasing kinetics at various pH conditions. The anti-biofilm potential confirmed by the biofilm architectural deformations against human infectious pathogens MRSA and N7 clinical strains. Furthermore, anticancer efficacy assessed against A549 lung cancer cells. The result reveals that the MG@Folate ZIF-L exposed a superior cytotoxic effect due to the pH-responsive and receptor-based drug-releasing mechanism. Based on the unique physicochemical and biological characteristics of nanoframeworks, it has overcome the problems of undesired side effects and uncontrolled drug release of existing drug delivery systems. Finally, the in vitro toxicity effect of MG@Folate ZIF-L was tested against the Artemia salina (A. salina) model organism, and the results show enhanced biocompatibility. Overall, the study suggested that the novel MG@Folate ZIF-L nanoframeworks is a suitable material for biomedical applications. It will be very helpful to the future design for targeted drug delivery systems.
Collapse
Affiliation(s)
- Saeed M. Marji
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Correspondence: (S.M.M.); (M.F.B.)
| | - Mohammad F. Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
- Correspondence: (S.M.M.); (M.F.B.)
| | - Abdolelah Jaradat
- Faculty of Pharmacy, Isra University, P.O. Box 33, Amman 11622, Jordan
| |
Collapse
|
29
|
Cesaria M, Alfinito E, Arima V, Bianco M, Cataldo R. MEED: A novel robust contrast enhancement procedure yielding highly-convergent thresholding of biofilm images. Comput Biol Med 2022; 151:106217. [PMID: 36306585 DOI: 10.1016/j.compbiomed.2022.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
Morphological and statistical investigation of biofilm images may be even more critical than the image acquisition itself, in particular in the presence of morphologically complex distributions, due to the unavoidable impact of the measurement technique too. Hence, digital image pre-processing is mandatory for reliable feature extraction and enhancement preliminary to segmentation. Also, pattern recognition in automated deep learning (both supervised and unsupervised) models often requires a preliminary effective contrast-enhancement. However, no universal consensus exists on the optimal contrast enhancement approach. This paper presents and discusses a new general, robust, reproducible, accurate and easy to implement contrast enhancement procedure, briefly named MEED-procedure, able to work on images with different bacterial coverages and biofilm structures, coming from different imaging instrumentations (herein stereomicroscope and transmission microscope). It exploits a proper succession of basic morphological operations (erosion and dilation) and a horizontal line structuring element, to minimize the impact on size and shape of the even finer bacterial features. It systematically enhances the objects of interest, without histogram stretching and/or undesirable artifacts yielded by common automated methods. The quality of the MEED-procedure is ascertained by segmentation tests which demonstrate its robustness regarding the determination of threshold and convergence of the thresholding algorithm. Extensive validation tests over a rich image database, comparison with the literature and comprehensive discussion of the conceptual background support the superiority of the MEED-procedure over the existing methods and demonstrate it is not a routine application of morphological operators.
Collapse
Affiliation(s)
- Maura Cesaria
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy.
| | - Eleonora Alfinito
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Rosella Cataldo
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy.
| |
Collapse
|
30
|
Deng W, Lei Y, Tang X, Li D, Liang J, Luo J, Liu L, Zhang W, Ye L, Kong J, Wang K, Chen Z. DNase inhibits early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. Front Cell Infect Microbiol 2022; 12:917038. [PMID: 36310876 PMCID: PMC9597695 DOI: 10.3389/fcimb.2022.917038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2023] Open
Abstract
Anti-infection strategies against pleural empyema include the use of antibiotics and drainage treatments, but bacterial eradication rates remain low. A major challenge is the formation of biofilms in the pleural cavity. DNase has antibiofilm efficacy in vitro, and intrapleural therapy with DNase is recommended to treat pleural empyema, but the relevant mechanisms remain limited. Our aim was to investigate whether DNase I inhibit the early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. We used various assays, such as crystal violet staining, confocal laser scanning microscopy (CLSM) analysis, peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH), and scanning electron microscopy (SEM) analysis. Our results suggested that DNase I significantly inhibited early biofilm formation in a dose-dependent manner, without affecting the growth of P. aeruginosa or S. aureus in vitro. CLSM analysis confirmed that DNase I decreased the biomass and thickness of both bacterial biofilms. The PNA-FISH and SEM analyses also revealed that DNase I inhibited early (24h) biofilm formation in two empyema models. Thus, the results indicated that DNase inhibited early (24h) biofilm formation in P. aeruginosa- or S. aureus-induced rabbit empyema models and showed its therapeutic potential against empyema biofilms.
