1
|
Huebert DNG, Ghorbani A, Lam SYB, Larijani M. Coevolution of Lentiviral Vif with Host A3F and A3G: Insights from Computational Modelling and Ancestral Sequence Reconstruction. Viruses 2025; 17:393. [PMID: 40143321 PMCID: PMC11946711 DOI: 10.3390/v17030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across diverse primate species. By constructing 3D structural homology models and integrating ancestral sequence reconstruction (ASR), we identified patterns of sequence diversity, structural conservation, and functional adaptation. Inactive CD1 (Catalytic Domain 1) domains displayed greater sequence diversity and more positive surface charges than active CD2 domains, aiding nucleotide chain binding and intersegmental transfer. Despite variability, the CD2 DNA-binding grooves remained structurally consistent with conserved residues maintaining critical functions. A3F and A3G diverged in loop 7' interaction strategies, utilising distinct molecular interactions to facilitate their roles. Vif exhibited charge variation linked to host species, reflecting its coevolution with A3 proteins. These findings illuminate how structural adaptations and charge dynamics enable both restriction factors and their viral antagonists to adapt to selective pressures. Our results emphasize the importance of studying structural evolution in host-virus interactions, with implications for understanding immune defense mechanisms, zoonotic risks, and viral evolution. This work establishes a foundation for further exploration of restriction factor diversity and coevolution across species.
Collapse
Affiliation(s)
- David Nicolas Giuseppe Huebert
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Atefeh Ghorbani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
| | - Shaw Yick Brian Lam
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| |
Collapse
|
2
|
Liu D, Hsieh CL, Lieber MR. The RNA tether model for human chromosomal translocation fragile zones. Trends Biochem Sci 2024; 49:391-400. [PMID: 38490833 PMCID: PMC11069435 DOI: 10.1016/j.tibs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.
Collapse
Affiliation(s)
- Di Liu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Chih-Lin Hsieh
- USC Norris Comprehensive Cancer Center, Department of Urology, University of Southern California, Los Angeles, CA 90089-9176, USA
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Center, Departments of Pathology and Laboratory Medicine, of Molecular Microbiology and Immunology, of Biochemistry and Molecular Medicine, and in the Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-9176, USA.
| |
Collapse
|
3
|
Lu X, Gu X, Li Y, Wu Y, Wang Q, Yu W, Chen Q. Biochemical characterization of RNase R 2'-O-methylation sensitivity. Biochimie 2023; 212:106-113. [PMID: 37105299 DOI: 10.1016/j.biochi.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
RNase R is a member of the RNA exonuclease family that digests RNA in the 3'-5' direction. Previous studies have identified RNase R from Mycoplasma genitalium (MgR) as the only RNA exonuclease that is sensitive to 2'-O-methylation (Nm) modification. However, the mechanism underlying this characteristic is not well understood. In this study, we aimed to explore the molecular mechanism of RNase R Nm sensitivity using an improved assay that can better evaluate Nm sensitivity. By comparing the sequences of five wild-type RNase R variants from Mycoplasma, we identified the importance of loop 18 in Nm sensitivity. Furthermore, we demonstrated the critical roles of L283, T278, and T279 within loop18. Our findings deepen the understanding of the molecular mechanism of why MgR is sensitive to Nm and provide a potential direction of protein engineering for applications.
