1
|
Wang R, Dai F, Deng Z, Tang L, Liu H, Xia L, Cheng Y. ITGA3 participates in the pathogenesis of recurrent spontaneous abortion by downregulating ULK1-mediated autophagy to inhibiting trophoblast function. Am J Physiol Cell Physiol 2025; 328:C1941-C1956. [PMID: 39437445 DOI: 10.1152/ajpcell.00563.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a significant challenge encountered by couples of reproductive ages, with inadequate trophoblast invasion identified as a primary factor in RSA pathogenesis. However, the precise molecular mechanisms through which trophoblast cell dysfunction leads to RSA remain incompletely understood. Research has highlighted the critical role of integrins in embryo implantation and development. Although integrin α-3 (ITGA3) is recognized for its promotion of invasion in cancer cells, its involvement in miscarriage remains poorly characterized. This investigation initially assessed ITGA3 expression in villous tissues obtained from patients with RSA and patients with induced abortion. The findings demonstrated a notable reduction in ITGA3 levels in the villous tissues of patients with RSA compared with the control group. Subsequent in vitro analyses indicated that ITGA3 knockdown inhibited the migration, invasion, and proliferation of trophoblast cells. Through RNA sequencing and subsequent experimentation, it was revealed that ITGA3 regulated Unc51-like kinase 1 (ULK1)-mediated autophagy to influence trophoblast cell invasion, migration, and proliferation. Furthermore, utilizing a miscarriage animal model, the diminished expression of ITGA3 and ULK1 in the placentas of RSA mice was confirmed. In conclusion, the study findings suggest that the downregulation of ITGA3 suppresses ULK1 expression, consequently impeding autophagy to initiation and impeding trophoblast cell invasion and migration, thereby contributing to the pathological progression of RSA.NEW & NOTEWORTHY There is a strong correlation between the reduced expression of ITGA3 in villous tissues and RSA. ITGA3 facilitates the expression of ULK1, thereby promoting autophagy formation and elevating autophagy levels in trophoblast cells. Consequently, this enhances the invasion and migration abilities of trophoblast cells.
Collapse
Affiliation(s)
- Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Liangbin Xia
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Di Buduo CA, Careddu F, Metti S, Lunghi M, Diprima S, Camilotto V, Bruni G, Gianelli U, Tosi D, Perotti C, Del Fante C, Cazzola M, Braghetta P, Kaplan DL, Minetti G, Malcovati L, Balduini A. In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands. Blood Adv 2025; 9:2192-2206. [PMID: 39951616 PMCID: PMC12083923 DOI: 10.1182/bloodadvances.2024014905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 01/05/2025] [Indexed: 02/16/2025] Open
Abstract
ABSTRACT The pursuit of ex vivo erythrocyte generation has led to the development of various culture systems that simulate the bone marrow microenvironment. However, these models often fail to fully replicate the hematopoietic niche's complex dynamics. In our research, we use a comprehensive strategy that emphasizes physiological red blood cell (RBC) differentiation using a minimal cytokine regimen. A key innovation in our approach is the integration of a 3-dimensional (3D) silk-based scaffold engineered to mimic both the physical and chemical properties of human bone marrow. This scaffold facilitates critical macrophage-RBC interactions and incorporates fibronectin functionalization to support the formation of erythroblastic island (EBI)-like niches. We observed diverse stages of erythroblast maturation within these niches, driven by the activation of autophagy, which promotes organelle clearance and membrane remodeling. This process leads to reduced surface integrin expression and significantly enhances RBC enucleation. Using a specialized bioreactor chamber, millions of RBCs can be detached from the EBIs and collected in transfusion bags via dynamic perfusion. Inhibition of autophagy through pharmacological agents or α4 integrin blockade disrupted EBI formation, preventing cells from completing their final morphological transformations, having them trapped in the erythroblast stage. Our findings underscore the importance of the bone marrow niche in maintaining the structural integrity of EBIs and highlight the critical role of autophagy in facilitating organelle clearance during RBC maturation. RNA sequencing analysis further confirmed that these processes are uniquely supported by the 3D silk scaffold, which is essential for enhancing RBC production ex vivo.
Collapse
Affiliation(s)
| | | | - Samuele Metti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marco Lunghi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Santo Diprima
- Bioinformatic Division, Center for Omics Sciences, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Virginia Camilotto
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Giovanna Bruni
- Center for Colloid and Surface Science-Department of Chemistry, Physical-Chemistry Section, University of Pavia, Pavia, Italy
| | - Umberto Gianelli
- Department of Health Sciences, University of Milan, Struttura Complessa di Anatomia Patologica, Azienda Socio-Sanitaria Territoriale-Santi Paolo e Carlo, Milan, Italy
| | - Delfina Tosi
- Department of Health Sciences, University of Milan, Struttura Complessa di Anatomia Patologica, Azienda Socio-Sanitaria Territoriale-Santi Paolo e Carlo, Milan, Italy
| | - Cesare Perotti
- Division of Immunohaematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Claudia Del Fante
- Division of Immunohaematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Giampaolo Minetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
3
|
Chantachotikul P, Liu S, Furukawa K, Deguchi S. AP2A1 modulates cell states between senescence and rejuvenation. Cell Signal 2025; 127:111616. [PMID: 39848456 DOI: 10.1016/j.cellsig.2025.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood. Here we focus on the reorganization of actin stress fibers induced upon replicative senescence in human fibroblasts, widely used as a senescent cell model. We identified, together with our previous proteomic study, that AP2A1 (alpha 1 adaptin subunit of the adaptor protein 2) is upregulated in senescent cells along the length of enlarged stress fibers. Knockdown of AP2A1 reversed senescence-associated phenotypes, exhibiting features of cellular rejuvenation, while its overexpression in young cells advanced senescence phenotypes. Similar functions of AP2A1 were identified in UV- or drug-induced senescence and were observed in epithelial cells as well. Furthermore, we found that AP2A1 is colocalized with integrin β1, and both proteins move linearly along stress fibers. With the observations that focal adhesions are enlarged in senescent cells and that this coincides with strengthened cell adhesion to the substrate, these results suggest that senescent cells maintain their large size by reinforcing their effective anchorage through integrin β1 translocation along stress fibers. This mechanism may work efficiently in senescent cells, compared with a case relying on random diffusion of integrin β1, given the enlarged cell size and resulting increase in travel time and distance for endocytosed vesicle transportation.
Collapse
Affiliation(s)
- Pirawan Chantachotikul
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Kana Furukawa
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Japan.
| |
Collapse
|
4
|
Liu F, Zhu Z, Zou H, Huang Z, Xiao S, Li Z. Novel Insights from Comprehensive Bioinformatics Analysis Utilizing Large-Scale Human Transcriptomes and Experimental Validation: The Role of Autophagy in Periodontitis. J Inflamm Res 2024; 17:11861-11880. [PMID: 39758938 PMCID: PMC11697667 DOI: 10.2147/jir.s492048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Objective Autophagy plays a crucial role in the pathophysiology of periodontitis, yet its precise involvement in the disease process remains elusive. The aim of the present study was thus to investigate the involvement of autophagy in the pathology of periodontitis. This investigation involved transcriptomic analysis of a broad range of human samples and complemented by in vitro experimentation. Materials and Methods We analyzed the transcriptomes of human gingival tissues from individuals with periodontitis and health controls to identify the differential expression of autophagy-related genes (DEARGs) and to investigate their potential interactions and functional pathways. Additionally, protein-protein interaction (PPI) networks were constructed to identify key functional modules and hub genes. Experimental validation of autophagy regulation in periodontitis and identification of key autophagy-regulating genes was accomplished through in vitro cellular experiments. Subsequently, a comprehensive analysis of immune cell infiltrate utilizing the CIBERSORT algorithm was performed. Finally, leveraging the DSigDB database, potential candidate drugs for periodontitis treatment targeting autophagy were predicted. Results A total of 79 genes have been identified as DEARGs in periodontitis. An intricate interplay among the DEARGs and their impact on the regulatory mechanisms of autophagy within the context of periodontitis was observed. Subsequently, 10 hub genes were discerned through the establishment of a PPI network. Furthermore, dysregulated autophagic activity in periodontitis was validated, and 9 key genes (APP, KDR, IL1B, CXCL12, CXCR4, IL6, FOS, LCK, and SHC1) were identified through in vitro experiments. Our analysis unveiled an association between these genes and altered immune cell infiltration in periodontitis. Additionally, we predicted potential therapeutic agents such as curcumin, 27-hydroxycholesterol, and Trolox, showing promise in the treatment of periodontitis by modulating the autophagic process. Conclusion This study identified nine key genes for autophagy regulation and potential therapeutic agents in periodontitis. These findings not only enhance our comprehension of the pathological mechanisms of periodontitis but also provide substantial evidence for the advancement of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fen Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Zhipeng Zhu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Huaxi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhen Huang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Shengkai Xiao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Zhihua Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
5
|
Ruan Y, Xue Y, Zhang P, Jia J. Acetylation of FOXO1 is involved in cadmium-induced rat kidney injury via mediating autophagosome-lysosome fusion blockade and autophagy inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117253. [PMID: 39536554 DOI: 10.1016/j.ecoenv.2024.117253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd), a potentially toxic elements, has the potential to cause harm to the kidneys. Studies has demonstrated that autophagosome-lysosome fusion blockade and consequent autophagy inhibition is related to Cd-induced kidney injury. Studies indicate that acetylation of forkhead box protein O1 (FOXO1) as a transcriptional factor of lysosomal and autophagy genes, but its roles in Cd-exposed kidney tissues remains unclear till now. Therefore, the present study was conducted to elucidate this issue. Data found that Cd enhances the acetylation level of FOXO1 and inhibits the expression level of silent information regulator 1 (Sirt1, deacetylase of FOXO1). Pharmacological activation of Sirt1 (SRT2104 treatment) decreases Cd-increased acetylation level of FOXO1, enhances Cd-inhibited transcription level of Ras-related protein 7 (Rab7), restores Cd-blocked fusion of autophagosome and lysosome, and alleviates Cd-induced autophagy inhibition. Moreover, data corroborated that inhibiting the acetylation level of FOXO1 is conductive to mitigating Cd-induced kidney injury. Collectively, these results demonstrate that acetylation of FOXO1 mediates the autophagosome-lysosome fusion blockade and autophagy inhibition during Cd-induced kidney injury, while regulating the acetylation level of FOXO1 may be a potential mechanism of treating nephrotoxicity after Cd exposure.