Collapse
Affiliation(s)
- Wusheng Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanmei Lei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiujia Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dingbin Li
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinhua Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuyuan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenshu Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liumei Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoyan Chen
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Henzel T, Nijjer J, Chockalingam S, Wahdat H, Crosby AJ, Yan J, Cohen T. Interfacial cavitation. PNAS NEXUS 2022; 1:pgac217. [PMID: 36714841 PMCID: PMC9802248 DOI: 10.1093/pnasnexus/pgac217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Cavitation has long been recognized as a crucial predictor, or precursor, to the ultimate failure of various materials, ranging from ductile metals to soft and biological materials. Traditionally, cavitation in solids is defined as an unstable expansion of a void or a defect within a material. The critical applied load needed to trigger this instability -- the critical pressure -- is a lengthscale independent material property and has been predicted by numerous theoretical studies for a breadth of constitutive models. While these studies usually assume that cavitation initiates from defects in the bulk of an otherwise homogeneous medium, an alternative and potentially more ubiquitous scenario can occur if the defects are found at interfaces between two distinct media within the body. Such interfaces are becoming increasingly common in modern materials with the use of multimaterial composites and layer-by-layer additive manufacturing methods. However, a criterion to determine the threshold for interfacial failure, in analogy to the bulk cavitation limit, has yet to be reported. In this work, we fill this gap. Our theoretical model captures a lengthscale independent limit for interfacial cavitation, and is shown to agree with our observations at two distinct lengthscales, via two different experimental systems. To further understand the competition between the two cavitation modes (bulk versus interface), we expand our investigation beyond the elastic response to understand the ensuing unstable propagation of delamination at the interface. A phase diagram summarizes these results, showing regimes in which interfacial failure becomes the dominant mechanism.
Collapse
Affiliation(s)
| | | | | | - Hares Wahdat
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jing Yan
- To whom correspondence should be addressed:
| | - Tal Cohen
- To whom correspondence should be addressed:
| |
Collapse
|
32
|
Yam JKH, Aung TT, Chua SL, Cheng Y, Kohli GS, Zhou J, Constancias F, Liu Y, Cai Z, Salido MMS, Drautz-Moses DI, Rice SA, Schuster SC, Boo ZZ, Wu B, Kjelleberg S, Tolker-Nielsen T, Lakshminarayanan R, Beuerman RW, Yang L, Givskov M. Elevated c-di-GMP Levels and Expression of the Type III Secretion System Promote Corneal Infection by Pseudomonas aeruginosa. Infect Immun 2022; 90:e0006122. [PMID: 35913171 PMCID: PMC9387266 DOI: 10.1128/iai.00061-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas aeruginosa is generally believed to establish biofilm-associated infections under the regulation of the secondary messenger c-di-GMP. To evaluate P. aeruginosa biofilm physiology during ocular infections, comparative transcriptomic analysis was performed on wild-type P. aeruginosa PAO1, a ΔwspF mutant strain (high c-di-GMP levels), and a plac-yhjH-containing strain (low c-di-GMP levels) from mouse corneal infection, as well as in vitro biofilm and planktonic cultures. The c-di-GMP content in P. aeruginosa during corneal infection was monitored using a fluorescent c-di-GMP reporter strain. Biofilm-related genes were induced in in vivo PAO1 compared to in vitro planktonic bacteria. Several diguanylate cyclases and phosphodiesterases were commonly regulated in in vivo PAO1 and in vitro biofilm compared to in vitro planktonic bacteria. Several exopolysaccharide genes and motility genes were induced and downregulated, respectively, in in vivo PAO1 and the in vivo ΔwspF mutant compared to the in vivo plac-yhjH-containing strain. Elevation of c-di-GMP levels in P. aeruginosa began as early as 2 h postinfection. The ΔwspF mutant was less susceptible to host clearance than the plac-yhjH-containing strain and could suppress host immune responses. The type III secretion system (T3SS) was induced in in vivo PAO1 compared to in vitro biofilm bacteria. A ΔwspF mutant with a defective T3SS was more susceptible to host clearance than a ΔwspF mutant with a functional T3SS. Our study suggests that elevated intracellular c-di-GMP levels and T3SS activity in P. aeruginosa are necessary for establishment of infection and modulation of host immune responses in mouse cornea.