Collapse
Affiliation(s)
- Xiaolan Lu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China; Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wenkui Yu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210093, China
| | - Qihan Chen
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
4
|
Jaguva Vasudevan AA, Balakrishnan K, Gertzen CGW, Borvető F, Zhang Z, Sangwiman A, Held U, Küstermann C, Banerjee S, Schumann GG, Häussinger D, Bravo IG, Gohlke H, Münk C. Loop 1 of APOBEC3C Regulates its Antiviral Activity against HIV-1. J Mol Biol 2020; 432:6200-6227. [PMID: 33068636 DOI: 10.1016/j.jmb.2020.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
APOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-to-dU deamination on viral ssDNA. Within primates, A3s have undergone a complex evolution via gene duplications, fusions, arms race, and selection. Human APOBEC3C (hA3C) efficiently restricts the replication of viral infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown reasons, it inhibits HIV-1Δvif only weakly. In catarrhines (Old World monkeys and apes), the A3C loop 1 displays the conserved amino acid pair WE, while the corresponding consensus sequence in A3F and A3D is the largely divergent pair RK, which is also the inferred ancestral sequence for the last common ancestor of A3C and of the C-terminal domains of A3D and A3F in primates. Here, we report that modifying the WE residues in hA3C loop 1 to RK leads to stronger interactions with substrate ssDNA, facilitating catalytic function, which results in a drastic increase in both deamination activity and in the ability to restrict HIV-1 and LINE-1 replication. Conversely, the modification hA3F_WE resulted only in a marginal decrease in HIV-1Δvif inhibition. We propose that the two series of ancestral gene duplications that generated A3C, A3D-CTD and A3F-CTD allowed neo/subfunctionalization: A3F-CTD maintained the ancestral RK residues in loop 1, while diversifying selection resulted in the RK → WE modification in Old World anthropoids' A3C, possibly allowing for novel substrate specificity and function.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany; Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fanni Borvető
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Held
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Alternative splicing of APOBEC3D generates functional diversity and its role as a DNA mutator. Int J Hematol 2020; 112:395-408. [PMID: 32533515 DOI: 10.1007/s12185-020-02904-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 01/27/2023]
Abstract
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) protein family members have cytidine deaminase activity and can induce cytosine to uracil transition in nucleic acid. The main function of APOBEC3 (A3) proteins is to trigger an innate immune response to viral infections. Recent reports have shown that several APOBEC family proteins such as A3B can induce somatic mutations into genomic DNA and thus promote cancer development. However, the role of A3D on somatic mutations is unclear. Here, we identified the alternative splicing of A3D, and investigated each splice variant's subcellular localization and role in DNA mutagenesis. We identified four A3D variants, which all have one or two cytidine deaminase domains. The full-length form of A3D (variant 1) and truncated forms of A3D (variant 2, 6, 7) showed the ability to induce C/G to T/A transitions in foreign DNA and genomic DNA and retained antiretroviral activity. Furthermore, we demonstrated that A3D and A3B could induce deletions that are possibly repaired by microhomology-mediated end joining (MMEJ). Taken together, our experiments illustrated that alternative splicing generates functional diversity of A3D, and some variants can act as DNA mutators in genomic DNA.
Collapse
|
6
|
Delviks-Frankenberry KA, Desimmie BA, Pathak VK. Structural Insights into APOBEC3-Mediated Lentiviral Restriction. Viruses 2020; 12:E587. [PMID: 32471198 PMCID: PMC7354603 DOI: 10.3390/v12060587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/18/2023] Open
Abstract
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.
Collapse
Affiliation(s)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; (K.A.D.-F.); (B.A.D.)