Collapse
Affiliation(s)
- Yingxin Ruan
- Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Yang Xue
- Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Pengyu Zhang
- Department of Blood Transfusion, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China.
| | - Junya Jia
- Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin 300052, PR China.
| |
Collapse
|
6
|
Dergilev K, Gureenkov A, Parfyonova Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int J Mol Sci 2024; 25:10097. [PMID: 39337582 PMCID: PMC11432168 DOI: 10.3390/ijms251810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network. In recent years, autophagy has been recognized as a crucial regulator of the vascular microenvironment responsible for maintaining basic cell functions such as proliferation, differentiation, replicative senescence, and apoptosis. Experimental studies indicate that autophagy activation can be enhanced or inhibited in various pathologies associated with vascular dysfunction, suggesting that autophagy plays both beneficial and detrimental roles. Here, we review and assess the principles of autophagy organization and regulation in non-tumor vascular niches. Our analysis focuses on significant figures in the vascular microenvironment, highlighting the role of autophagy and summarizing evidence that supports the systemic or multiorgan nature of the autophagy effects. Finally, we discuss the critical organizational and functional aspects of the vasculogenic niche, specifically in relation to autophagy. The resulting dysregulation of the vascular microenvironment contributes to the development of vascular dysfunction.
Collapse
Affiliation(s)
- Konstantin Dergilev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandre Gureenkov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Jung S, Cheong S, Lee Y, Lee J, Lee J, Kwon MS, Oh YS, Kim T, Ha S, Kim SJ, Jo DH, Ko J, Jeon NL. Integrating Vascular Phenotypic and Proteomic Analysis in an Open Microfluidic Platform. ACS NANO 2024; 18:24909-24928. [PMID: 39208278 PMCID: PMC11394367 DOI: 10.1021/acsnano.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This research introduces a vascular phenotypic and proteomic analysis (VPT) platform designed to perform high-throughput experiments on vascular development. The VPT platform utilizes an open-channel configuration that facilitates angiogenesis by precise alignment of endothelial cells, allowing for a 3D morphological examination and protein analysis. We study the effects of antiangiogenic agents─bevacizumab, ramucirumab, cabozantinib, regorafenib, wortmannin, chloroquine, and paclitaxel─on cytoskeletal integrity and angiogenic sprouting, observing an approximately 50% reduction in sprouting at higher drug concentrations. Precise LC-MS/MS analyses reveal global protein expression changes in response to four of these drugs, providing insights into the signaling pathways related to the cell cycle, cytoskeleton, cellular senescence, and angiogenesis. Our findings emphasize the intricate relationship between cytoskeletal alterations and angiogenic responses, underlining the significance of integrating morphological and proteomic data for a comprehensive understanding of angiogenesis. The VPT platform not only advances our understanding of drug impacts on vascular biology but also offers a versatile tool for analyzing proteome and morphological features across various models beyond blood vessels.
Collapse
Affiliation(s)
- Sangmin Jung
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Sunghun Cheong
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Yoonho Lee
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jungseub Lee
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jihye Lee
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Min-Seok Kwon
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
- Department
of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Sun Oh
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Taewan Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs,
Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT
Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university
Semiconductor Research Center, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Dong Hyun Jo
- Department
of Anatomy and Cell Biology, Seoul National
University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Ko
- Department
of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic
of Korea
| | - Noo Li Jeon
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic
of Korea
- Qureator, Inc., San
Diego, California 92121, United States
| |
Collapse
|
8
|
Marquez J, Dong J, Hayashi J, Serrero G. Prostaglandin F2 Receptor Negative Regulator (PTGFRN) Expression Correlates With a Metastatic-like Phenotype in Epidermoid Carcinoma, Pediatric Medulloblastoma, and Mesothelioma. J Cell Biochem 2024; 125:e30616. [PMID: 38924562 DOI: 10.1002/jcb.30616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin β1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Jorge Marquez
- Department of Pharmaceutical Sciences, Baltimore School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jianping Dong
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jun Hayashi
- Precision Antibody Service, Columbia, Maryland, USA
| | - Ginette Serrero
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
- Precision Antibody Service, Columbia, Maryland, USA
| |
Collapse
|
9
|
Romenskaja D, Jonavičė U, Pivoriūnas A. Extracellular vesicles promote autophagy in human microglia through lipid raft-dependent mechanisms. FEBS J 2024; 291:3706-3722. [PMID: 38840471 DOI: 10.1111/febs.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Autophagy dysfunction has been closely related with pathogenesis of many neurodegenerative diseases and therefore represents a potential therapeutic target. Extracellular vesicles (EVs) may act as potent anti-inflammatory agents and also modulators of autophagy in target cells. However, the molecular mechanisms by which EVs modulate autophagy flux in human microglia remain largely unexplored. In the present study, we investigated the effects of EVs derived from human oral mucosa stem cells on the autophagy in human microglia. We demonstrate that EVs promoted autophagy and autophagic flux in human microglia and that this process was dependent on the integrity of lipid rafts. Lipopolysaccharide (LPS) also activated autophagy, but combined treatment with EVs and LPS suppressed autophagy response, indicating interference between these signaling pathways. Blockage of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody suppressed EV-induced autophagy. Furthermore, inhibition of the EV-associated heat shock protein (HSP70) chaperone which is one of the endogenous ligands of the TLR4 also suppressed EV-induced lipid raft formation and autophagy. Pre-treatment of microglia with a selective inhibitor of αvβ3/αvβ5 integrins cilengitide inhibited EV-induced autophagy. Finally, blockage of purinergic P2X4 receptor (P2X4R) with selective inhibitor 5-BDBD also suppressed EV-induced autophagy. In conclusion, we demonstrate that EVs activate autophagy in human microglia through interaction with HSP70/TLR4, αVβ3/αVβ5, and P2X4R signaling pathways and that these effects depend on the integrity of lipid rafts. Our findings could be used to develop new therapeutic strategies targeting disease-associated microglia.
Collapse
Affiliation(s)
- Diana Romenskaja
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
10
|
Öz-Arslan D, Durer ZA, Kan B. G protein-coupled receptor-mediated autophagy in health and disease. Br J Pharmacol 2024. [PMID: 38501194 DOI: 10.1111/bph.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse superfamily of mammalian transmembrane proteins. These receptors are involved in a wide range of physiological functions and are targets for more than a third of available drugs in the market. Autophagy is a cellular process involved in degrading damaged proteins and organelles and in recycling cellular components. Deficiencies in autophagy are involved in a variety of pathological conditions. Both GPCRs and autophagy are essential in preserving homeostasis and cell survival. There is emerging evidence suggesting that GPCRs are direct regulators of autophagy. Additionally, autophagic machinery is involved in the regulation of GPCR signalling. The interplay between GPCR and autophagic signalling mechanisms significantly impacts on health and disease; however, there is still an incomplete understanding of the underlying mechanisms and therapeutic implications in different tissues and disease contexts. This review aims to discuss the interactions between GPCR and autophagy signalling. Studies on muscarinic receptors, beta-adrenoceptors, taste receptors, purinergic receptors and adhesion GPCRs are summarized, in relation to autophagy.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
- Department of Biochemistry, Acibadem MAA University, School of Pharmacy, Istanbul, Turkey
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Li DW, Tan JZ, Li ZF, Ou LJ. Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense. CHEMOSPHERE 2024; 349:140844. [PMID: 38042419 DOI: 10.1016/j.chemosphere.2023.140844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.