Collapse
Affiliation(s)
- Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Thet Tun Aung
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Yingying Cheng
- Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen, China
| | - Gurjeet Singh Kohli
- Alfred Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | | | - Yang Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - May Margarette Santillan Salido
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CSIRO, Agriculture and Food, Microbiomes for One Systems Health, Canberra, Australia
| | - Stephan Christoph Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao Zhi Boo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Roger W. Beuerman
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- SRP Neuroscience and Behavioural Disorders and Emerging Infectious Diseases, Duke-NUS, Singapore, Singapore
- Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Wu H, Song L, Yam JKH, Plotkin M, Wang H, Rybtke M, Seliktar D, Kofidis T, Høiby N, Tolker-Nielsen T, Song Z, Givskov M. Effects of antibiotic treatment and phagocyte infiltration on development of Pseudomonas aeruginosa biofilm—Insights from the application of a novel PF hydrogel model in vitro and in vivo. Front Cell Infect Microbiol 2022; 12:826450. [PMID: 35959369 PMCID: PMC9362844 DOI: 10.3389/fcimb.2022.826450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background and purpose Bacterial biofilm infections are major health issues as the infections are highly tolerant to antibiotics and host immune defenses. Appropriate biofilm models are important to develop and improve to make progress in future biofilm research. Here, we investigated the ability of PF hydrogel material to facilitate the development and study of Pseudomonas aeruginosa biofilms in vitro and in vivo. Methods Wild-type P. aeruginosa PAO1 bacteria were embedded in PF hydrogel situated in vitro or in vivo, and the following aspects were investigated: 1) biofilm development; 2) host immune response and its effect on the bacteria; and 3) efficacy of antibiotic treatment. Results Microscopy demonstrated that P. aeruginosa developed typical biofilms inside the PF hydrogels in vitro and in mouse peritoneal cavities where the PF hydrogels were infiltrated excessively by polymorphonuclear leukocytes (PMNs). The bacteria remained at a level of ~106 colony-forming unit (CFU)/hydrogel for 7 days, indicating that the PMNs could not eradicate the biofilm bacteria. β-Lactam or aminoglycoside mono treatment at 64× minimal inhibitory concentration (MIC) killed all bacteria in day 0 in vitro biofilms, but not in day 1 and older biofilms, even at a concentration of 256× MIC. Combination treatment with the antibiotics at 256× MIC completely killed the bacteria in day 1 in vitro biofilms, and combination treatment in most of the cases showed significantly better bactericidal effects than monotherapies. However, in the case of the established in vivo biofilms, the mono and combination antibiotic treatments did not efficiently kill the bacteria. Conclusion Our results indicate that the bacteria formed typical biofilms in PF hydrogel in vitro and in vivo and that the biofilm bacteria were tolerant against antibiotics and host immunity. The PF hydrogel biofilm model is simple and easy to fabricate and highly reproducible with various application possibilities. We conclude that the PF hydrogel biofilm model is a new platform that will facilitate progress in future biofilm investigations, as well as studies of the efficacy of new potential medicine against biofilm infections.
Collapse
Affiliation(s)
- Hong Wu
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lulu Song
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, Singapore
| | - Joey Kuok Hoong Yam
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, Singapore
| | - Marian Plotkin
- Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hengzhuang Wang
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dror Seliktar
- Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Theodoros Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore, Singapore
| | - Niels Høiby
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhijun Song
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
- *Correspondence: Zhijun Song,
| | - Michael Givskov
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, Singapore
| |
Collapse
|
34
|
Abstract
Pseudomonas aeruginosa is an opportunistic and nosocomial pathogen of humans with hundreds of its virulence factors regulated by quorum sensing (QS) system. Small noncoding RNAs (sRNAs) are also key regulators of bacterial virulence. However, the QS regulatory sRNAs (Qrrs) that have been characterized in P. aeruginosa are still largely unknown. Here, sRNA AmiL (PA3366.1) in the amiEBCRS operon of PAO1 was identified as a novel Qrr by transcriptome sequencing (RNA-Seq). The expression of AmiL was negatively regulated by the las or rhl system, of which RhlR probably inhibited its transcription. AmiL deletion mutant and overexpressing strains were constructed in PAO1. Broad phenotypic changes were found, including reduced pyocyanin synthesis, elastase activity, biofilm formation, hemolytic activity, and cytotoxicity, as well as increased rhamnolipid production and swarming motility. AmiL appears to be a new regulator that influences diverse QS-mediated virulence. Furthermore, AmiL directly targeted PhzC, a key member of pyocyanin synthesis. AmiL also negatively regulated lasI expression in the early growth of PAO1, but predominantly increased rhlI expression and C4-HSL production in the middle and late stages. Therefore, a novel QS-sRNA signaling cascade of las/rhl (RhlR)-AmiL-PhzC/las/rhl was demonstrated, and it will help to shed new light on the virulence regulatory network of P. aeruginosa PAO1. IMPORTANCEP. aeruginosa is a common nosocomial pathogen that causes diverse opportunistic infections in humans. The virulence crucial for infection is mainly regulated by QS. Small noncoding RNAs (sRNAs) involved in virulence regulation have also been identified in many bacteria. Recently, there is a growing interest in the new sRNA species, QS regulatory sRNAs (Qrrs). Understanding Qrrs-mediated regulation in P. aeruginosa virulence is therefore important to combat infection. In this study, a previously uncharacterized sRNA AmiL in PAO1 has been identified as a novel Qrr. It has been found to influence diverse QS-mediated virulence factors including pyocyanin, elastase, rhamnolipid, and hemolysin, as well as biofilm formation, swarming motility, and cytotoxicity. Furthermore, PhzC essential for pyocyanin synthesis was a direct target of AmiL. QS gene expression and C4-HSL production were also regulated by AmiL. This study provides insights into the roles of Qrr AmiL in modulating P. aeruginosa virulence.