| |
Collapse
|
7
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Ito F, Yang H, Xiao X, Li SX, Wolfe A, Zirkle B, Arutiunian V, Chen XS. Understanding the Structure, Multimerization, Subcellular Localization and mC Selectivity of a Genomic Mutator and Anti-HIV Factor APOBEC3H. Sci Rep 2018; 8:3763. [PMID: 29491387 PMCID: PMC5830531 DOI: 10.1038/s41598-018-21955-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
APOBEC3H (A3H) is a member of the APOBEC3 subfamily of DNA cytosine deaminases that are important for innate immune defense and have been implicated in cancer biogenesis. To understand the structural basis for A3H biochemical function, we determined a high-resolution structure of human A3H and performed extensive biochemical analysis. The 2.49 Å crystal structure reveals a uniquely long C-terminal helix 6 (h6), a disrupted β5 strand of the canonical five-stranded β-sheet core, and a long loop 1 around the Zn-active center. Mutation of a loop 7 residue, W115, disrupted the RNA-mediated dimerization of A3H yielding an RNA-free monomeric form that still possessed nucleic acid binding and deaminase activity. A3H expressed in HEK293T cells showed RNA dependent HMW complex formation and RNase A-dependent deaminase activity. A3H has a highly positively charged surface surrounding the Zn-active center, and multiple positively charged residues within this charged surface play an important role in the RNA-mediated HMW formation and deaminase inhibition. Furthermore, these positively charged residues affect subcellular localization of A3H between the nucleus and cytosol. Finally, we have identified multiple residues of loop 1 and 7 that contribute to the overall deaminase activity and the methylcytosine selectivity.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck & Co., Inc, West Point, PA, USA
| | - Shu-Xing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brett Zirkle
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA. .,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA. .,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
9
|
Fang Y, Xiao X, Li SX, Wolfe A, Chen XS. Molecular Interactions of a DNA Modifying Enzyme APOBEC3F Catalytic Domain with a Single-Stranded DNA. J Mol Biol 2018; 430:87-101. [PMID: 29191651 PMCID: PMC5738261 DOI: 10.1016/j.jmb.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The single-stranded DNA (ssDNA) cytidine deaminase APOBEC3F (A3F) deaminates cytosine (C) to uracil (U) and is a known restriction factor of HIV-1. Its C-terminal catalytic domain (CD2) alone is capable of binding single-stranded nucleic acids and is important for deamination. However, little is known about how the CD2 interacts with ssDNA. Here we report a crystal structure of A3F-CD2 in complex with a 10-nucleotide ssDNA composed of poly-thymine, which reveals a novel positively charged nucleic acid binding site distal to the active center that plays a key role in substrate DNA binding and catalytic activity. Lysine and tyrosine residues within this binding site interact with the ssDNA, and mutating these residues dramatically impairs both ssDNA binding and catalytic activity. This binding site is not conserved in APOBEC3G (A3G), which may explain differences in ssDNA-binding characteristics between A3F-CD2 and A3G-CD2. In addition, we observed an alternative Zn-coordination conformation around the active center. These findings reveal the structural relationships between nucleic acid interactions and catalytic activity of A3F.
Collapse
Affiliation(s)
- Yao Fang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; 161 Hospital of PLA, Wuhan, 430012, China; Department of Clinical Microbiology and Immunology of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shu-Xing Li
- Center of Excellence in NanoBiophysics, Los Angeles, CA 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Wan L, Nagata T, Katahira M. Influence of the DNA sequence/length and pH on deaminase activity, as well as the roles of the amino acid residues around the catalytic center of APOBEC3F. Phys Chem Chem Phys 2018; 20:3109-3117. [DOI: 10.1039/c7cp04477a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The roles of the amino acid residues responsible for the deaminase activity of APOBEC3F were identified by mutation analysis.
Collapse
Affiliation(s)
- Li Wan
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Takashi Nagata
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Masato Katahira
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| |
Collapse
|
11
|
Wan L, Nagata T, Morishita R, Takaori-Kondo A, Katahira M. Observation by Real-Time NMR and Interpretation of Length- and Location-Dependent Deamination Activity of APOBEC3B. ACS Chem Biol 2017; 12:2704-2708. [PMID: 28952713 DOI: 10.1021/acschembio.7b00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human APOBEC3B (A3B) deaminates a cytosine into a uracil in single-stranded (ss) DNA, resulting in human cancers. A3B's deamination activity is conferred by its C-terminal domain (CTD). However, little is known about the mechanism by which target sequences are searched and deaminated. Here, we applied a real-time NMR method to elucidate the deamination properties. We found that A3B CTD shows higher activity toward its target sequence in short ssDNA and efficiently deaminates a target sequence located near the center of ssDNA. These properties are quite different from those of well-studied APOBEC3G, which shows higher activity toward its target sequence in long ssDNA and one located close to the 5'-end. The unique properties of the A3B CTD can be rationally interpreted by considering that after nonspecific binding to ssDNA, A3B slides only for a relatively short distance and tends to dissociate from the ssDNA before reaching the target sequence.