Collapse
Affiliation(s)
- Da-Wei Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Jin-Zhou Tan
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Zhuo-Fan Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Lin-Jian Ou
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
12
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
13
|
Zou Y, Shan Z, Han Z, Yang J, Lin Y, Gong Z, Xie L, Xu J, Xie R, Chen Z, Chen Z. Regulating Blood Clot Fibrin Films to Manipulate Biomaterial-Mediated Foreign Body Responses. RESEARCH (WASHINGTON, D.C.) 2023; 6:0225. [PMID: 37719049 PMCID: PMC10503960 DOI: 10.34133/research.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023]
Abstract
The clinical efficacy of implanted biomaterials is often compromised by host immune recognition and subsequent foreign body responses (FBRs). During the implantation, biomaterials inevitably come into direct contact with the blood, absorbing blood protein and forming blood clot. Many studies have been carried out to regulate protein adsorption, thus manipulating FBR. However, the role of clot surface fibrin films formed by clotting shrinkage in host reactions and FBR is often ignored. Because of the principle of fibrin film formation being relevant to fibrinogen or clotting factor absorption, it is feasible to manipulate the fibrin film formation via tuning the absorption of fibrinogen and clotting factor. As biological hydroxyapatite reserved bone architecture and microporous structure, the smaller particle size may expose more microporous structures and adsorb more fibrinogen or clotting factor. Therefore, we set up 3 sizes (small, <0.2 mm; medium, 1 to 2 mm; large, 3 to 4 mm) of biological hydroxyapatite (porcine bone-derived hydroxyapatite) with different microporous structures to investigate the absorption of blood protein, the formation of clot surface fibrin films, and the subsequent FBR. We found that small group adsorbed more clotting factors because of more microporous structures and formed the thinnest and sparsest fibrin films. These thinnest and sparsest fibrin films increased inflammation and profibrosis of macrophages through a potential signaling pathway of cell adhesion-cytoskeleton-autophagy, leading to the stronger FBR. Large group adsorbed lesser clotting factors, forming the thickest and densest fibrin films, easing inflammation and profibrosis of macrophages, and finally mitigating FBR. Thus, this study deepens the understanding of the role of fibrin films in host recognition and FBR and demonstrates the feasibility of a strategy to regulate FBR by modulating fibrin films via tuning the absorption of blood proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology,
Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| |
Collapse
|
14
|
Sakanyan V, Iradyan N, Alves de Sousa R. Targeted Strategies for Degradation of Key Transmembrane Proteins in Cancer. BIOTECH 2023; 12:57. [PMID: 37754201 PMCID: PMC10526213 DOI: 10.3390/biotech12030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
Targeted protein degradation is an attractive technology for cancer treatment due to its ability to overcome the unpredictability of the small molecule inhibitors that cause resistance mutations. In recent years, various targeted protein degradation strategies have been developed based on the ubiquitin-proteasome system in the cytoplasm or the autophagy-lysosomal system during endocytosis. In this review, we describe and compare technologies for the targeted inhibition and targeted degradation of the epidermal growth factor receptor (EGFR), one of the major proteins responsible for the onset and progression of many types of cancer. In addition, we develop an alternative strategy, called alloAUTO, based on the binding of new heterocyclic compounds to an allosteric site located in close proximity to the EGFR catalytic site. These compounds cause the targeted degradation of the transmembrane receptor, simultaneously activating both systems of protein degradation in cells. Damage to the EGFR signaling pathways promotes the inactivation of Bim sensor protein phosphorylation, which leads to the disintegration of the cytoskeleton, followed by the detachment of cancer cells from the extracellular matrix, and, ultimately, to cancer cell death. This hallmark of targeted cancer cell death suggests an advantage over other targeted protein degradation strategies, namely, the fewer cancer cells that survive mean fewer chemotherapy-resistant mutants appear.
Collapse
Affiliation(s)
- Vehary Sakanyan
- Faculté de Pharmacie, Université de Nantes, 44035 Nantes, France
- ProtNeteomix, 29 rue de Provence, 44700 Orvault, France
| | - Nina Iradyan
- Institute of Fine Organic Chemistry after A. Mnjoyan, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
| | - Rodolphe Alves de Sousa
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, UMR 8601, CBMIT, 75006 Paris, France;
| |
Collapse
|
15
|
Satta S, Beal R, Smith R, Luo X, Ferris GR, Langford-Smith A, Teasdale J, Ajime TT, Serré J, Hazell G, Newby GS, Johnson JL, Kurinna S, Humphries MJ, Gayan-Ramirez G, Libby P, Degens H, Yu B, Johnson T, Alexander Y, Jia H, Newby AC, White SJ. A Nrf2-OSGIN1&2-HSP70 axis mediates cigarette smoke-induced endothelial detachment: implications for plaque erosion. Cardiovasc Res 2023; 119:1869-1882. [PMID: 36804807 PMCID: PMC10405570 DOI: 10.1093/cvr/cvad022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 02/20/2023] Open
Abstract
AIMS Endothelial erosion of plaques is responsible for ∼30% of acute coronary syndromes (ACS). Smoking is a risk factor for plaque erosion, which most frequently occurs on the upstream surface of plaques where the endothelium experiences elevated shear stress. We sought to recreate these conditions in vitro to identify potential pathological mechanisms that might be of relevance to plaque erosion. METHODS AND RESULTS Culturing human coronary artery endothelial cells (HCAECs) under elevated flow (shear stress of 7.5 Pa) and chronically exposing them to cigarette smoke extract (CSE) and tumour necrosis factor-alpha (TNFα) recapitulated a defect in HCAEC adhesion, which corresponded with augmented Nrf2-regulated gene expression. Pharmacological activation or adenoviral overexpression of Nrf2 triggered endothelial detachment, identifying Nrf2 as a mediator of endothelial detachment. Growth/Differentiation Factor-15 (GDF15) expression was elevated in this model, with protein expression elevated in the plasma of patients experiencing plaque erosion compared with plaque rupture. The expression of two Nrf2-regulated genes, OSGIN1 and OSGIN2, was increased by CSE and TNFα under elevated flow and was also elevated in the aortas of mice exposed to cigarette smoke in vivo. Knockdown of OSGIN1&2 inhibited Nrf2-induced cell detachment. Overexpression of OSGIN1&2 induced endothelial detachment and resulted in cell cycle arrest, induction of senescence, loss of focal adhesions and actin stress fibres, and disturbed proteostasis mediated in part by HSP70, restoration of which reduced HCAEC detachment. In ACS patients who smoked, blood concentrations of HSP70 were elevated in plaque erosion compared with plaque rupture. CONCLUSION We identified a novel Nrf2-OSGIN1&2-HSP70 axis that regulates endothelial adhesion, elevated GDF15 and HSP70 as biomarkers for plaque erosion in patients who smoke, and two therapeutic targets that offer the potential for reducing the risk of plaque erosion.
Collapse
Affiliation(s)
- Sandro Satta
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Robert Beal
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Rhys Smith
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Glenn R Ferris
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Alex Langford-Smith
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Jack Teasdale
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Georgina Hazell
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Graciela Sala Newby
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Jason L Johnson
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Svitlana Kurinna
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Peter Libby
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto g. 6, LT-44221 Kaunas, Lithuania
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Thomas Johnson
- Department of Cardiology, Bristol Heart Institute, Upper Maudlin St., Bristol BS2 8HW, UK
| | - Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Andrew C Newby
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
16
|
He J, Wang K, Liu M, Zeng W, Li D, Majigsuren Z, Batbaatar T, Li Y, Liu S, Du X, Lei L, Song Y, Liu G. β-hydroxybutyrate enhances bovine neutrophil adhesion by inhibiting autophagy. Front Immunol 2023; 13:1096813. [PMID: 36713365 PMCID: PMC9874688 DOI: 10.3389/fimmu.2022.1096813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Subclinical ketosis (SCK) in dairy cows, a common metabolic disorder during the perinatal period, is accompanied by systemic inflammation and a high concentration of blood β-hydroxybutyrate (BHB). BHB induced adhesion of neutrophils may play a crucial role in the development of systemic inflammation in SCK cows. Autophagy, an intracellular degradation system, regulates the recycling of membrane adhesion molecules and may be involved in BHB regulating adhesion and pro-inflammatory activation of bovine neutrophils. Thus, the objective of this study was to determine the relationship between BHB, autophagy, and neutrophil adhesion. Results and discussion Here, elevated abundance of serum amyloid A, haptoglobin, C-reactive protein, interleukin-1β, interleukin-6, and tumor necrosis factor-α were found in SCK cows, and all these pro-inflammatory factors had a strong positive correlation with serum BHB. After BHB treatment, the number of adherent neutrophils and the adhesion associated protein abundance of both total and membrane CD11a, CD11b, and CD18 was greater, confirming that BHB promoted the adhesion of bovine neutrophils. However, the mRNA abundance of ITGAL (CD11a), ITGAM (CD11b), and ITGB2 (CD18) did not show a significant difference, suggesting that the degradation of adhesion molecules may be impaired. Transmission electron microscopy revealed a decreased number of autophagosomes and a decrease in mRNA abundance of SQSTM1 (p62) and MAP1LC3B (LC3) after BHB treatment. In parallel, protein abundance of p62 increased while the ratio of protein LC3 II to LC3 I decreased after BHB treatment, indicating that BHB inhibits autophagy of bovine neutrophils. To confirm the regulatory role of autophagy in BHB promoting neutrophil adhesion, we used an autophagy activator rapamycin (RAPA). Data showed that RAPA relieved the inhibitory effect on autophagy and the promotive effect on cell adhesion induced by BHB. Importantly, BHB inhibited the colocalization of LC3 and CD11b, which was relieved by RAPA, further confirming the regulatory role of autophagy in the recycling of the above adhesion molecules. Furthermore, BHB treatment increased the mRNA abundance and the release of pro-inflammatory factors IL-1B, IL-6, and TNF of bovine neutrophils, and these effects were attenuated by RAPA. Overall, the present study revealed that BHB promotes the adhesion of bovine neutrophils by inhibiting autophagy.