Collapse
|
35
|
Lin X, Song F, Wu Y, Xue D, Wang Y. Lycium barbarum polysaccharide attenuates Pseudomonas- aeruginosa pyocyanin-induced cellular injury in mice airway epithelial cells. Food Nutr Res 2022; 66:4585. [PMID: 35261577 PMCID: PMC8861857 DOI: 10.29219/fnr.v66.4585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Background Lycium barbarum berries have been utilized in Asia for many years. However, the mechanisms of its lung-defensive properties are indeterminate. Objective We investigate whether L. barbarum polysaccharide (LBP) could weaken Pseudomonas aeruginosa infection-induced lung injury. Design Mice primary air-liquid interface epithelial cultures were pretreated with LBP and subsequently treated with pyocyanin (PCN). Lung injury, including apoptosis, inflammation, and oxidative stress, was estimated by western blot, enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction, Real-time qPCR (Q-PCR). Flow cytometry was used to test cell apoptosis. Moreover, Balb/c mice were used to evaluate the tissue injury. We used hematoxylin-eosin staining and immunofluorescence to detect the expression of related proteins and tissue damage in mouse lungs and spleen. Results The flow cytometric analysis shows the potential of LBP to reduce time-dependent cell death by PCN. Mechanistically, LBP reduces PCN-induced expression of proapoptotic proteins and caspase3 and induces the activation of Bcl-2 in mice bronchial epithelial cells. Similarly, LBP reduces PCN-induced intracellular reactive oxygen species (ROS) production. Moreover, LBP inhibits the production of inflammatory cytokines, Interleukin (IL-1β), Tumor Necrosis Factor (TNF), IL-6, and IL-8. Our study confirms the ability of LBP to retard PCN-induced injury in mice lung and spleen. Conclusions The inhibition of PCN-induced lung injury by LBP is capable of protecting mice cells from injury.
Collapse
Affiliation(s)
- Xue Lin
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Fuyang Song
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Yiming Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
- Yujiong Wang and Di Xue, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China. and
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia, China
- Yujiong Wang and Di Xue, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China. and
| |
Collapse
|
36
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Ham SY, Kim HS, Jo MJ, Lee JH, Byun Y, Ko GJ, Park HD. Combined Treatment of 6-Gingerol Analog and Tobramycin for Inhibiting Pseudomonas aeruginosa Infections. Microbiol Spectr 2021; 9:e0019221. [PMID: 34704784 PMCID: PMC8549756 DOI: 10.1128/spectrum.00192-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous human pathogen that causes severe infections. Although antibiotics, such as tobramycin, are currently used for infection therapy, their antibacterial activity has resulted in the emergence of multiple antibiotic-resistant bacteria. The 6-gingerol analog, a structural derivative of the main component of ginger, is a quorum sensing (QS) inhibitor. However, it has a lower biofilm inhibitory activity than antibiotics and the possibility to cause toxicity in humans. Therefore, novel and more effective approaches for decreasing dosing concentration and increasing biofilm inhibitory activity are required to alleviate P. aeruginosa infections. In this study, a 6-gingerol analog was combined with tobramycin to treat P. aeruginosa infections. The combined treatment of 6-gingerol analog and tobramycin showed strong inhibitory activities on biofilm formation and the production of QS-related virulence factors of P. aeruginosa compared to single treatments. Furthermore, the combined treatment alleviated the infectivity of P. aeruginosa in an insect model using Tenebrio molitor larvae without inducing any cytotoxic effects in human lung epithelial cells. The 6-gingerol analog showed these inhibitory activities at much lower concentrations when used in combination with tobramycin. Adjuvant effects were observed through increased QS-disrupting processes rather than through antibacterial action. In particular, improved RhlR inactivation by this combination is a possible target for therapeutic development in LasR-independent chronic infections. Therefore, the combined treatment of 6-gingerol analog and tobramycin may be considered an effective method for treating P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is a pathogen that causes various infectious diseases through quorum-sensing regulation. Although antibiotics are mainly used to treat P. aeruginosa infections, they cause the emergence of resistant bacteria in humans. To compensate for the disadvantages of antibiotics and increase their effectiveness, natural products were used in combination with antibiotics in this study. We discovered that combined treatment with 6-gingerol analog from naturally-derived ginger substances and tobramycin resulted in more effective reductions of biofilm formation and virulence factor production in P. aeruginosa than single treatments. Our findings support the notion that when 6-gingerol analog is combined with tobramycin, the effects of the analog can be exerted at much lower concentrations. Furthermore, its improved LasR-independent RhlR inactivation may serve as a key target for therapeutic development in chronic infections. Therefore, the combined treatment of 6-gingerol analog and tobramycin is suggested as a novel alternative for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- So-Young Ham
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Han-Shin Kim
- Korean Peninsula Infrastructure Cooperation Team, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Gyeonggi-do, Republic of Korea
| | - Min Jee Jo
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jeong-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Gang-Jee Ko
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Mohy El Dine T, Jimmidi R, Diaconu A, Fransolet M, Michiels C, De Winter J, Gillon E, Imberty A, Coenye T, Vincent SP. Pillar[5]arene-Based Polycationic Glyco[2]rotaxanes Designed as Pseudomonas aeruginosa Antibiofilm Agents. J Med Chem 2021; 64:14728-14744. [PMID: 34542288 DOI: 10.1021/acs.jmedchem.1c01241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa (P.A.) is a human pathogen belonging to the top priorities for the discovery of new therapeutic solutions. Its propensity to generate biofilms strongly complicates the treatments required to cure P.A. infections. Herein, we describe the synthesis of a series of novel rotaxanes composed of a central galactosylated pillar[5]arene, a tetrafucosylated dendron, and a tetraguanidinium subunit. Besides the high affinity of the final glycorotaxanes for the two P.A. lectins LecA and LecB, potent inhibition levels of biofilm growth were evidenced, showing that their three subunits work synergistically. An antibiofilm assay using a double ΔlecAΔlecB mutant compared to the wild type demonstrated that the antibiofilm activity of the best glycorotaxane is lectin-mediated. Such antibiofilm potency had rarely been reached in the literature. Importantly, none of the final rotaxanes was bactericidal, showing that their antibiofilm activity does not depend on bacteria killing, which is a rare feature for antibiofilm agents.