Collapse
Affiliation(s)
- Li Wan
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| | - Takashi Nagata
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., 790-8577, Matsuyama, Ehime, Japan
| | - Akifumi Takaori-Kondo
- Department
of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Masato Katahira
- Institute
of Advanced Energy and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan
| |
Collapse
|
12
|
Xiao X, Yang H, Arutiunian V, Fang Y, Besse G, Morimoto C, Zirkle B, Chen XS. Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Res 2017; 45:7494-7506. [PMID: 28575276 PMCID: PMC5499559 DOI: 10.1093/nar/gkx362] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/27/2017] [Indexed: 12/26/2022] Open
Abstract
The catalytic activity of human cytidine deaminase APOBEC3B (A3B) has been correlated with kataegic mutational patterns within multiple cancer types. The molecular basis of how the N-terminal non-catalytic CD1 regulates the catalytic activity and consequently, biological function of A3B remains relatively unknown. Here, we report the crystal structure of a soluble human A3B-CD1 variant and delineate several structural elements of CD1 involved in molecular assembly, nucleic acid interactions and catalytic regulation of A3B. We show that (i) A3B expressed in human cells exists in hypoactive high-molecular-weight (HMW) complexes, which can be activated without apparent dissociation into low-molecular-weight (LMW) species after RNase A treatment. (ii) Multiple surface hydrophobic residues of CD1 mediate the HMW complex assembly and affect the catalytic activity, including one tryptophan residue W127 that likely acts through regulating nucleic acid binding. (iii) One of the highly positively charged surfaces on CD1 is involved in RNA-dependent attenuation of A3B catalysis. (iv) Surface hydrophobic residues of CD1 are involved in heterogeneous nuclear ribonucleoproteins (hnRNPs) binding to A3B. The structural and biochemical insights described here suggest that unique structural features on CD1 regulate the molecular assembly and catalytic activity of A3B through distinct mechanisms.
Collapse
Affiliation(s)
- Xiao Xiao
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- These authors contributed equally to this work as first authors
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- These authors contributed equally to this work as first authors
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yao Fang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Clinical Microbiology and Immunology of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- 161 Hospital, Wuhan 430012, China
| | - Guillaume Besse
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Polytech' Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand, France
| | - Cherie Morimoto
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Brett Zirkle
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S. Chen
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- To whom correspondence should be addressed. Tel: +1 213 740 5487; Fax: +1 213 740 4340;
| |
Collapse
|
13
|
Yang B, Li X, Lei L, Chen J. APOBEC: From mutator to editor. J Genet Genomics 2017; 44:423-437. [PMID: 28964683 DOI: 10.1016/j.jgg.2017.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could be correlated with cancer development and poor prognosis. Recently, APOBEC family members have been combined with the versatile CRISPR/Cas9 system to perform targeted base editing or induce hypermutagenesis. This combination improved the CRISPR/Cas9-mediated gene editing at single-base precision, greatly enhancing its usefulness. Here, we review the physiological functions and structural characteristics of APOBEC family members and their roles as endogenous mutators that contribute to hypermutations during carcinogenesis. We also review the various iterations of the APOBEC-CRISPR/Cas9 gene-editing tools, pointing out their features and limitations as well as the possibilities for future developments.