Collapse
Affiliation(s)
- Jiyuan He
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kexin Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Wen Zeng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Dong Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zolzaya Majigsuren
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Tugsjargal Batbaatar
- State Central Veterinary Laboratory, General Authority for Veterinary Services, Ministry of Food And Agriculture, Ulaanbaatar, Mongolia
| | - Yunfei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Siyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China,*Correspondence: Yuxiang Song, ; Guowen Liu,
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China,*Correspondence: Yuxiang Song, ; Guowen Liu,
| |
Collapse
|
17
|
Jobst M, Kiss E, Gerner C, Marko D, Del Favero G. Activation of autophagy triggers mitochondrial loss and changes acetylation profile relevant for mechanotransduction in bladder cancer cells. Arch Toxicol 2023; 97:217-233. [PMID: 36214828 PMCID: PMC9816236 DOI: 10.1007/s00204-022-03375-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
Bladder cells are constantly exposed to multiple xenobiotics and bioactive metabolites. In addition to this challenging chemical environment, they are also exposed to shear stress originating from urine and interstitial fluids. Hence, physiological function of bladder cells relies on a high biochemical and biomechanical adaptive competence, which, in turn, is largely supported via autophagy-related mechanisms. As a negative side of this plasticity, bladder cancer cells are known to adapt readily to chemotherapeutic programs. At the molecular level, autophagy was described to support resistance against pharmacological treatments and to contribute to the maintenance of cell structure and metabolic competence. In this study, we enhanced autophagy with rapamycin (1-100 nM) and assessed its effects on the motility of bladder cells, as well as the capability to respond to shear stress. We observed that rapamycin reduced cell migration and the mechanical-induced translocation potential of Krüppel-like transcription factor 2 (KLF2). These effects were accompanied by a rearrangement of cytoskeletal elements and mitochondrial loss. In parallel, intracellular acetylation levels were decreased. Mechanistically, inhibition of the NAD + -dependent deacetylase sirtuin-1 (SIRT1) with nicotinamide (NAM; 0.1-5 mM) restored acetylation levels hampered by rapamycin and cell motility. Taken together, we described the effects of rapamycin on cytoskeletal elements crucial for mechanotransduction and the dependency of these changes on the mitochondrial turnover caused by autophagy activation. Additionally, we could show that targeted metabolic intervention could revert the outcome of autophagy activation, reinforcing the idea that bladder cells can easily adapt to multiple xenobiotics and circumvent in this way the effects of single chemicals.
Collapse
Affiliation(s)
- Maximilian Jobst
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal, Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria ,Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria ,Core Facility Multimodal, Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| |
Collapse
|
18
|
The Paxillin MoPax1 Activates Mitogen-Activated Protein (MAP) Kinase Signaling Pathways and Autophagy through MAP Kinase Activator MoMka1 during Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe oryzae. mBio 2022; 13:e0221822. [PMID: 36314807 PMCID: PMC9765475 DOI: 10.1128/mbio.02218-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paxillin is a focal adhesion-associated protein that functions as an adaptor to recruit diverse cytoskeleton and signaling molecules into a complex and plays a crucial role in several signaling pathways in mammal cells. However, paxillin-mediated signal pathways are largely unknown in phytopathogenic fungi. Previously, Pax1 of Magnaporthe oryzae (MoPax1), a paxillin-like protein, has been identified as a crucial pathogenicity determinant. Here, we report the identification of a mitogen-activated protein (MAP) kinase (MAPK) activator, Mka1 of M. oryzae (MoMka1), that physically interacts with MoPax1. Targeted gene deletion of MoMKA1 resulted in pleiotropic defects in aerial hyphal growth, conidiation, appressorium formation, and pathogenicity in M. oryzae. MoMka1 interacts with Mst50, an adaptor protein of the Mst11-Mst7-Pmk1 and Mck1-Mkk2-Mps1 cascades. Moreover, the phosphorylation levels of both Pmk1 and Mps1 in aerial hyphae of the ΔMomka1 mutant were significantly reduced, indicating that MoMka1 acts upstream from the MAPK pathways. Interestingly, we found that MoMka1 interacts with MoAtg6 and MoAtg13. Deletion of MoMKA1 led to impaired MoAtg13 phosphorylation and enhanced autophagic flux under nutrient-rich conditions, indicating that MoMka1 is required for regulation of autophagy in M. oryzae. Taken together, the paxillin MoPax1 may activate MAP kinase signaling pathways and autophagy through MAP kinase activator MoMka1 and play important roles during appressorium-mediated plant infection by the rice blast fungus. IMPORTANCE Paxillin, as an adaptor recruiting diverse cytoskeleton and signaling molecules into a complex, plays a crucial role in several signaling pathways in mammal cells. However, paxillin-mediated signal pathways are largely unknown in phytopathogenic fungi. Here, we identified that MoMka1 physically interacts with MoPax1. Furthermore, MoMka1 acts upstream from the MAPK pathways through interacting with Mst50, a key protein of the Mst11-Mst7-Pmk1 and Mck1-Mkk2-Mps1 cascades. Meanwhile, MoMka1 interacts with both MoAtg6 and MoAtg13 and controls autophagy initiation by influencing the phosphorylation level of MoAtg13. In summary, we describe a model in which MoPax1 activates MAP kinase signaling pathways and autophagy through MoMka1 during appressorium-mediated plant infection by M. oryzae.