Collapse
Affiliation(s)
- Tharwat Mohy El Dine
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Ravikumar Jimmidi
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Andrei Diaconu
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium.,Center of Advanced Research in Bionanoconjugates and Biopolymers "Petru Poni", Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Maude Fransolet
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Carine Michiels
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Julien De Winter
- Department of Chemistry, Laboratory of Organic Synthesis and Mass Spectrometry, University of Mons (Umons), 20 place du parc, 7000 Mons, Belgium
| | - Emilie Gillon
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Anne Imberty
- Centre de recherches sur les macromolécules végétales (CERMAV), University of Genoble Alpes, CNRS, 601 rue de la chimie, 38000 Grenoble, France
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, University of Ghent (UGent), Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
39
|
Ng RN, Grey LJ, Vaitekenas A, McLean SA, Rudrum JD, Laucirica DR, Poh MWP, Hillas J, Winslow SG, Iszatt JJ, Iosifidis T, Tai AS, Agudelo-Romero P, Chang BJ, Stick SM, Kicic A. Development and validation of a miniaturized bacteriophage host range screening assay against antibiotic resistant Pseudomonas aeruginosa. J Microbiol Methods 2021; 190:106346. [PMID: 34637818 DOI: 10.1016/j.mimet.2021.106346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance is a current global health crisis, and the increasing emergence of multidrug resistant infections has led to the resurgent interest in bacteriophages as an alternative treatment. Prior to clinical application, phage suitability is assessed, via susceptibility testing and breadth of host range to bacteriophage, however, these are both large-scale manual processes and labor-intensive. The aim of the study was to establish and validate a scaled down methodology for high-throughput screening to reduce procedural footprint. In this paper, we describe a scaled-down adapted methodology that can successfully screen bacteriophages, isolated and purified from wastewater samples. Furthermore, we describe a miniaturized host range assay against clinical Pseudomonas aeruginosa isolates using a spot test (2 μL/ drop) that was found to be both sensitive (94.6%) and specific (94.7%). It also demonstrated a positive predictive value (PPV) of 86.4% and negative predictive value (NPV) of 98%. The breadth of host range of bacteriophages that exhibited lytic activity on P. aeruginosa isolates was corroborated using the scaled down assay. The high correlation achieved in this study confirms miniaturization as the first step in future automation that could test phage diversity and efficacy as antimicrobials.