Collapse
Affiliation(s)
- Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaosa Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Ito F, Fu Y, Kao SCA, Yang H, Chen XS. Family-Wide Comparative Analysis of Cytidine and Methylcytidine Deamination by Eleven Human APOBEC Proteins. J Mol Biol 2017; 429:1787-1799. [PMID: 28479091 DOI: 10.1016/j.jmb.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/17/2023]
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) proteins are a family of cytidine deaminases involved in various important biological processes such as antibody diversification/maturation, restriction of viral infection, and generation of somatic mutations. Catalytically active APOBEC proteins execute their biological functions mostly through deaminating cytosine (C) to uracil on single-stranded DNA/RNA. Activation-induced cytidine deaminase, one of the APOBEC members, was reported to deaminate methylated cytosine (mC) on DNA, and this mC deamination was proposed to be involved in the demethylation of mC for epigenetic regulation. The mC deamination activity is later demonstrated for APOBEC3A (A3A) and more recently for APOBEC3B and APOBEC3H (A3H). Despite extensive studies on APOBEC proteins, questions regarding whether the rest of APOBEC members have any mC deaminase activity and what are the relative deaminase activities for each APOBEC member remain unclear. Here, we performed a family-wide analysis of deaminase activities on C and mC by using purified recombinant proteins for 11 known human APOBEC proteins under similar conditions. Our comprehensive analyses revealed that each APOBEC has unique deaminase activity and selectivity for mC. A3A and A3H showed distinctively high deaminase activities on C and mC with relatively high selectivity for mC, whereas six other APOBEC members showed relatively low deaminase activity and selectivity for mC. Our mutational analysis showed that loop-1 of A3A is responsible for its high deaminase activity and selectivity for mC. These findings extend our understanding of APOBEC family proteins that have important roles in diverse biological functions and in genetic mutations.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shen-Chi A Kao
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Jaguva Vasudevan AA, Hofmann H, Willbold D, Häussinger D, Koenig BW, Münk C. Enhancing the Catalytic Deamination Activity of APOBEC3C Is Insufficient to Inhibit Vif-Deficient HIV-1. J Mol Biol 2017; 429:1171-1191. [DOI: 10.1016/j.jmb.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
|
16
|
Abstract
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this discovery there was much speculation concerning the mechanism of base modification RNA editing which has been rekindled by the discovery of multiple C to U RNA editing events in the 3′ UTRs of mRNAs and the finding that other members of the APOBEC family while able to bind RNA, have the biological function of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1 involving the assembly of a multi protein containing editosome. This review will summarize our current understanding of the structure and function of APOBEC proteins and examine how RNA binding to them may be a regulatory mechanism.
Collapse
Affiliation(s)
- Harold C Smith
- a University of Rochester, School of Medicine and Dentistry , Department of Biochemistry and Biophysics , Rochester , NY , USA
| |
Collapse
|
17
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
18
|
Gu J, Chen Q, Xiao X, Ito F, Wolfe A, Chen XS. Biochemical Characterization of APOBEC3H Variants: Implications for Their HIV-1 Restriction Activity and mC Modification. J Mol Biol 2016; 428:4626-4638. [PMID: 27534815 DOI: 10.1016/j.jmb.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
APOBEC3H (A3H) is the most polymorphic member of the APOBEC3 family. Seven haplotypes (hap I-VII) and four mRNA splicing variants (SV) of A3H have been identified. The various haplotypes differ in anti-HIV activity, which is attributed to differences in protein stability, subcellular distribution, and/or RNA binding and virion packaging. Here, we report the first comparative biochemical studies of all the A3H variants using highly purified proteins. We show that all haplotypes were stably expressed and could be purified to homogeneity by Escherichia coli expression. Surprisingly, four out of the seven haplotypes showed high cytosine (C) deaminase activity, with hap V displaying extremely high activity that was comparable to the highly active A3A. Furthermore, all four haplotypes that were active in C deamination were also highly active on methylated C (mC), with hap II displaying almost equal deamination efficiency on both. The deamination activity of these A3H variants correlates well with their reported anti-HIV activity for the different haplotypes, suggesting that deaminase activity may be an important factor in determining their respective anti-HIV activities. Moreover, mC deamination of A3H displayed a strong preference for the sequence motif of T-mCpG-C/G, which may suggest a potential role in genomic mC modification at the characteristic "CpG" island motif.
Collapse
Affiliation(s)
- Jiang Gu
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Qihan Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Fumiaki Ito
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|