Collapse
|
19
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
20
|
Fu R, Jiang X, Yang Y, Wang C, Zhang Y, Zhu Y, Zhang H. Bidirectional regulation of structural damage on autophagy in the C. elegans epidermis. Autophagy 2022; 18:2731-2745. [PMID: 35311461 PMCID: PMC9629849 DOI: 10.1080/15548627.2022.2047345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
A variety of disturbances such as starvation, organelle damage, heat stress, hypoxia and pathogen infection can influence the autophagic process. However, how the macroautophagy/autophagy machinery is regulated intrinsically by structural damage of the cell remains largely unknown. In this work, we utilized the C. elegans epidermis as the model to address this question. Our results showed that structural damage by mechanical wounding exerted proximal inhibitory effect and distant promotional effect on autophagy within the same epidermal cell. By disrupting individual mechanical supporting structures, we found that only damage of the basal extracellular matrix or the underlying muscle cells activated a distinct autophagic response in the epidermis. On the contrary, structural disruption of the epidermal cells at the apical side inhibited autophagy activation caused by different stress factors. Mechanistic studies showed that the basal promotional effect of structural damage on epidermal autophagy was mediated by a mechanotransduction pathway going through the basal hemidesmosome receptor and LET-363/MTOR, while the apical inhibitory effect was mostly carried out by activation of calcium signaling. Elevated autophagy in the epidermis played a detrimental rather than a beneficial role on cell survival against structural damage. The results obtained from these studies will not only help us better understand the pathogenesis of structural damage- and autophagy-related diseases, but also provide insight into more generic rules of autophagy regulation by the structural and mechanical properties of cells across species.Abbreviations : ATG: autophagy related; BLI-1: BLIstered cuticle 1; CeHDs: C. elegans hemidesmosomes; COL-19: COLlagen 19; DPY-7: DumPY 7; ECM: extracellular matrix; EPG-5: ectopic PGL granules 5; GFP: green fluorescent protein; GIT-1: GIT1 (mammalian G protein-coupled receptor kinase InTeractor 1) homolog; GTL-2: Gon-Two Like 2 (TRP subfamily); HIS-58, HIStone 58; IFB-1: Intermediate Filament, B 1; LET: LEThal; LGG-1: LC3, GABARAP and GATE-16 family 1; MTOR: mechanistic target of rapamycin; MTORC1: MTOR complex 1; MUP-4: MUscle Positioning 4; NLP-29: Neuropeptide-Like Protein 29; PAT: Paralyzed Arrest at Two-fold; PIX-1: PIX (PAK (p21-activated kinase) Interacting eXchange factor) homolog 1; RFP: red fluorescent protein; RNAi: RNA interference; SQST-1: SeQueSTosome related 1; UNC: UNCoordinated; UV: ultraviolet; VAB-10: variable ABnormal morphology 10; WT: wild type.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuyan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunxia Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yun Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Zeng S, Zhao Y, Peng O, Xia Y, Xu Q, Li H, Xue C, Cao Y, Zhang H. Swine Acute Diarrhea Syndrome Coronavirus Induces Autophagy to Promote Its Replication via the Akt/mTOR Pathway. iScience 2022; 25:105394. [PMID: 36281226 PMCID: PMC9581643 DOI: 10.1016/j.isci.2022.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/06/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, single-stranded, positive-sense RNA virus belonging to the Coronaviridae family. Increasingly studies have demonstrated that viruses could utilize autophagy to promote their own replication. However, the relationship between SADS-CoV and autophagy remains unknown. Here, we reported that SADS-CoV infection-induced autophagy and pharmacologically increased autophagy were conducive to viral proliferation. Conversely, suppression of autophagy by pharmacological inhibitors or knockdown of autophagy-related protein impeded viral replication. Furthermore, we demonstrated the underlying mechanism by which SADS-CoV triggered autophagy through the inactivation of the Akt/mTOR pathway. Importantly, we identified integrin α3 (ITGA3) as a potential antiviral target upstream of Akt/mTOR and autophagy pathways. Knockdown of ITGA3 enhanced autophagy and consequently increased the replication of SADS-CoV. Collectively, our studies revealed a novel mechanism that SADS-CoV-induced autophagy to facilitate its proliferation via Akt/mTOR pathway and found that ITGA3 was an effective antiviral factor for suppressing viral infection. SADS-CoV triggers autophagy pathway to facilitate its proliferation Inhibition of autophagy flux impairs SADS-CoV replication SADS-CoV negatively regulates Akt/mTOR pathway to induce autophagy ITGA3 prevents SADS-CoV production through autophagy inhibition
Collapse
Affiliation(s)
- Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongmei Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China,Corresponding author
| |
Collapse
|
22
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
23
|
Zhu Z, Fang C, Xu H, Yuan L, Du Y, Ni Y, Xu Y, Shao A, Zhang A, Lou M. Anoikis resistance in diffuse glioma: The potential therapeutic targets in the future. Front Oncol 2022; 12:976557. [PMID: 36046036 PMCID: PMC9423707 DOI: 10.3389/fonc.2022.976557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Glioma is the most common malignant intracranial tumor and exhibits diffuse metastasis and a high recurrence rate. The invasive property of glioma results from cell detachment. Anoikis is a special form of apoptosis that is activated upon cell detachment. Resistance to anoikis has proven to be a protumor factor. Therefore, it is suggested that anoikis resistance commonly occurs in glioma and promotes diffuse invasion. Several factors, such as integrin, E-cadherin, EGFR, IGFR, Trk, TGF-β, the Hippo pathway, NF-κB, eEF-2 kinase, MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been shown to induce anoikis resistance in glioma. In our present review, we aim to summarize the underlying mechanism of resistance and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Wang K, Sun Z, Li Y, Liu M, Loor JJ, Jiang Q, Liu G, Wang Z, Song Y, Li X. Histamine promotes adhesion of neutrophils by inhibition of autophagy in dairy cows with subacute ruminal acidosis. J Dairy Sci 2022; 105:7600-7614. [DOI: 10.3168/jds.2022-22036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
|
25
|
Ravasio A, Morselli E, Bertocchi C. Mechanoautophagy: Synergies Between Autophagy and Cell Mechanotransduction at Adhesive Complexes. Front Cell Dev Biol 2022; 10:917662. [PMID: 35721483 PMCID: PMC9198486 DOI: 10.3389/fcell.2022.917662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cells are exposed and respond to various mechanical forces and physical cues stemming from their environment. This interaction has been seen to differentially regulate various cellular processes for maintenance of homeostasis, of which autophagy represents one of the major players. In addition, autophagy has been suggested to regulate mechanical functions of the cells including their interaction with the environment. In this minireview, we summarize the state of the art of the fascinating interplay between autophagy and the mechanotransduction machinery associated with cell adhesions, that we name ¨Mechanoautophagy¨
Collapse
Affiliation(s)
- Andrea Ravasio
- Institute for Biological and Medical Engineering Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Cristina Bertocchi, ; Andrea Ravasio,
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Cristina Bertocchi, ; Andrea Ravasio,
| |
Collapse
|
26
|
Nanoprodrug ratiometrically integrating autophagy inhibitor and genotoxic agent for treatment of triple-negative breast cancer. Biomaterials 2022; 283:121458. [DOI: 10.1016/j.biomaterials.2022.121458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
|
27
|
Maimaiti A, Tuerhong M, Wang Y, Aisha M, Jiang L, Wang X, Mahemuti Y, Aili Y, Feng Z, Kasimu M. An innovative prognostic model based on autophagy-related long noncoding RNA signature for low-grade glioma. Mol Cell Biochem 2022; 477:1417-1438. [DOI: 10.1007/s11010-022-04368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|
28
|
Zhao M, Finlay D, Kwong E, Liddington R, Viollet B, Sasaoka N, Vuori K. Cell adhesion suppresses autophagy via Src/FAK-mediated phosphorylation and inhibition of AMPK. Cell Signal 2022; 89:110170. [PMID: 34673141 PMCID: PMC8602780 DOI: 10.1016/j.cellsig.2021.110170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
Autophagy is a multi-step process regulated in part by AMP-activated protein kinase (AMPK). Phosphorylation of threonine 172 on the AMPK α-subunit enhances AMPK kinase activity, resulting in activation of downstream signaling. Integrin-mediated cell adhesion activates Src/ Focal Adhesion Kinase (FAK) signaling complex, which regulates multiple cellular processes including cell survival. We show here that Src signaling leads to direct phosphorylation of the AMPK-α subunit on a novel site, tyrosine 179, resulting in suppression of AMPK-T172 phosphorylation and autophagy upon integrin-mediated cell adhesion. By using chemical inhibitors, genetic cell models and targeted mutagenesis, we confirm an important role for Src and FAK in suppressing AMPK signaling and autophagy induced by various additional stimuli, including glucose starvation. Furthermore, we found that autophagy suppression by hydroxychloroquine promotes apoptosis in a cancer cell model that had been treated with Src inhibitors. Our findings reveal a link between the Src/ FAK complex and AMPK/ autophagy regulation, which may play an important role in the maintenance of normal cellular homeostasis and tumor progression.
Collapse
Affiliation(s)
- Ming Zhao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Kwong
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert Liddington
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, 75014, France
| | - Norio Sasaoka
- Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correpsonding author.
| |
Collapse
|
29
|
Gahmberg CG, Grönholm M. How integrin phosphorylations regulate cell adhesion and signaling. Trends Biochem Sci 2021; 47:265-278. [PMID: 34872819 PMCID: PMC8642147 DOI: 10.1016/j.tibs.2021.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Cell adhesion is essential for the formation of organs, cellular migration, and interaction with target cells and the extracellular matrix. Integrins are large protein α/β-chain heterodimers and form a major family of cell adhesion molecules. Recent research has dramatically increased our knowledge of how integrin phosphorylations regulate integrin activity. Phosphorylations determine the signaling complexes formed on the cytoplasmic tails, regulating downstream signaling. α-Chain phosphorylation is necessary for inducing β-chain phosphorylation in LFA-1, and the crosstalk from one integrin to another activating or inactivating its function is in part mediated by phosphorylation of β-chains. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus receptor angiotensin-converting enzyme 2 (ACE2) and possible integrin coreceptors may crosstalk and induce a phosphorylation switch and autophagy.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland.
| | - Mikaela Grönholm
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 Helsinki, Finland
| |
Collapse
|
30
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
31
|
Gonzalez CD, Carro Negueruela MP, Nicora Santamarina C, Resnik R, Vaccaro MI. Autophagy Dysregulation in Diabetic Kidney Disease: From Pathophysiology to Pharmacological Interventions. Cells 2021; 10:2497. [PMID: 34572148 PMCID: PMC8469825 DOI: 10.3390/cells10092497] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a frequent, potentially devastating complication of diabetes mellitus. Several factors are involved in its pathophysiology. At a cellular level, diabetic kidney disease is associated with many structural and functional alterations. Autophagy is a cellular mechanism that transports intracytoplasmic components to lysosomes to preserve cellular function and homeostasis. Autophagy integrity is essential for cell homeostasis, its alteration can drive to cell damage or death. Diabetic kidney disease is associated with profound autophagy dysregulation. Autophagy rate and flux alterations were described in several models of diabetic kidney disease. Some of them are closely linked with disease progression and severity. Some antidiabetic agents have shown significant effects on autophagy. A few of them have also demonstrated to modify disease progression and improved outcomes in affected patients. Other drugs also target autophagy and are being explored for clinical use in patients with diabetic kidney disease. The modulation of autophagy could be relevant for the pharmacological treatment and prevention of this disease in the future. Therefore, this is an evolving area that requires further experimental and clinical research. Here we discuss the relationship between autophagy and Diabetic kidney disease and the potential value of autophagy modulation as a target for pharmacological intervention.