Collapse
Affiliation(s)
- Renee Nicole Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Lucinda Jane Grey
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Andrew Vaitekenas
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Samantha Abagail McLean
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jack Dylan Rudrum
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Daniel Rodolfo Laucirica
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew Wee-Peng Poh
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jessica Hillas
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Scott Glenn Winslow
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Joshua James Iszatt
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Thomas Iosifidis
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia; Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Anna Sze Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Patricia Agudelo-Romero
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Barbara Jane Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Stephen Michael Stick
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia; Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia; Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| | -
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Abd El-Ghany WA. Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet World 2021; 14:2155-2159. [PMID: 34566334 PMCID: PMC8448624 DOI: 10.14202/vetworld.2021.2155-2159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Zoonotic diseases are diseases that are transmitted from animals to humans and vice versa. Pseudomonas aeruginosa (P. aeruginosa) is a pathogen with zoonotic nature. Commercial poultry could be infected with P. aeruginosa, especially at young ages with great losses. Infection of embryos with P. aeruginosa induced death in the shell, while infection of chicks led to septicemia, respiratory and enteric infections, and high mortality. Humans are also highly susceptible to P. aeruginosa infection, and the disease is associated with severe lung damage, especially in immunocompromised patients. Chicken carcass and related poultry retail products play an important role in the transmission of P. aeruginosa to humans, especially after processing in abattoirs. Treatment of P. aeruginosa infection is extremely difficult due to continuous development of antibiotic resistance. The transfer of antibiotic-resistant genes from poultry products to humans creates an additional public health problem. Accordingly, this study focused on avian pseudomonad, especially P. aeruginosa, with respect to infection of poultry, transmission to humans, and treatment and antibiotic resistance.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
41
|
Elnagdy S, Raptopoulos M, Kormas I, Pedercini A, Wolff LF. Local Oral Delivery Agents with Anti-Biofilm Properties for the Treatment of Periodontitis and Peri-Implantitis. A Narrative Review. Molecules 2021; 26:5661. [PMID: 34577132 PMCID: PMC8467993 DOI: 10.3390/molecules26185661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Despite many discoveries over the past 20 years regarding the etiopathogenesis of periodontal and peri-implant diseases, as well as significant advances in our understanding of microbial biofilms, the incidence of these pathologies continues to rise. For this reason, it was clear that other strategies were needed to eliminate biofilms. In this review, the literature database was searched for studies on locally delivered synthetic agents that exhibit anti-biofilm properties and their potential use in the treatment of two important oral diseases: periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Shorouk Elnagdy
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| | - Michail Raptopoulos
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| | - Ioannis Kormas
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
- Department of Periodontics, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Alessandro Pedercini
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| | - Larry F. Wolff
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.); (I.K.); (A.P.); (L.F.W.)
| |
Collapse
|
42
|
Aman M, Aneeqha N, Bristi K, Deeksha J, Afza N, Sindhuja V, Shastry RP. Lactic acid bacteria inhibits quorum sensing and biofilm formation of Pseudomonas aeruginosa strain JUPG01 isolated from rancid butter. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Planktonic and Biofilm-Associated Pseudomonas aeruginosa and Staphylococcus epidermidis Elicit Differential Human Peripheral Blood Cell Responses. Microorganisms 2021; 9:microorganisms9091846. [PMID: 34576742 PMCID: PMC8470397 DOI: 10.3390/microorganisms9091846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Despite the considerable progress made in recent years, our understanding of the human immune response to microbial biofilms is still poor. The aim of the present study was to compare the in vitro response of human peripheral blood mononuclear cells (PBMC) to biofilms and planktonic cells of Pseudomonas aeruginosa and Staphylococcus epidermidis, two bacterial species particularly relevant in patients with cystic fibrosis or undergoing endovascular catheterization, respectively. PBMC isolated from healthy donors were co-cultured with 24 h-old biofilms or with exponentially growing cells of both species. Following 24 h of co-culture, the expression of early activation markers and the levels of cytokines in the culture supernatants were assessed by flow cytometry, while biofilm biomass and architecture were evaluated by crystal violet staining, CFU count, and confocal microscopy. Around 20% of PBMC was activated in response to both biofilms and planktonic cells of P. aeruginosa. In contrast, planktonic cells of S. epidermidis induced a statistically higher degree of activation than their biofilm counterpart (25% versus 15%; p < 0.01). P. aeruginosa biofilms stimulated pro-inflammatory (TNF-α, IL-1β, IFN-γ, and IL-6) and anti-inflammatory (IL-10) cytokine production at statistically significant levels higher than its planktonic counterpart, while an opposite trend was observed with S. epidermidis. Differences in the architecture of the biofilms and in the number of PBMC infiltrating the biofilms between the two bacterial species may at least partially explain these findings. Collectively, the results obtained highlighted marked differences in the host–cell response depending on the species and the mode of growth (biofilms versus planktonic cultures), allowing speculations on the different strategies adopted by P. aeruginosa and S. epidermidis to persist in the host during the course of chronic infections.
Collapse
|
44
|
Pentz JT, Lind PA. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens. PLoS Genet 2021; 17:e1009722. [PMID: 34351900 PMCID: PMC8370652 DOI: 10.1371/journal.pgen.1009722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/17/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Experimental evolution with microbes is often highly repeatable under identical conditions, suggesting the possibility to predict short-term evolution. However, it is not clear to what degree evolutionary forecasts can be extended to related species in non-identical environments, which would allow testing of general predictive models and fundamental biological assumptions. To develop an extended model system for evolutionary forecasting, we used previous data and models of the genotype-to-phenotype map from the wrinkly spreader system in Pseudomonas fluorescens SBW25 to make predictions of evolutionary outcomes on different biological levels for Pseudomonas protegens Pf-5. In addition to sequence divergence (78% amino acid and 81% nucleotide identity) for the genes targeted by mutations, these species also differ in the inability of Pf-5 to make cellulose, which is the main structural basis for the adaptive phenotype in SBW25. The experimental conditions were changed compared to the SBW25 system to test if forecasts were extendable to a non-identical environment. Forty-three mutants with increased ability to colonize the air-liquid interface were isolated, and the majority had reduced motility and was partly dependent on the Pel exopolysaccharide as a structural component. Most (38/43) mutations are expected to disrupt negative regulation of the same three diguanylate cyclases as in SBW25, with a smaller number of mutations in promoter regions, including an uncharacterized polysaccharide synthase operon. A mathematical model developed for SBW25 predicted the order of the three main pathways and the genes targeted by mutations, but differences in fitness between mutants and mutational biases also appear to influence outcomes. Mutated regions in proteins could be predicted in most cases (16/22), but parallelism at the nucleotide level was low and mutational hot spot sites were not conserved. This study demonstrates the potential of short-term evolutionary forecasting in experimental populations and provides testable predictions for evolutionary outcomes in other Pseudomonas species.