Collapse
Affiliation(s)
- Claudio D. Gonzalez
- Instituto de Bioquimica y Medicina Molecular Prof. Alberto Boveris (UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (C.D.G.); (R.R.)
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| | - María Paula Carro Negueruela
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| | - Catalina Nicora Santamarina
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| | - Roxana Resnik
- Instituto de Bioquimica y Medicina Molecular Prof. Alberto Boveris (UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (C.D.G.); (R.R.)
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof. Alberto Boveris (UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (C.D.G.); (R.R.)
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| |
Collapse
|
32
|
Li M, Wang Y, Li M, Wu X, Setrerrahmane S, Xu H. Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B 2021; 11:2726-2737. [PMID: 34589393 PMCID: PMC8463276 DOI: 10.1016/j.apsb.2021.01.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell–extracellular matrix and cell–cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.
Collapse
Key Words
- ADAMs, adisintegrin and metalloproteases
- AJ, adherens junctions
- Antagonists
- CAFs, cancer-associated fibroblasts
- CAR, chimeric antigen receptor
- CRC, colorectal cancer
- CSC, cancer stem cell
- Clinical trial
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial–mesenchymal transition
- ERK, extracellular regulated kinase
- Extracellular matrix
- FAK, focal adhesion kinase
- FDA, U.S. Food and Drug Administration
- HIF-1α, hypoxia-inducible factor-1α
- HUVECs, human umbilical vein endothelial cells
- ICAMs, intercellular adhesion molecules
- IGFR, insulin-like growth factor receptor
- IMD, integrin-mediated death
- Integrins
- JNK, c-Jun N-terminal kinase 16
- MAPK, mitogen-activated protein kinase
- MMP2, matrix metalloprotease 2
- NF-κB, nuclear factor-κB
- NSCLC, non-small cell lung cancer
- PDGFR, platelet-derived growth factor receptor
- PI3K, phosphatidylinositol 3-kinase
- RGD, Arg-Gly-Asp
- RTKs, receptor tyrosine kinases
- SAPKs, stress-activated MAP kinases
- SDF-1, stromal cell-derived factor-1
- SH2, Src homology 2
- STAT3, signal transducer and activator of transcription 3
- TCGA, The Cancer Genome Atlas
- TICs, tumor initiating cells
- TNF, tumor necrosis factor
- Targeted drug
- Tumor progression
- VCAMs, vascular cell adhesion molecules
- VEGFR, vascular endothelial growth factor receptor
- mAb, monoclonal antibodies
- sdCAR-T, switchable dual-receptor CAR-engineered T
- siRNA, small interference RNA
- uPA, urokinase-type plasminogen activator
Collapse
|
33
|
Castagnaro S, Gambarotto L, Cescon M, Bonaldo P. Autophagy in the mesh of collagen VI. Matrix Biol 2021; 100-101:162-172. [DOI: 10.1016/j.matbio.2020.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
|
34
|
Rabanal-Ruiz Y, Byron A, Wirth A, Madsen R, Sedlackova L, Hewitt G, Nelson G, Stingele J, Wills JC, Zhang T, Zeug A, Fässler R, Vanhaesebroeck B, Maddocks OD, Ponimaskin E, Carroll B, Korolchuk VI. mTORC1 activity is supported by spatial association with focal adhesions. J Cell Biol 2021; 220:e202004010. [PMID: 33635313 PMCID: PMC7923692 DOI: 10.1083/jcb.202004010] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/21/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexander Wirth
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Ralitsa Madsen
- UCL Cancer Institute, University College London, London, UK
| | - Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Glyn Nelson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Stingele
- Gene Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Jimi C. Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tong Zhang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - André Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Oliver D.K. Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | | | - Viktor I. Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Akkoc Y, Peker N, Akcay A, Gozuacik D. Autophagy and Cancer Dormancy. Front Oncol 2021; 11:627023. [PMID: 33816262 PMCID: PMC8017298 DOI: 10.3389/fonc.2021.627023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Metastasis and relapse account for the great majority of cancer-related deaths. Most metastatic lesions are micro metastases that have the capacity to remain in a non-dividing state called “dormancy” for months or even years. Commonly used anticancer drugs generally target actively dividing cancer cells. Therefore, cancer cells that remain in a dormant state evade conventional therapies and contribute to cancer recurrence. Cellular and molecular mechanisms of cancer dormancy are not fully understood. Recent studies indicate that a major cellular stress response mechanism, autophagy, plays an important role in the adaptation, survival and reactivation of dormant cells. In this review article, we will summarize accumulating knowledge about cellular and molecular mechanisms of cancer dormancy, and discuss the role and importance of autophagy in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nesibe Peker
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Arzu Akcay
- Yeni Yüzyıl University, School of Medicine, Private Gaziosmanpaşa Hospital, Department of Pathology, Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Koç University School of Medicine, Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| |
Collapse
|
36
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
37
|
Gu J, Zhang S, He X, Chen S, Wang Y. High expression of PIG11 correlates with poor prognosis in gastric cancer. Exp Ther Med 2021; 21:249. [PMID: 33603857 PMCID: PMC7851609 DOI: 10.3892/etm.2021.9680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/01/2020] [Indexed: 11/06/2022] Open
Abstract
P53-induced gene 11 (PIG11) is an early transcription-related target of p53 that is involved in cell apoptosis and tumor development. However, its biological function in gastric cancer (GC) tissues and relationship with the prognosis of patients with GC have remained elusive. In the present retrospective study, 60 fresh and 790 paraffin-embedded samples of GC were obtained from the Affiliated Hospital of Nantong University (Nantong, China) with complete clinical data from all patients. Reverse transcription-quantitative PCR and tissue microarray-immunohistochemical analysis were used to determine the expression of PIG11 in the respective GC tissues. A receiver operating characteristic (ROC) curve was plotted to determine the diagnostic utility of PIG11 expression in GC. Furthermore, three online databases, including Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan-Meier plotter, were used for bioinformatics analysis of PIG11. PIG11 expression in GC tissues was high, which was positively correlated with invasive depth (P<0.001), lymph node metastasis (P<0.001), distant metastasis (P=0.019), TNM staging (P<0.001) and carcinoembryonic antigen in serum (P<0.001), and negatively associated with the overall survival of patients with GC. The ROC curve analysis suggested that based on PIG11 expression, it was possible to distinguish GC tissues from adjacent normal tissues (P<0.0001) with a sensitivity and specificity of 81.67 and 76.67%, respectively. In addition, Cox logistic regression analysis demonstrated that high PIG11 expression is a novel biomarker for unfavorable prognosis of patients with GC. Furthermore, the results obtained from the GEPIA database indicated that PIG11 expression is correlated with TNF, carcinoembryonic antigen related cell adhesion molecule 5, phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha, VEGFA and kinase insert domain receptor. Therefore, PIG11 expression may be associated with the malignancy of GC and may serve as a potential diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Juan Gu
- Department of Public Health, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xin He
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Sufang Chen
- Department of Medical Imaging and Laboratory, Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Yan Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
38
|
Kliche J, Kuss H, Ali M, Ivarsson Y. Cytoplasmic short linear motifs in ACE2 and integrin β 3 link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. Sci Signal 2021; 14:14/665/eabf1117. [PMID: 33436498 PMCID: PMC7928716 DOI: 10.1126/scisignal.abf1117] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2, the virus that causes COVID-19, enters cells through endocytosis upon binding to the cell surface receptor ACE2 and potentially others, including integrins. Using bioinformatics, Mészáros et al. predicted the presence of short amino acid sequences, called short linear motifs (SLiMs), in the cytoplasmic tails of ACE2 and various integrins that may engage the endocytic and autophagic machinery. Using affinity binding assays, Kliche et al. not only confirmed that many of these predicted SLiMs interacted with target peptides in various components of the endocytosis and autophagy machinery, but also found that these interactions were regulated by the phosphorylation of SLiM-adjacent amino acids. Together, these findings have identified a potential link between autophagy and integrin signaling and could lead to new ways to prevent viral infection. The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin β3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 μ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin β3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Hanna Kuss
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.,WWU Münster, Institute for Evolution and Biodiversity, DE-48149 Münster, Germany
| | - Muhammad Ali
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
39
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
40
|
Beauséjour M, Boutin A, Vachon PH. Anoikis and the Human Gut Epithelium in Health and Disease. ANOIKIS 2021:95-126. [DOI: 10.1007/978-3-030-73856-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
41
|
Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 2021; 22:22-38. [PMID: 33188273 DOI: 10.1038/s41580-020-00306-w] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Mechanical forces shape cells and tissues during development and adult homeostasis. In addition, they also signal to cells via mechanotransduction pathways to control cell proliferation, differentiation and death. These processes require metabolism of nutrients for both energy generation and biosynthesis of macromolecules. However, how cellular mechanics and metabolism are connected is still poorly understood. Here, we discuss recent evidence indicating how the mechanical cues exerted by the extracellular matrix (ECM), cell-ECM and cell-cell adhesion complexes influence metabolic pathways. Moreover, we explore the energy and metabolic requirements associated with cell mechanics and ECM remodelling, implicating a reciprocal crosstalk between cell mechanics and metabolism.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | | | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
42
|
Amraei R, Alwani T, Ho RXY, Aryan Z, Wang S, Rahimi N. Cell adhesion molecule IGPR-1 activates AMPK connecting cell adhesion to autophagy. J Biol Chem 2020; 295:16691-16699. [PMID: 32978258 PMCID: PMC7864065 DOI: 10.1074/jbc.ra120.014790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase β activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase β is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220 The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Tooba Alwani
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Rachel Xi-Yeen Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Zahra Aryan
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Shawn Wang
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA.