Collapse
Affiliation(s)
| | - Peter A. Lind
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
45
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand the basics of biofilm infection and be able to distinguish between planktonic and biofilm modes of growth. 2. Have a working knowledge of conventional and emerging antibiofilm therapies and their modes of action as they pertain to wound care. 3. Understand the challenges associated with testing and marketing antibiofilm strategies and the context within which these strategies may have effective value. SUMMARY The Centers for Disease Control and Prevention estimate for human infectious diseases caused by bacteria with a biofilm phenotype is 65 percent and the National Institutes of Health estimate is closer to 80 percent. Biofilms are hostile microbial aggregates because, within their polymeric matrix cocoons, they are protected from antimicrobial therapy and attack from host defenses. Biofilm-infected wounds, even when closed, show functional deficits such as deficient extracellular matrix and impaired barrier function, which are likely to cause wound recidivism. The management of invasive wound infection often includes systemic antimicrobial therapy in combination with débridement of wounds to a healthy tissue bed as determined by the surgeon who has no way of visualizing the biofilm. The exceedingly high incidence of false-negative cultures for bacteria in a biofilm state leads to missed diagnoses of wound infection. The use of topical and parenteral antimicrobial therapy without wound débridement have had limited impact on decreasing biofilm infection, which remains a major problem in wound care. Current claims to manage wound biofilm infection rest on limited early-stage data. In most cases, such data originate from limited experimental systems that lack host immune defense. In making decisions on the choice of commercial products to manage wound biofilm infection, it is important to critically appreciate the mechanism of action and significance of the relevant experimental system. In this work, the authors critically review different categories of antibiofilm products, with emphasis on their strengths and limitations as evident from the published literature.
Collapse
Affiliation(s)
- Chandan K Sen
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Sashwati Roy
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Shomita S Mathew-Steiner
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Gayle M Gordillo
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| |
Collapse
|
46
|
Paul P, Chakraborty P, Sarker RK, Chatterjee A, Maiti D, Das A, Mandal S, Bhattacharjee S, Dastidar DG, Tribedi P. Tryptophan interferes with the quorum sensing and cell surface hydrophobicity of Staphylococcus aureus: a promising approach to inhibit the biofilm development. 3 Biotech 2021; 11:376. [PMID: 34367868 PMCID: PMC8295431 DOI: 10.1007/s13205-021-02924-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus, a Gram-positive bacterium has been implicated in a plethora of human infections by virtue of its biofilm-forming ability. Inhibition in microbial biofilm formation has been found to be a promising approach towards compromising microbial pathogenesis. In this regard, various natural and synthetic molecules have been explored to attenuate microbial biofilm. In this study, the role of an amino acid, L-tryptophan was examined against the biofilm-forming ability of S. aureus. The compound did not execute any antimicrobial characteristics, instead, showed strong antibiofilm activity with the highest biofilm inhibition at a concentration of 50 µg/mL. Towards understanding the underlying mechanism of the same, efforts were given to examine whether tryptophan could inhibit biofilm formation by interfering with the quorum-sensing property of S. aureus. A molecular docking analysis revealed an efficient binding between the quorum-sensing protein, AgrA, and tryptophan. Moreover, the expression of the quorum-sensing gene (agrA) got significantly reduced under the influence of the test compound. These results indicated that tryptophan could interfere with the quorum-sensing property of the organism thereby inhibiting its biofilm formation. Further study revealed that tryptophan could also reduce the cell surface hydrophobicity of S. aureus by downregulating the expression of dltA. Moreover, the tested concentrations of tryptophan did not show any significant cytotoxicity. Hence, tryptophan could be recommended as a potential antibiofilm agent to manage the biofilm-associated infections caused by S. aureus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02924-3.