| |
Collapse
|
43
|
Lim GE, Sung JY, Yu S, Kim Y, Shim J, Kim HJ, Cho ML, Lee JS, Kim YN. Pygenic Acid A (PA) Sensitizes Metastatic Breast Cancer Cells to Anoikis and Inhibits Metastasis In Vivo. Int J Mol Sci 2020; 21:ijms21228444. [PMID: 33182770 PMCID: PMC7696818 DOI: 10.3390/ijms21228444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the main cause of cancer-related deaths. Anoikis is a type of apoptosis caused by cell detachment, and cancer cells become anoikis resistant such that they survive during circulation and can successfully metastasize. Therefore, sensitization of cancer cells to anoikis could prevent metastasis. Here, by screening for anoikis sensitizer using natural compounds, we found that pygenic acid A (PA), a natural compound from Prunella vulgaris, not only induced apoptosis but also sensitized the metastatic triple-negative breast cancer cell lines, MDA-MB-231 cells (human) and 4T1 cells (mouse), to anoikis. Apoptosis protein array and immunoblotting analysis revealed that PA downregulated the pro-survival proteins, including cIAP1, cIAP2, and survivin, leading to cell death of both attached and suspended cells. Interestingly, PA decreased the levels of proteins associated with anoikis resistance, including p21, cyclin D1, p-STAT3, and HO-1. Ectopic expression of active STAT3 attenuated PA-induced anoikis sensitivity. Although PA activated ER stress and autophagy, as determined by increases in the levels of characteristic markers, such as IRE1α, p-elF2α, LC3B I, and LC3B II, PA treatment resulted in p62 accumulation, which could be due to PA-induced defects in autophagy flux. PA also decreased metastatic characteristics, such as cell invasion, migration, wound closure, and 3D growth. Finally, lung metastasis of luciferase-labeled 4T1 cells decreased following PA treatment in a syngeneic mouse model when compared with the control. These data suggest that PA sensitizes metastatic breast cancer cells to anoikis via multiple pathways, such as inhibition of pro-survival pathways and activation of ER stress and autophagy, leading to the inhibition of metastasis. These findings suggest that sensitization to anoikis by PA could be used as a new therapeutic strategy to control the metastasis of breast cancer.
Collapse
Affiliation(s)
- Ga-Eun Lim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea; (G.-E.L.); (J.Y.S.); (S.Y.); (Y.K.); (J.S.)
| | - Jee Young Sung
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea; (G.-E.L.); (J.Y.S.); (S.Y.); (Y.K.); (J.S.)
| | - Suyeun Yu
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea; (G.-E.L.); (J.Y.S.); (S.Y.); (Y.K.); (J.S.)
| | - Younmi Kim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea; (G.-E.L.); (J.Y.S.); (S.Y.); (Y.K.); (J.S.)
| | - Jaegal Shim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea; (G.-E.L.); (J.Y.S.); (S.Y.); (Y.K.); (J.S.)
| | - Hyo Jung Kim
- National Institute for Korean Medicine Development, 94 Hwarang-ro (Gapje-dong), Gyeongsan-si, Gyeongsangbuk-do 38540, Korea; (H.J.K.); (M.L.C.)
| | - Myoung Lae Cho
- National Institute for Korean Medicine Development, 94 Hwarang-ro (Gapje-dong), Gyeongsan-si, Gyeongsangbuk-do 38540, Korea; (H.J.K.); (M.L.C.)
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea;
| | - Yong-Nyun Kim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea; (G.-E.L.); (J.Y.S.); (S.Y.); (Y.K.); (J.S.)
- Correspondence: ; Tel.: +82-31-920-2415; Fax: +82-31-920-2468
| |
Collapse
|
44
|
Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front Oncol 2020; 10:578418. [PMID: 33117715 PMCID: PMC7575731 DOI: 10.3389/fonc.2020.578418] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
During tumorigenesis, cancer cells are exposed to a wide variety of intrinsic and extrinsic stresses that challenge homeostasis and growth. Cancer cells display activation of distinct mechanisms for adaptation and growth even in the presence of stress. Autophagy is a catabolic mechanism that aides in the degradation of damaged intracellular material and metabolite recycling. This activity helps meet metabolic needs during nutrient deprivation, genotoxic stress, growth factor withdrawal and hypoxia. However, autophagy plays a paradoxical role in tumorigenesis, depending on the stage of tumor development. Early in tumorigenesis, autophagy is a tumor suppressor via degradation of potentially oncogenic molecules. However, in advanced stages, autophagy promotes the survival of tumor cells by ameliorating stress in the microenvironment. These roles of autophagy are intricate due to their interconnection with other distinct cellular pathways. In this review, we present a broad view of the participation of autophagy in distinct phases of tumor development. Moreover, autophagy participation in important cellular processes such as cell death, metabolic reprogramming, metastasis, immune evasion and treatment resistance that all contribute to tumor development, is reviewed. Finally, the contribution of the hypoxic and nutrient deficient tumor microenvironment in regulation of autophagy and these hallmarks for the development of more aggressive tumors is discussed.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
45
|
Souza MR, Ibelli AMG, Savoldi IR, Cantão ME, Peixoto JDO, Mores MAZ, Lopes JS, Coutinho LL, Ledur MC. Transcriptome analysis identifies genes involved with the development of umbilical hernias in pigs. PLoS One 2020; 15:e0232542. [PMID: 32379844 PMCID: PMC7205231 DOI: 10.1371/journal.pone.0232542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical hernia (UH) is one of the most frequent defects affecting pig production, however, it also affects humans and other mammals. UH is characterized as an abnormal protrusion of the abdominal contents to the umbilical region, causing pain, discomfort and reduced performance in pigs. Some genomic regions associated to UH have already been identified, however, no study involving RNA sequencing was performed when umbilical tissue is considered. Therefore, here, we have sequenced the umbilical ring transcriptome of five normal and five UH-affected pigs to uncover genes and pathways involved with UH development. A total of 13,216 transcripts were expressed in the umbilical ring tissue. From those, 230 genes were differentially expressed (DE) between normal and UH-affected pigs (FDR <0.05), being 145 downregulated and 85 upregulated in the affected compared to the normal pigs. A total of 68 significant biological processes were identified and the most relevant were extracellular matrix, immune system, anatomical development, cell adhesion, membrane components, receptor activation, calcium binding and immune synapse. The results pointed out ACAN, MMPs, COLs, EPYC, VIT, CCBE1 and LGALS3 as strong candidates to trigger umbilical hernias in pigs since they act in the extracellular matrix remodeling and in the production, integrity and resistance of the collagen. We have generated the first transcriptome of the pig umbilical ring tissue, which allowed the identification of genes that had not yet been related to umbilical hernias in pigs. Nevertheless, further studies are needed to identify the causal mutations, SNPs and CNVs in these genes to improve our understanding of the mechanisms of gene regulation.