Collapse
Affiliation(s)
- Payel Paul
- Microbial Ecology Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal 743368 India
| | - Poulomi Chakraborty
- Microbial Ecology Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal 743368 India
| | - Ranojit K. Sarker
- Microbial Ecology Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal 743368 India
| | - Ahana Chatterjee
- Microbial Ecology Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal 743368 India
| | - Debasish Maiti
- Department of Human Physiology, Tripura University, Suryamaninagar, Agartala, Tripura 799022 India
| | - Amlan Das
- Department of Chemistry, NIT Sikkim, Ravangla Campus, Barfung Block, Ravangla, Sikkim 737139 India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, West Bengal, 700019 India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Agartala, Tripura 799022 India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata, West Bengal 700114 India
| | - Prosun Tribedi
- Microbial Ecology Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal 743368 India
| |
Collapse
|
47
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
48
|
Redanz U, Redanz S, Treerat P, Prakasam S, Lin LJ, Merritt J, Kreth J. Differential Response of Oral Mucosal and Gingival Cells to Corynebacterium durum, Streptococcus sanguinis, and Porphyromonas gingivalis Multispecies Biofilms. Front Cell Infect Microbiol 2021; 11:686479. [PMID: 34277471 PMCID: PMC8282179 DOI: 10.3389/fcimb.2021.686479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/06/2021] [Indexed: 01/28/2023] Open
Abstract
Polymicrobial interactions with oral mucosal surfaces determine the health status of the host. While a homeostatic balance provides protection from oral disease, a dysbiotic polymicrobial community promotes tissue destruction and chronic oral diseases. How polymicrobial communities transition from a homeostatic to a dysbiotic state is an understudied process. Thus, we were interested to investigate this ecological transition by focusing on biofilm communities containing high abundance commensal species and low abundance pathobionts to characterize the host-microbiome interactions occurring during oral health. To this end, a multispecies biofilm model was examined using the commensal species Corynebacterium durum and Streptococcus sanguinis and the pathobiont Porphyromonas gingivalis. We compared how both single and multispecies biofilms interact with different oral mucosal and gingival cell types, including the well-studied oral keratinocyte cell lines OKF4/TERT-1and hTERT TIGKs as well as human primary periodontal ligament cells. While single species biofilms of C. durum, S. sanguinis, and P. gingivalis are all characterized by unique cytokine responses for each species, multispecies biofilms elicited a response resembling S. sanguinis single species biofilms. One notable exception is the influence of P. gingivalis upon TNF-α and Gro-α production in hTERT TIGKs cells, which was not affected by the presence of other species. This study is also the first to examine the host response to C. durum. Interestingly, C. durum yielded no notable inflammatory responses from any of the tested host cells, suggesting it functions as a true commensal species. Conversely, S. sanguinis was able to induce expression and secretion of the proinflammatory cytokines IL-6 and IL-8, demonstrating a much greater inflammatory potential, despite being health associated. Our study also demonstrates the variability of host cell responses between different cell lines, highlighting the importance of developing relevant in vitro models to study oral microbiome-host interactions.
Collapse
Affiliation(s)
- Ulrike Redanz
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Sylvio Redanz
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States,Department of Translational Rheumatology and Immunology, Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Puthalayai Treerat
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Sivaraman Prakasam
- Department of Periodontology, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Li-Jung Lin
- Department of Translational Rheumatology and Immunology, Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Jens Kreth,
| |
Collapse
|
49
|
Hou S, Zhang J, Ma X, Hong Q, Fang L, Zheng G, Huang J, Gao Y, Xu Q, Zhuang X, Song X. Role of rgsA in Oxidative Stress Resistance in Pseudomonas aeruginosa. Curr Microbiol 2021; 78:3133-3141. [PMID: 34185129 DOI: 10.1007/s00284-021-02580-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen that causes infections in vulnerable patients including those with metabolic disorders, hematologic diseases, and malignancies, and in those who have undergone surgery. In addition, P. aeruginosa exhibits high intrinsic resistance to numerous antibiotics and tends to form biofilms rendering it even more refractory to treatment. Among the mechanisms used by P. aeruginosa to adapt to environmental stresses are those involving small regulatory RNAs (sRNAs), which are 40-500 nucleotides long and are ubiquitous in bacteria. sRNAs play important regulatory roles in various vital processes in diverse bacteria, with their quantity and diversity of regulatory functions exceeding those of proteins. In this study, we show that deletion of the sRNA, rgsA, decreased the growth rate of P. aeruginosa. Furthermore, ΔrgsA P. aeruginosa exhibited decreased ability to resist the stress induced by exposure to different concentrations and durations of peroxides in both planktonic and biofilm growth modes compared with the wild-type strain. These results highlight the role of rgsA in the defense of P. aeruginosa against oxidative stress.
Collapse
Affiliation(s)
- Shuyi Hou
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, 2000 Xiangan Dong Road, Xiamen, 361000, Fujian, China
| | - Jiaqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China. .,Xiamen Key Laboratory of Genetic Testing, 55 Zhenhai Road, Xiamen, 361000, Fujian, China.
| | - Xiaobo Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Qiang Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Lili Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Gangsen Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Jiaming Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Yingchun Gao
- Department of Clinical Laboratory, The First People's Hospital of Xiaoshan District, 199 Shixin Nan Road, Hangzhou, 311200, Zhejiang, China
| | - Qiaoli Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Xinguo Zhuang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Xiuyu Song
- Xiamen Blood Centre, 121 Hubin Nan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
50
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|