Collapse
Affiliation(s)
- Mayla Regina Souza
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| |
Collapse
|
46
|
Hamyeh M, Bernex F, Larive RM, Naldi A, Urbach S, Simony-Lafontaine J, Puech C, Bakhache W, Solassol J, Coopman PJ, Hendriks WJ, Freiss G. PTPN13 induces cell junction stabilization and inhibits mammary tumor invasiveness. Am J Cancer Res 2020; 10:1016-1032. [PMID: 31938048 PMCID: PMC6956795 DOI: 10.7150/thno.38537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical data suggest that the protein tyrosine phosphatase PTPN13 exerts an anti-oncogenic effect. Its exact role in tumorigenesis remains, however, unclear due to its negative impact on FAS receptor-induced apoptosis. Methods: We crossed transgenic mice deleted for PTPN13 phosphatase activity with mice that overexpress human HER2 to assess the exact role of PTPN13 in tumor development and aggressiveness. To determine the molecular mechanism underlying the PTPN13 tumor suppressor activity we developed isogenic clones of the aggressive human breast cancer cell line MDA-MB-231 overexpressing either wild type or a catalytically-inactive mutant PTPN13 and subjected these to phosphoproteomic and gene ontology analyses. We investigated the PTPN13 consequences on cell aggressiveness using wound healing and Boyden chamber assays, on intercellular adhesion using videomicroscopy, cell aggregation assay and immunofluorescence. Results: The development, growth and invasiveness of breast tumors were strongly increased by deletion of the PTPN13 phosphatase activity in transgenic mice. We observed that PTPN13 phosphatase activity is required to inhibit cell motility and invasion in the MDA-MB-231 cell line overexpressing PTPN13. In vivo, the negative PTPN13 effect on tumor invasiveness was associated with a mesenchymal-to-epithelial transition phenotype in athymic mice xenografted with PTPN13-overexpressing MDA-MB-231 cells, as well as in HER2-overexpressing mice with wild type PTPN13, compared to HER2-overexpressing mice that lack PTPN13 phosphatase activity. Phosphoproteomic and gene ontology analyses indicated a role of PTPN13 in the regulation of intercellular junction-related proteins. Finally, protein localization studies in MDA-MB-231 cells and HER2-overexpressing mice tumors confirmed that PTPN13 stabilizes intercellular adhesion and promotes desmosome formation. Conclusions: These data provide the first evidence for the negative role of PTPN13 in breast tumor invasiveness and highlight its involvement in cell junction stabilization.
Collapse
|
47
|
Lino RLB, Dos Santos PK, Pisani GFD, Altei WF, Cominetti MR, Selistre-de-Araújo HS. Alphavbeta3 integrin blocking inhibits apoptosis and induces autophagy in murine breast tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118536. [PMID: 31465809 DOI: 10.1016/j.bbamcr.2019.118536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Integrins are cell receptors that mediate adhesion to the extracellular matrix (ECM) and regulate cell migration, a crucial process in tumor invasion. The αvβ3 integrin recognizes the arginine-glycine-aspartic acid (RGD) motif in ECM proteins and it can be antagonized by RGD-peptides, resulting in decreased cell migration and invasion. RGD-based drugs have shown disappointing results in clinical trials; however, the reasons for their lack of activity are still obscure. Aiming to contribute to a better understanding of the molecular consequences of integrin inhibition, we tested a recombinant RGD-disintegrin (DisBa-01) in two types of murine cell lines, breast tumor 4T1BM2 cells and L929 fibroblasts. Only tumor cells showed decreased motility and adhesion, as well as morphologic alterations upon DisBa-01 treatment (100 and 1000 nM). This result was attributed to the higher levels of αvβ3 integrin in 4T1BM2 cells compared to L929 fibroblasts making the former more sensitive to DisBa-01 blocking. DisBa-01 induced cell cycle arrest at the S phase in 4T1BM2 cells, but it did not induce apoptosis, which was consistent with the decrease in caspase-3, 8 and 9 expression at mRNA and protein levels. DisBa-01 increases PI3K, Beclin-1 and LC3B expression in tumor cells, indicators of autophagic induction. In conclusion, αvβ3 integrin blocking by DisBa-01 results in inhibition of adhesion and migration and in the activation of an autophagy program, allowing prolonged survival and avoiding immediate apoptotic death. These observations suggest new insights into the effects of RGD-based inhibitors considering their importance in drug development for human health.
Collapse
Affiliation(s)
- Rafael Luis Bressani Lino
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Graziéle Fernanda Deriggi Pisani
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Wanessa Fernanda Altei
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Marcia Regina Cominetti
- Department of Gerontology, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Heloisa Sobreiro Selistre-de-Araújo
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil.
| |
Collapse
|
48
|
Chiarelli N, Ritelli M, Zoppi N, Colombi M. Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers‒Danlos Syndromes. Genes (Basel) 2019; 10:E609. [PMID: 31409039 PMCID: PMC6723307 DOI: 10.3390/genes10080609] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Ehlers‒Danlos syndromes (EDS) constitute a heterogenous group of connective tissue disorders characterized by joint hypermobility, skin abnormalities, and vascular fragility. The latest nosology recognizes 13 types caused by pathogenic variants in genes encoding collagens and other molecules involved in collagen processing and extracellular matrix (ECM) biology. Classical (cEDS), vascular (vEDS), and hypermobile (hEDS) EDS are the most frequent types. cEDS and vEDS are caused respectively by defects in collagen V and collagen III, whereas the molecular basis of hEDS is unknown. For these disorders, the molecular pathology remains poorly studied. Herein, we review, expand, and compare our previous transcriptome and protein studies on dermal fibroblasts from cEDS, vEDS, and hEDS patients, offering insights and perspectives in their molecular mechanisms. These cells, though sharing a pathological ECM remodeling, show differences in the underlying pathomechanisms. In cEDS and vEDS fibroblasts, key processes such as collagen biosynthesis/processing, protein folding quality control, endoplasmic reticulum homeostasis, autophagy, and wound healing are perturbed. In hEDS cells, gene expression changes related to cell-matrix interactions, inflammatory/pain responses, and acquisition of an in vitro pro-inflammatory myofibroblast-like phenotype may contribute to the complex pathogenesis of the disorder. Finally, emerging findings from miRNA profiling of hEDS fibroblasts are discussed to add some novel biological aspects about hEDS etiopathogenesis.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy.
| |
Collapse
|
49
|
Targeting Degradation of EGFR through the Allosteric Site Leads to Cancer Cell Detachment-Promoted Death. Cancers (Basel) 2019; 11:cancers11081094. [PMID: 31374910 PMCID: PMC6721407 DOI: 10.3390/cancers11081094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Targeting epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors (TKI) has been widely exploited to disrupt aberrant phosphorylation flux in cancer. However, a bottleneck of potent TKIs is the acquisition of drug resistance mutations, secondary effects, and low ability to attenuate tumor progression. We have developed an alternative means of targeting EGFR that relies on protein degradation through two consecutive routes, ultimately leading to cancer cell detachment-related death. We describe furfuryl derivatives of 4-allyl-5-[2-(4-alkoxyphenyl)-quinolin-4-yl]-4H-1,2,4-triazole-3-thiol that bind to and weakly inhibit EGFR tyrosine phosphorylation and induce strong endocytic degradation of the receptor in cancer cells. The compound-promoted depletion of EGFR resulted in the sequestration of non-phosphorylated Bim, which no longer ensured the integrity of the cytoskeleton machinery, as shown by the detachment of cancer cells from the extracellular matrix (ECM). Of particular note, the longer CH3(CH2)n chains in the terminal moiety of the anti-EGFR molecules confer higher hydrophobicity in the allosteric site located in the immediate vicinity of the catalytic pocket. Small compounds accelerated and enhanced EGFR and associated proteins degradation during EGF and/or glutamine starvation of cultures, thereby demonstrating high potency in killing cancer cells by simultaneously modulating signaling and metabolic pathways. We propose a plausible mechanism of anti-cancer action by small degraders through the allosteric site of EGFR. Our data represent a rational and promising perspective in the treatment of aggressive tumors.
Collapse
|
50
|
Are Integrins Still Practicable Targets for Anti-Cancer Therapy? Cancers (Basel) 2019; 11:cancers11070978. [PMID: 31336983 PMCID: PMC6678560 DOI: 10.3390/cancers11070978] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Correlative clinical evidence and experimental observations indicate that integrin adhesion receptors, in particular those of the αV family, are relevant to cancer cell features, including proliferation, survival, migration, invasion, and metastasis. In addition, integrins promote events in the tumor microenvironment that are critical for tumor progression and metastasis, including tumor angiogenesis, matrix remodeling, and the recruitment of immune and inflammatory cells. In spite of compelling preclinical results demonstrating that the inhibition of integrin αVβ3/αVβ5 and α5β1 has therapeutic potential, clinical trials with integrin inhibitors targeting those integrins have repeatedly failed to demonstrate therapeutic benefits in cancer patients. Here, we review emerging integrin functions and their proposed contribution to tumor progression, discuss preclinical evidence of therapeutic significance, revisit clinical trial results, and consider alternative approaches for their therapeutic targeting in oncology, including targeting integrins in the other cells of the tumor microenvironment, e.g., cancer-associated fibroblasts and immune/inflammatory cells. We conclude that integrins remain a valid target for cancer therapy; however, agents with better pharmacological properties, alternative models for their preclinical evaluation, and innovative combination strategies for clinical testing (e.g., together with immuno-oncology agents) are needed.
Collapse
|